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a b s t r a c t

This paper develops new practical stability criteria for impulsive stochastic functional
differential systems with distributed-delay dependent impulses by using the Lyapunov–
Razumikhin approach and some inequality techniques. In the given systems, the state
variables on the impulses are concerned with a history time period, which is very
appropriate for modelling some practical problems. Moreover, different from the ex-
isting practical stabilization results for the systems with unstable continuous stochastic
dynamics and stabilizing impulsive effects, we take the systems with stable continuous
stochastic dynamics and destabilizing impulsive effects into account. It shows that under
the impulsive perturbations, the practical exponential stability of the stochastic func-
tional differential systems can remain unchanged when the destabilizing distributed-
delay dependent impulses satisfy some conditions on the frequency and amplitude of the
impulses. In other words, it reveals that how to control the impulsive perturbations such
that the corresponding stochastic functional differential systems still maintain practically
exponentially stable. Finally, an example with its numerical simulation is offered to
demonstrate the efficiency of the theoretical findings.

© 2023 Elsevier Ltd. All rights reserved.

1. Introduction

The practical stability (PS), originally introduced in [1], has attracted great attention for many years due to its important
oles in characterizing the stability of many dynamical systems, such as reaction–diffusion systems [2,3], impulsive
ystems [3–6], switched systems [7–10], chained systems [11], stochastic age-dependent capital systems [12], stochastic
ystems with uncertainties and disturbances [13]. The analysis of PS aims to investigate the stability of systems when the
rigin is not necessarily an equilibrium point (refer to [4,12]).
Needless to say that impulsive systems can be appropriate tools in mathematical modeling of many real world

ystems, which have crucial applications in a variety of areas, such as mechanical systems, complex networks, secure
ommunication, population growth and biological systems [14–16]. On the other hand, delay effects are also frequently
ncountered in lots of practical systems [17–20]. Up to now, increasing attention has been paid to the stability analysis
or the impulsive systems with delay effects (see e.g., [3,5,17,21–32]). For example, in [5], the authors discussed the
ractical exponential stability (PES) of impulsive stochastic functional differential systems with G-Brownian motion by
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employing stochastic analysis technique, Razumikhin-type theorem and vector G-Lyapunov function. In [21], the authors
investigated input-to-state stability problem for impulsive and switching hybrid time-delay systems by using the method
of multiple Lyapunov–Krasovskii functionals. In [22], the authors studied the robust stability, stabilization and H∞-control
or uncertain impulsive systems with time-delay by using Lyapunov–Razumikhin (LR) approach. However, for the PS
roblem of impulsive systems, one may observe that the state variables on impulses only considered the discrete delay
ffects in the literature. In fact, in some special fields, impulsive effects may be concerned with distributed delay when the
umps of systems states only rely on the accumulation of the system states over a history time period, such as population
ynamics, financial markets, network connections [23,28,29,33]. Therefore, it is great meaningful to investigate the PS of
he systems with distributed delay dependent impulses.

Moreover, to the best of our knowledge, an impulsive system can be viewed as a hybrid one, which generally comprises
hree classes of systems: (1) the system with unstable continuous stochastic dynamics and stabilizing impulses; (2) the
ystem with stable continuous stochastic dynamics and destabilizing impulses; (3) the systems where both the continuous
ynamics and the discrete dynamics are stable. Recently, numerous results have been reported for stability analysis of
hree classes of impulsive systems (see e.g., [4,5,21–32]). For example, [4,5,24,26–29,32] investigated the first class of
mpulsive systems. [8] discussed the second class of impulsive systems. [21,30,31] studied the first and second classes
f impulsive systems. [23] considered the first and third classes of impulsive systems. [22] investigated the first and
hird classes of impulsive systems. However, it should be mentioned that only the first class of impulsive systems were
onsidered in the analysis of PS in the literature (see e.g., [3,4]). In addition, for the systems with distributed-delay
ependent impulses, the authors just investigated the exponential stability of the first and third classes of impulsive
ystems (see e.g., [23,28,29]). Therefore, in this paper, we will analyse the PS of the systems with distributed-delay
ependent impulses, in the case that the continuous stochastic systems are practically exponentially stable (PES) and
istributed-delay dependent impulses are destabilizing.
Inspired by the above discussion, by using the LR approach and some inequality techniques, we will investigate the PS

f impulsive stochastic functional differential systems with destabilizing distributed-delay dependent impulses, and give
ome new sufficient conditions for the practical exponential stability in pth moment (PESpM) and almost sure practical
xponential stability (ASPES). The contributions of this paper are summarized as follows: (1) The systems with distributed-
elay dependent impulses are a type of more general systems. Up to now, the stability of this type of impulsive systems
n the literature were only considered in [23,28,29], where the exponential stabilization of the corresponding first and
hird classes of impulsive systems were studied. In this paper, we not only further discuss the PESpM and ASPES for such
ystems, but also consider the corresponding second class of impulsive systems; (2) So far, there have been few results
n the PS of the second class of impulsive systems, and our results can also be applied to the deterministic systems when
e do not consider the stochastic effects. Moreover, the obtained practical stability results complement and generalize
ome existing results in the literature (see e.g., [4,5,23,28,29])
The remainder of this paper is organized as follows. In Section 2, we introduce the model, together with some basic

ssumptions and definitions. In Section 3, some sufficient conditions of PESpM and ASPEM are established for the studied
ystem. In Section 4, we give an example with its numerical simulations. Finally, some conclusions are presented in
ection 5.

otations. The following notations are used throughout this paper. (Ω,F,P) denotes a complete probability space
ith a filtration {Ft}t⩾0 satisfying the usual conditions (i.e., it is right continuous and F0 contains all P-null sets), and
(t) = (w1(t), . . . , wm(t))T be an m-dimensional standard Wiener process defined on (Ω,F,P). N, R+, Rn and Rn×m

enote the set of positive integers, the set of nonnegative real numbers, the n-dimensional real space and n × m-
imensional real matrix space, respectively. E stands for the mathematical expectation operator with regard to the given
robability measure P. If A is a vector or a matrix, its transpose is denoted by AT . For x ∈ Rn, |x| =

√
xT x denotes the

Euclidian vector norm. Given τ > 0, PC ([−τ , 0];Rn) denotes the family of piecewise continuous functions from [−τ , 0]
to Rn. For ϕ ∈ PC ([−τ , 0];Rn), the norm is defined as ∥ϕ∥τ = sups∈[−τ ,0] |ϕ(s)|. For p > 0 and t ≥ 0, let LpFt ([−τ , 0];Rn)
denote the family of all Ft-measurable PC ([−τ , 0];Rn)-valued random processes ϕ = {ϕ(−s) : −τ ≤ s ≤ 0} such that
sup−τ≤s≤0 E|ϕ(s)|p < ∞. Moreover, PCb ([−τ , 0];Rn) denote the family of all bounded PC ([−τ , 0];Rn)-valued functions.

2. Preliminaries

To begin, we introduce the following nonlinear stochastic system with distributed-delay dependent impulses⎧⎪⎨⎪⎩
dy(t) = f (t, yt) dt + g (t, yt) dw(t), t ̸= tk, t ⩾ t0,

∆y(t) = Ik
(
t,
∫ t
t−γk

y(s)ds
)

, t = tk, k ∈ N,

yt0 = φ, i.e., y (t0 + s) = φ(s), s ∈ [−τ , 0]

(2.1)

with initial value φ ∈ PCb ([−τ , 0];Rn). y(t) ∈ Rn is right continuous at each t = tk. yt = y(t + s) ∈ LpFt ([−τ , 0];Rn).
For all k ∈ N, γk > 0 is the distributed delay satisfying γk ≤ γ ≤ τ with γ = supk∈N γk. f : R+ × LpFt ([−τ , 0];Rn) → Rn,
g : R+ ×LpFt ([−τ , 0];Rn) → Rn×m, Ik : R+ ×LpFt ([−τ , 0];Rn) → Rn, and ∆y (tk) = y (tk)−y

(
t−k
)
with the fixed moments

of impulse times t satisfying 0 ⩽ t < t < · · · < t → ∞ (as k → ∞).
k 0 1 k

2
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As a standard hypothesis, f (t, ϕ), g (t, ϕ) satisfy the Lipschitz condition. In addition, suppose that f (t, 0) ̸= 0,
g(t, 0) ̸= 0 and Ik(t, 0) ̸= 0 for all t ⩾ t0, k ∈ N, then system (2.1) does not admit a trivial solution y(t, 0) ≡ 0.

The following assumptions and definitions are presented to obtain the main results.

Assumption 2.1. For almost all t ∈ [t0, ∞), f (t, ϕ) and g (t, ϕ) are continuous, and there exist positive constants L1 and
L2 such that ∥f (t, ϕ)∥ ≤ L1∥ϕ∥τ and ∥g(t, ϕ)∥ ≤ L2∥ϕ∥τ for any (t, ϕ) ∈ R+ × LpFt ([−τ , 0];Rn).

Assumption 2.2. For all t ∈ R+, x, y ∈ Rn, there exists a positive constant L3 such that ∥Ik(t, x) − Ik(t, y)∥ ≤ L3∥x − y∥.

Remark 2.1. Assumption 2.1 implies that f (t, ϕ) and g (t, ϕ) satisfy the linear growth condition. Assumption 2.2 means
that impulsive function satisfy Lipschitz condition and the linear growth condition. Therefore, there is a unique stochastic
process y (t, t0, φ) for system (2.1) by [4,23,29].

Assumption 2.3. For all k ∈ N, there exist positive constants ε and h satisfying ε = infk∈N {tk − tk−1} > 0 and
h = supk∈N {tk − tk−1} < ∞, and rε < γ ≤ (r + 1)ε, i.e., the impulse number is no more than r on each interval
[tk − γk, tk].

Definition 2.2 ([4]). System (2.1) is said to be practically exponentially stable in pth (p > 1) moment (PESpM), if for all
φ ∈ PCb ([−τ , 0];Rn), there are positive constants z, C and η such that the following inequality holds

E |y (t, t0, φ)|p ≤ C∥φ∥
pe−z(t−t0)

+ η, t ≥ t0. (2.2)

Remark 2.3. Noting that in Definitions 2.2, if let η = 0 and assume y(t, 0) ≡ 0 for all t ≥ t0, we then obtain the classical
definition of the exponential stability in pth (p > 1) moment (ESpM).

Definition 2.4 ([4]). The ball Bη := {y ∈ Rn
: |y| ≤ η}, η > 0, is said to be almost surely practically exponentially stable

(ASPES) if it follows that

|y (t, t0, φ)| ≤ C∥φ∥
pe−z(t−t0)

+ η, a.s. (2.3)

for any initial data φ ∈ PCb ([−τ , 0];Rn) and every t ≥ t0. Furthermore, if there exists η > 0 such that Bη is ASPES, then
system (2.1) is said to be ASPES.

Definition 2.5 ([4]). Let C1,2 ([t0 − τ , ∞) × Rn
;R+) denote the family of all nonnegative functions V (t, y) on [t0 − τ , ∞)×

n that are continuously once differentiable in t and twice in y. For a function V ∈ C1,2 ([t0 − τ , ∞) × Rn
;R+), we define

the operator LV : [t0, ∞) × LpFt ([−τ , 0],Rn) → R for system (2.1) by

LV (t, ϕ) = Vt (t, ϕ(0)) + Vy(t, ϕ(0))f (t, ϕ) +
1
2
trace

[
gT (t, ϕ)Vyy(t, ϕ(0))g(t, ϕ)

]
, (2.4)

where ϕ ∈ LpFt ([−τ , 0],Rn) and

Vt (t, y) =
∂V (t, y)

∂t
, Vy(t, y) =

(
∂V (t, y)

∂y1
, . . . ,

∂V (t, y)
∂yn

)
, Vyy(t, y) =

(
∂2V (t, y)
∂yi∂yj

)
n×n

.

emark 2.6. In the previous theorems given in [4,5], the continuous dynamics of the suggested systems may not be
ES, and stabilizing impulses are considered such that the continuous stochastic dynamics are PES. In the forthcoming
heorem, sufficient conditions are given to ensure that the continuous dynamics of system (2.1) can maintain PES, when
he system is subjected to destabilizing impulses.

. Main results

In this section, we will discuss the PESpM and the ASPES of system (2.1) by using the LR approach and some inequality
echniques.

heorem 3.1. Let c1, c2, c̄ , z, α, Cp, q, W1, W2, κ > 1, p > 1 be positive constants and δ be nonnegative constants. If
ssumptions 2.1–2.3 are satisfied, and there exist functions V ∈ C1,2 ([t0 − τ , ∞) × Rn

;R+) and c ∈ PC ([t0 − τ , ∞) ;R+)
such that for any x, y ∈ Rn and ϕ ∈ LpFt ([−τ , 0];Rn)

(H1) c1|y|p ≤ V (t, y) ≤ c2|y|p for all t ≥ t0 − τ ;
(H2) EV (t, y + Ik (t, γky)) ≤ κEV

(
t−, y

)
+ ρke−z(tk−t0) for all t = tk, k ∈ N, where

0 < ρk ≤ ρ with ρ = supk∈N ρk < ∞;
(H3) ELV (t, ϕ) ≤ −c(t)EV (t, ϕ(0)) + αe−z(t−t0) for all t ⩾ t0, t ̸= tk, k ∈ N, if

EV (t + s, ϕ(s)) < qEV (t, ϕ(0)) + δ for s ∈ [−τ , 0];
3
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(H4) EV (t, x + y) ≤ W1EV (t, x) + W2EV (t, y) for all t = tk, k ∈ N;
(H5) 1 < W1κ + W2c2 3p−1

c1
Lp3
(
Lp1γ

2p
+ Lp2γ

3p
2 Cp + Lp3γ

2prp
)
ec̄(τ+γ ) < q < ec̄ε ,

inft≥t0 c(t) ≥ c̄ .
Then, system (2.1) under destabilizing distributed-delay dependent impulses is PESpM.

roof. Given an initial data φ ∈ PCb ([−τ , 0];Rn), we write y (t, t0, φ) = y(t) for simplicity. Let d1 = W1κ , d2 =

W2c2 3p−1

c1
Lp3
(
Lp1γ

2p
+ Lp2γ

3p
2 Cp + Lp3γ

2prp
)
. By condition (H5), a sufficiently small z > 0 can be chosen such that

1 < ez(τ+γ ) (d1 + d2ec̄(τ+γ )) < q < e(c̄−z)ε, z < c̄, (3.1)

and there are q̄ = qe−z(τ+γ ) > 1 and M > 0 such that q̄c2 < M . Define J(t, y(t)) = ez(t−t0)V (t, y(t)) for t ≥ t0 − τ . Then,
rom condition (H1), we see that

EJ(t, y(t)) ≤ EV (t, y(t)) ≤ c2E∥φ∥
p
τ <

1
q̄
ME ∥ φ|

p
τ < ME∥φ∥

p
τ + ςez(t−t0), ∀t ∈ [t0 − τ , t0] , (3.2)

here ς ≥ max
{

q̄αh
q̄−1 ,

q̄α
c̄−z − αh,

(
d1+d2ec̄(τ+γ )

)
αh

q̄−d1−d2ec̄(τ+γ ) − αh − ρ

}
.

We will show that, for all t ∈ [tk−1, tk) , k ∈ N,

EJ(t, y(t)) ≤ ME∥φ∥
p
τ + ςez(t−t0). (3.3)

In view of z > 0, we can get that ς ≤ ςez(t−t0). This shows that if the following inequality holds, then (3.3) is also true

EJ(t, y(t)) ≤ ME∥φ∥
p
τ + ς, ∀t ∈ [tk−1, tk) , k ∈ N. (3.4)

Next, we will further prove (3.4), and the following proof will be divided into several steps by induction.
Step 1: First, we will show that

EJ(t, y(t)) ≤ ME∥φ∥
p
τ + ς, ∀t ∈ [t0, t1) . (3.5)

If (3.5) is not true, then there must hold that EJ(t, y(t)) > ME∥φ∥
p
τ + ς for some t ∈ [t0, t1). Define t△ =

inf
{
t ∈ [t0, t1) : EJ(t, y(t)) > ME∥φ∥

p
τ + ς

}
.

Combining the well-known Lebesgue dominated convergence theorem with condition (H1), we can get that t ∈

[t0, t1) ↦→ EV (t, y(t)) is a continuous mapping. In addition, the property of continuous function shows that EJ(t, y(t)) =

ez(t−t0)EV (t, y(t)) is also continuous over t ∈ [t0, t1). Therefore, we have

lim
t→t−0

EJ(t, y(t)) = lim
t→t+0

EJ(t, y(t))

= EJ (t0, y (t0))
< ME∥φ∥

p
+ ς,

which implies that t△ ∈ (t0, t1). Then, there hold that

EJ
(
t△, y(t△)

)
= ME∥φ∥

p
τ + ς, (3.6)

EJ(t, y(t)) < ME∥φ∥
p
τ + ς, ∀t ∈

[
t0 − τ , t△

)
. (3.7)

Clearly, there exists t∇ ∈ [t0, t△) satisfying t∇ = sup{t ∈ [t0, t△] : EJ(t, y(t)) ≤
1
q̄ME∥φ∥

p
τ +

ς

q̄ } such that

EJ (t∇ , y(t∇ )) =
1
q̄
ME∥φ∥

p
τ +

ς

q̄
, (3.8)

EJ(t, y(t)) >
1
q̄
ME∥φ∥

p
τ +

ς

q̄
, ∀t ∈

(
t∇ , t△

]
. (3.9)

Consequently, for all t ∈
[
t∇ , t△

]
, we get from (3.6)–(3.9) that

EJ(t + s, y(t + s)) ≤ ME∥φ∥
p
τ + ς ≤ q̄EJ(t, y(t)), s ∈ [−τ , 0],

which leads to

EV (t + s, y(t + s)) = e−z(t+s−t0)EJ(t + s, y(t + s))

≤ q̄e−z(t+s−t0)EJ(t, y(t))
≤ q̄ezτEV (t, y(t))

(3.10)
< qEV (t, y(t)) + δ, s ∈ [−τ , 0].
4
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This together with condition (H3) shows that

ELJ(t, yt ) = ez(t−t0)(zEV (t, y(t)) + ELV (t, yt ))

≤ (z − c(t))EJ(t, y(t)) + α, ∀t ∈
[
t∇ , t△

]
.

(3.11)

Then, using (3.11) and the Itô formula on [t∇ , t△], we further have

EJ
(
t△, y(t△)

)
= EJ (t∇ , y(t∇ )) +

∫ t△

t∇
ELJ(s, ys)ds

≤ EJ (t∇ , y(t∇ )) +

∫ t△

t∇
[(z − c(s))EJ(s, y(s)) + α]ds

=EJ (t∇ , y(t∇ )) +

∫ t△

t∇
(z − c(s))EJ(s, y(s))ds + α

(
t△ − t∇

)
,

and thus,

EJ
(
t△, y(t△)

)
≤ EJ (t∇ , y(t∇ )) +

∫ t△

t∇
(z − c(s))EJ(s, y(s))ds + αh. (3.12)

Thus, from (3.1), (3.6), (3.8) and the Gronwall inequality, we infer that

EJ
(
t△, y(t△)

)
≤ (EJ (t∇ , y(t∇ )) + αh) e

∫ t△
t∇

(z−c(s))ds

≤ (EJ (t∇ , y(t∇ )) + αh) e(z−c̄)
(
t△−t∇

)

≤
1
q̄
ME∥φ∥

p
τ +

1
q̄
ς + αh

< ME∥φ∥
p
τ +

1
q̄
ς + αh

≤ ME∥φ∥
p
τ + ς

= EJ
(
t△, y(t△)

)
,

hich is a contradiction. It is easy to see that (3.5) is true and (3.4) must hold for k = 1. Therefore, (3.3) is satisfied for
= 1.
Step 2: Assume that for k = 1, 2, . . . , l (l ∈ N, l ≥ 1),

EJ(t, y(t)) ≤ ME∥φ∥
p
τ + ς, ∀t ∈ [tk−1, tk) . (3.13)

Next, we turn to show that (3.4) holds as well for k = l + 1, i.e.,

EJ(t, y(t)) ≤ ME∥φ∥
p
τ + ς, ∀t ∈ [tl, tl+1) . (3.14)

Suppose (3.14) is not true and further define t△ = inf{t ∈ [tl, tl+1) : EJ(t, y(t)) > ME∥φ∥
p
τ + ℓ}, where ℓ = ϱ + αh

with ϱ = ς + αh + ρ. Then, for t ∈ [tl − γl, tl), integrating system (2.1) on both sides from t to t−l follows that

y
(
t−l
)
− y(t) =

∫ tl

t
f (s, ys) ds +

∫ tl

t
g (s, ys) dws +

r(t)∑
i=1

Il−i

(
tl−i,

∫ tl−i

tl−i−γl−i

y(s)ds

)
, (3.15)

here r(t) stands for the number of impulses on the interval
[
t, t−l

)
. Now, let us further integrate both sides of (3.15)

ver [tl − γl, tl],γly
(
t−l
)
−

∫ tl

tl−γl

y(s)ds


=

 ∫ tl

tl−γl

∫ tl

t
f (s, ys) ds dt +

∫ tl

tl−γl

∫ tl

t
g (s, ys) dws dt

+

∫ tl

tl−γl

( r(t)∑
i=1

Il−i

(
tl−i,

∫ tl−i

tl−i−γl−i

y(s)ds

))
dt


≤

∫ tl

tl−γl

∫ tl

t
f (s, ys) ds dt

+

∫ tl

tl−γl

∫ tl

t
g (s, ys) dws dt


+


∫ tl

( r(t)∑
Il−i

(
tl−i,

∫ tl−i

y(s)ds

))
dt

 .

(3.16)
tl−γl i=1 tl−i−γl−i

5
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Define ∆Il := Il
(
tl,
∫ ιl
tl−γl

y(s)ds
)

− Il
(
tl, γly

(
t−l
))
. By Assumption 2.2, we have

E ∥∆Il∥p
≤ Lp3E

γly
(
t−l
)
−

∫ tl

tl−γl

y(s)ds
p . (3.17)

This together with Cr -inequality yields that

E
γly

(
t−l
)
−

∫ tl

tl−γl

y(s)ds
p

≤ E(
∫ tl

tl−γl

∫ tl

t
f (s, ys) ds dt

+

∫ tl

tl−γl

∫ tl

t
g (s, ys) dws dt


+


∫ tl

tl−γl

( r(t)∑
i=1

Il−i

(
tl−i,

∫ tl−i

tl−i−γl−i

y(s)ds

))
dt

 )p
≤ 3p−1E

∫ tl

tl−γl

∫ tl

t
f (s, ys) ds dt

p + 3p−1E
∫ tl

tl−γl

∫ tl

t
g (s, ys) dws dt

p
+ 3p−1E


∫ tl

tl−γl

( r(t)∑
i=1

Il−i

(
tl−i,

∫ tl−i

tl−i−γl−i

y(s)ds

))
dt


p

.

(3.18)

Then, using the Hölder inequality, Burkholder–Davis–Gundy inequality and Assumption 2.1, we arrive at

E
∫ tl

tl−γl

∫ tl

t
f (s, ys) ds dt

p
≤ E

(∫ tl

tl−γl

∫ tl

t
∥f (s, ys)∥ ds dt

)p

≤ E
(∫ tl

tl−γl

∫ tl

t
L1 ∥ys∥τ ds dt

)p

≤ Lp1γ
p
l E
(∫ tl

tl−γl

∥ys∥τ ds
)p

≤ Lp1γ
p
l E
(∫ tl

tl−γl

sup
ξ∈[−τ ,0]

∥y(s + ξ )∥ds
)p

≤ Lp1γ
2p
l E

(
sup

ξ∈[−τ−γl,0]

y (t−l + ξ
))p

≤ Lp1γ
2p sup

ξ∈[−τ−γ ,0]
E
y (t−l + ξ

)p

(3.19)

and

E
∫ tl

tl−γl

∫ tl

t
g (s, ys) dws dt

p
≤ γ

p
l E

(
sup

t∈[tl−γl,tl]

∫ tl

t
g (s, ys) dws

p
)

≤ γ
p
l CpE

(∫ tl

tl−γl

∥g (s, ys)∥2 ds
) p

2

≤ γ
p
l γ

p
2 −1
l CpE

(∫ tl

tl−γl

∥g (s, ys)∥p ds
)

≤ Lp2γ
3p
2 −1

l CpE
(∫ tl

tl−γl

∥ys∥p ds
)

≤ Lp2γ
3p
2 −1

l CpE
(∫ tl

tl−γl

(
sup

ξ∈[−τ ,0]
∥y (s + ξ)∥

)p

ds
)

≤ Lp2γ
3p
2

l Cp sup
ξ∈[−τ−γl,0]

E
y (t−l + ξ

)p
≤ Lp2γ

3p
2 Cp sup E

y (t−l + ξ
)p ,

(3.20)
ξ∈[−τ−γ ,0]

6
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where Cp > 0 is a positive constant given by the Burkholder–Davis–Gundy inequality, and only depends on p. Meanwhile,
applying again Hölder inequality and Assumptions 2.2, 2.3, we arrive at

E


∫ tl

tl−γl

( r(t)∑
i=1

Il−i

(
tl−i,

∫ tl−i

tl−i−γl−i

y(s)ds

))
dt


p

≤ E

(∫ tl

tl−γl

( r(t)∑
i=1

Il−i

(
tl−i,

∫ tl−i

tl−i−γl−i

y(s)ds

)
)
dt

)p

≤ E

(∫ tl

tl−γl

( r(t)∑
i=1

L3


∫ tl−i

tl−i−γl−i

y(s)ds


)
dt

)p

≤ Lp3γ
p
l E

(
r∑

i=1

∫ tl−i

tl−i−γl−i

∥y(s)∥ds

)p

≤ Lp3γ
p
l E

(
r∑

i=1

γl−i sup
ξ∈[−γl−i,0]

∥y (tl−i + ξ)∥

)p

≤ Lp3γ
p
l γ prp sup

ξ∈[−2γ ,0]
E
y (t−l + ξ

)p
≤ Lp3γ

2prp sup
ξ∈[−τ−γ ,0]

E
y (t−l + ξ

)p .

(3.21)

Thus, it follows from (3.18)–(3.21) that

E
γly

(
t−l
)
−

∫ tl

tl−γl

y(s)ds
p

≤ 3p−1
(
Lp1γ

2p
+ Lp2γ

3p
2 Cp + Lp3γ

2prp
)

sup
ξ∈[−τ−γ ,0]

E
y (t−l + ξ

)p .

(3.22)

According to (3.22) and condition (H1), we can derive that

E ∥∆Il∥p
≤ Lp3E

γly
(
t−l
)
−

∫ tl

tl−γl

y(s)ds
p

≤ 3p−1Lp3
(
Lp1γ

2p
+ Lp2γ

3p
2 Cp + Lp3γ

2prp
)

sup
ξ∈[−τ−γ ,0]

E
y (t−l + ξ

)p
≤

3p−1

c1
Lp3
(
Lp1γ

2p
+ Lp2γ

3p
2 Cp + Lp3γ

2prp
)

sup
ξ∈[−τ−γ ,0]

EV
(
t−l + ξ

)
.

(3.23)

This together with conditions (H1), (H2) and (H4) further gives that

EV (tl, y(tl)) = EV
(
tl, y

(
t−l
)
+ Il

(
tl,
∫ tl

tl−γl

y(s)ds
))

= EV
(
tl, y

(
t−l
)
+ Il

(
tl, γly

(
t−l
))

+ ∆Il
)

≤ W1EV
(
tl, y

(
t−l
)
+ Il

(
tl, γly

(
t−l
)))

+ W2EV (tl, ∆Il)

≤ W1κEV
(
t−l , y

(
t−l
))

+ W2c2E ∥∆Il∥p
+ ρle−z(tl−t0).

(3.24)

By using (3.23) and (3.24), we have

EJ (tl, y(tl))
≤ ez(tl−t0)EV (tl, y(tl))

≤ W1κEJ
(
t−l , y

(
t−l
))

+ W2c2ez(tl−t0)E ∥∆Il∥p
+ ρl

≤ W1κEJ
(
t−l , y

(
t−l
))

+ W2c2ez(tl−t0)[
3p−1

c1
Lp3
(
Lp1γ

2p
+ Lp2γ

3p
2 Cp + Lp3γ

2prp
)

sup
ξ∈[−τ−γ ,0]

EV
(
t−l + ξ

)
] + ρl

≤ W1κEJ
(
t−l , y

(
t−l
))

+ W2c2[
3p−1

c1
Lp3
(
Lp1γ

2p
+ Lp2γ

3p
2 Cp + Lp3γ

2prp
)
ez(τ+γ )

sup EJ
(
t−l + ξ

)
] + ρl.

(3.25)
ξ∈[−τ−γ ,0]

7
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t

f

c
(

In what follows, we first claim that

EJ
(
t−l , y(t−l )

)
≤

1
q̄
ME∥φ∥

p
τ +

1
q̄
(ς + αh). (3.26)

Arguing by contradiction once more, we assume that (3.26) is not true, and then, two possible cases will be examined.
Case 1: For all t ∈ [tl−1, tl), EJ (t, y(t)) > 1

q̄ME∥φ∥
p
τ +

1
q̄ (ς + αh). Combining this with (3.13), one can see that, for

∈ [tl−1, tl),

EJ(t + s, y(t + s)) ≤ ME∥φ∥
p
τ + ς < q̄EJ(t, y(t)) − αh < q̄EJ(t, y(t)), s ∈ [−τ , 0]. (3.27)

Similar to (3.11), one can check that ELJ(t, yt ) ≤ (z − c(t))EJ(t, y(t)) + α for all t ∈
[
tl−1, t−l

]
. Then, applying the Itô

ormula on
[
tl−1, t−l

]
, we know that

EJ
(
t−l , y(t−l )

)
= EJ (tl−1, y(tl−1)) +

∫ t−l

tl−1

ELJ(s, ys)ds

≤ EJ (tl−1, y(tl−1)) +

∫ t−l

tl−1

(z − c(s))EJ(s, y(s))ds + α(t−l − tl−1).

(3.28)

By (3.1), (3.13), the Gronwall inequality and the property of definite integral, we further know that

EJ
(
t−l , y(t−l )

)
≤
[
EJ (tl−1, y(tl−1)) + α

(
t−l − tl−1

)]
e
∫ t−l
tl−1

(z−c(s))ds

≤ ME∥φ∥
p
τ e

(z−c̄)(tl−tl−1) + e(z−c̄)(tl−tl−1)(ς + αh)

≤
1
q
ME∥φ∥

p
τ +

1
q
(ς + αh)

<
1
q̄
ME∥φ∥

p
τ +

1
q̄
(ς + αh)

< EJ
(
t−l , y(t−l )

)
,

(3.29)

which is a contradiction. Clearly, (3.26) is true in Case 1.
Case 2: There exists t ∈ [tl−1, tl) such that EJ (t, y(t)) > 1

q̄ME∥φ∥
p
τ +

1
q̄ (ς + αh). In this case, define t̄ = sup{t ∈

[tl−1, tl) : EJ(t, y(t)) ≤
1
q̄ME∥φ∥

p
τ +

1
q̄ (ς + αh)}. Then,

EJ(t̄, y(t̄)) =
1
q̄
ME∥φ∥

p
τ +

1
q̄

(ς + αh) , (3.30)

EJ(t, y(t)) >
1
q̄
ME∥φ∥

p
τ +

1
q̄

(ς + αh) , ∀t ∈
(
t̄, tl

)
. (3.31)

Similar to the argument in Case 1, from (3.13) and (3.31), we know that (3.27) also holds for t ∈
[
t̄, tl

)
in Case 2.

Then, according to the proof processes of (3.10) and (3.11), it can be checked that ELJ(t, yt ) ≤ (z − c(t))EJ(t, y(t)) + α

for all t ∈
[
t̄, t−l

]
. Obviously, by using the Itô formula once more, one can see that EJ

(
t−l , y(t−l )

)
≤ EJ

(
t̄, y(t̄)

)
+
∫ t−l
t̄ (z −

(s))EJ(s, y(s))ds + α(t−l − t̄). Now, combining this with the Gronwall inequality, the property of definite integral and
3.30), we have

EJ
(
t−l , y(t−l )

)
≤ [EJ(t̄, y(t̄)) + α(t−l − t̄)]e

∫ t−l
t̄ (z−c(s))ds

≤ [
1
q̄
ME∥φ∥

p
τ +

1
q̄
(ς + αh) + α

(
t−l − t̄

)
]e(z−c̄)(tl−t̄)

≤
1
q̄
ME∥φ∥

p
τ +

1
q̄
e(z−c̄)(tl−t̄)(ς + αh) + e(z−c̄)(tl−t̄)α

(
t−l − t̄

)
≤

1
q̄
ME∥φ∥

p
τ +

1
q̄
e(z−c̄)(tl−t̄)(ς + αh) + e(z−c̄)(tl−t̄)α

(
tl − t̄

)
.

Together with the fact that e(z−c̄)(tl−t̄) < 1, we can find that 1
q̄ e

(z−c̄)(tl−t̄)(ς + αh)+ e(z−c̄)(tl−t̄)α
(
tl − t̄

)
≤

1
q̄ (ς + αh) is

allowed to be true, which can be rewritten as

ς + αh ≥
q̄e(z−c̄)(tl−t̄)α

(
tl − t̄

)
¯

.

1 − e(z−c̄)(tl−t)

8



W. Ma, B. Yang and Y. Zheng Nonlinear Analysis: Hybrid Systems 51 (2024) 101424

t

a

o

ς

a

On the other hand, it is noted that if we consider all possible t ∈ [tl−1, tl) satisfying EJ(t, y(t)) > 1
q̄ME∥φ∥

p
τ +

1
q̄ (ς +αh),

then t̄ will become a continuous random variable on [tl−1, tl). Thus, we can define the following function:

Ψ (t̄) =
q̄e(z−c̄)(tl−t̄)α

(
tl − t̄

)
1 − e(z−c̄)(tl−t̄)

, t̄ ∈ [tl−1, tl) .

Then, to prove (3.26), we only need to verify that ς + αh ∈ [minΨ (t̄), b] is true, where b is a arbitrary constant
satisfying b < ∞ (i.e., for all t ∈ [tl−1, tl) satisfying EJ(t, y(t)) > 1

q̄ME∥φ∥
p
τ +

1
q̄ (ς + αh), there must be at least one

¯ ∈ [tl−1, tl) such that ς + αh ≥ ( q̄e
(z−c̄)(tl−t̄)α(tl−t̄)

1−e(z−c̄)(tl−t̄)
). To simplify computation, let u = (c̄ − z)(tl − t̄), then

Ψ (tl −
u

c̄ − z
) =

q̄αu
(z − c̄) (1 − eu)

, u ∈ (0, (c̄ − z)(tl − tl−1)] ,

nd

dΨ (tl − u
c̄−z )

du
= −q̄α

eu − 1 − ueu

(eu − 1)2
.

Obviously,
dΨ (tl−

u
c̄−z )

du
> 0 for all u ∈ (0, (c̄ − z)(tl − tl−1)]. Thus, Ψ (tl − u

c̄−z ) is a strictly monotone increasing function
n (0, (c̄ − z)(tl − tl−1)]. Meanwhile, it can be checked that limu→0 Ψ (tl −

u
c̄−z ) =

q̄α
c̄−z . Now, we can conclude that if

≥
q̄α
c̄−z − αh, then there must exist some t ∈ [tl−1, tl) such that ς + αh ≥ ( q̄e

(z−c̄)(tl−t̄)α(tl−t̄)

1−e(z−c̄)(tl−t̄)
). Then, we easily get that

EJ
(
t−l , y(t−l )

)
≤

1
q̄
ME∥φ∥

p
τ +

1
q̄
(ς + αh)

< EJ
(
t−l , y(t−l )

)
,

which is a contradiction. Thus, we can conclude that (3.26) also holds in Case 2. By simple induction, (3.26) must be true
for all possible cases.

Similar to (3.26), we can further claim that

EJ
(
t−l + ξ, y(t−l + ξ )

)
≤

e(c̄−z)(τ+γ )

q̄
ME∥φ∥

p
τ +

e(c̄−z)(τ+γ )

q̄
(ς + αh), ξ ∈ [−τ − γ , 0]. (3.32)

If (3.32) is not true, then there must exist Λ ∈ [−τ − γ , 0] such that EJ
(
t−l + Λ, y(t−l + Λ)

)
> e(c̄−z)(τ+γ )

q̄ ME∥φ∥
p
τ +

e(c̄−z)(τ+γ )

q̄ (ς + αh). To avoid loss of generality, we assume that tl + Λ ∈ (tm−1, tm], m ∈ N, m ≤ l. In the following, there
lso exist two cases to be considered.
Case 1: EJ(t, y(t)) > e(c̄−z)(τ+γ )

q̄ ME∥φ∥
p
τ +

e(c̄−z)(τ+γ )

q̄ (ς + αh) over t ∈ [tm−1, tl + Λ). Together this with (3.13), for all
t ∈ [tm−1, tl + Λ), we can obtain that

EJ(t + ξ, y(t + ξ )) ≤ ME∥φ∥
p
τ + ς

< e(c̄−z)(τ+γ )ME∥φ∥
p
τ + ς

< q̄EJ(t, y(t)) − αh
< q̄EJ(t, y(t)), ξ ∈ [−τ − γ , 0].

(3.33)

By the similar proof processes of (3.11) and (3.12), one can check that ELJ(t, yt ) ≤ (z − c(t))EJ(t, y(t)) + α for all
t ∈

[
tm−1, t−l + Λ

]
, and then EJ

(
t−l + Λ, y(t−l + Λ)

)
≤ EJ (tm−1, y(tm−1)) +

∫ t−l +Λ

tm−1
(z − c(s))EJ(s, y(s))

ds + α(t−l + Λ − tm−1). Combining this with the proof of (3.29), we consequently have

EJ
(
t−l + Λ, y(t−l + Λ)

)
≤
[
EJ (tm−1, y(tm−1)) + α

(
t−l + Λ − tm−1

)]
e
∫ t−l +Λ

tm−1
(z−c(s))ds

≤
e(c̄−z)(τ+γ )

ql−m+1 ME∥φ∥
p
τ +

e(c̄−z)(τ+γ )

ql−m+1 (ς + αh)

<
e(c̄−z)(τ+γ )

q̄
ME∥φ∥

p
τ +

e(c̄−z)(τ+γ )

q̄
(ς + αh)

< EJ
(
t−l + Λ, y(t−l + Λ)

)
,

which is a contradiction. Thus, (3.32) holds in this case.
9
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e

e

Case 2: There exists t ∈ [tm−1, tl + Λ) such that EJ(t, y(t)) > e(c̄−z)(τ+γ )

q̄ ME∥φ∥
p
τ +

e(c̄−z)(τ+γ )

q̄ (ς + αh). Then, there must

xist t
¯
∈ [tm−1, tl + Λ) satisfying t

¯
= sup{t ∈ [tm−1, tl + Λ) : EJ(t, y(t)) ≤

e(c̄−z)(τ+γ )

q̄ ME∥φ∥
p
τ +

e(c̄−z)(τ+γ )

q̄ (ς+αh)} such that

EJ(t
¯
, y(t

¯
)) =

e(c̄−z)(τ+γ )

q̄
ME∥φ∥

p
τ +

e(c̄−z)(τ+γ )

q̄
(ς + αh) , (3.34)

EJ(t, y(t)) >
e(c̄−z)(τ+γ )

q̄
ME∥φ∥

p
τ +

e(c̄−z)(τ+γ )

q̄
(ς + αh) , ∀t ∈ (t

¯
, tl + Λ) . (3.35)

The rest is also similar to Case 2 in the proof of (3.26), it can be verified that
EJ
(
t−l + Λ, y(t−l + Λ)

)
≤ EJ (t

¯
, y(t

¯
))+

∫ t−l +Λ

t
¯

(z − c(s))EJ(s, y(s))ds+α(t−l + Λ − t
¯
) for t ∈

[
t
¯
, t−l + Λ

]
, and then, there

xists ς ≥
q̄e(z−c̄)(τ+γ )α

c̄−z − αh such that

EJ
(
t−l + Λ, y(t−l + Λ)

)
≤
[
EJ (t

¯
, y(t

¯
)) + α

(
t−l + Λ − t

¯

)]
e
∫ t−l +Λ

t
¯

(z−c(s))ds

≤
e(c̄−z)(τ+γ )

q̄
ME∥φ∥

p
τ +

e(c̄−z)(τ+γ )

q̄
(ς + αh)

< EJ
(
t−l + Λ, y(t−l + Λ)

)
, Λ ∈ [−τ − γ , 0].

Thus, (3.32) also holds in this case. Obviously, (3.32) must be true for all possible cases.
Consequently, by (3.1), (3.25), (3.26) and (3.32), one can see that

EJ (tl, y(tl))

≤ d1

[
1
q̄
ME∥φ∥

p
τ +

1
q̄
(ς + αh)

]
+ d2ez(τ+γ )

[
e(c̄−z)(τ+γ )

q̄
ME∥φ∥

p
τ +

e(c̄−z)(τ+γ )

q̄
(ς + αh)

]
+ ρl

≤
d1 + d2ec̄(τ+γ )

q̄
ME∥φ∥

p
τ +

d1 + d2ec̄(τ+γ )

q̄
(ς + αh) + ρl

< ME∥φ∥
p
τ + ς + αh + ρ,

and thus,

EJ (tl, y(tl)) < ME∥φ∥
p
τ + ϱ. (3.36)

In view of (3.36), the definition of t△ in step 2 and the continuity of EJ(t, y(t)), t ∈ [tl, tl+1), we derive that t△ ∈ (tl, tl+1).
Meanwhile, it is easy to find that

EJ
(
t△, y(t△)

)
= ME∥φ∥

p
τ + ℓ, (3.37)

EJ(t, y(t)) < ME∥φ∥
p
τ + ℓ, ∀t ∈

[
tl, t△

)
. (3.38)

Obviously, there must exist t∇ ∈
[
tl, t△

)
satisfying t∇ = sup {t ∈ [t0 − τ , t△] : EJ(t, y(t)) ≤

d1+d2ec̄(τ+γ )

q̄ M
E∥φ∥

p
τ + ϱ} such that

EJ (t∇ , y(t∇ )) =
d1 + d2ec̄(τ+γ )

q̄
ME∥φ∥

p
τ + ϱ, (3.39)

EJ(t, y(t)) >
d1 + d2ec̄(τ+γ )

q̄
ME∥φ∥

p
τ + ϱ, ∀t ∈

(
t∇ , t△

]
. (3.40)

Let us now fix any t ∈
[
t∇ , t△

]
, and suppose that t+s ≥ tl for all s ∈ [−τ , 0]. For all s ∈ [−τ , 0], (3.37)–(3.40) show that

EJ(t + s, y(t + s)) ≤ ME∥φ∥
p
τ + ℓ

≤
q̄

d1 + d2ec̄(τ+γ )EJ(t, y(t)) −
q̄ϱ

d1 + d2ec̄(τ+γ ) + ℓ

≤ q̄EJ(t, y(t)) −
q̄ϱ

d1 + d2ec̄(τ+γ ) + ℓ

< q̄EJ(t, y(t)),

which implies that EV (t + s, y(t + s)) < qEV (t, y(t)) + δ for t ∈
[
t∇ , t△

]
, s ∈ [−τ , 0]. Then, using the same arguments in

(3.11) and (3.12), for t ∈
[
t∇ , t△

]
,

EJ
(
t△, y(t△)

)
≤ EJ (t∇ , y(t∇ )) +

∫ t△

(z − c(s))EJ(s, y(s))ds + αh.

t∇

10
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w

R
s

R
i

L

Consequently, employing (3.1), (3.37), (3.39) and the Gronwall inequality, we arrive at

EJ
(
t△, y(t△)

)
≤ (EJ (t∇ , y(t∇ )) + αh) e

∫ t△
t∇

(z−c(s))ds

≤ (EJ (t∇ , y(t∇ )) + αh) e(z−c̄)
(
t△−t∇

)

<
d1 + d2ec̄(τ+γ )

q̄
ME∥φ∥

p
τ + (ϱ + αh)

< ME∥φ∥
p
τ + (ϱ + αh),

and thus,

EJ
(
t△, y(t△)

)
< ME∥φ∥

p
τ + ℓ, (3.41)

hich is a contradiction. Obviously, (3.14) must be true and (3.4) holds for k = l+1. Thus, (3.3) holds as well for k = l+1.
By the method of induction, (3.3) must hold for any k ∈ N.
Step 3: Finally, by condition (H1) and (3.3), we derive that

E∥y(t)∥p
≤

EV (t)
c1

=
EJ(t)e−z(t−t0)

c1

≤
M
c1

E∥φ∥
p
τ e

−z(t−t0)
+

ς

c1
.

(3.42)

Therefore, system (2.1) is PESpM with η =
ς

c1
. □

emark 3.2. The continuous-time stochastic dynamics of system (2.1) are PES when the condition (H1) and (H3) are
atisfied, which is a straightforward extension of the results given in [5].

emark 3.3. In Theorem 3.1, the condition κ > 1 is assumed, which implies that the distributed-delay dependent
mpulses are destabilizing. Moreover, c(t) > 0 shows that the continuous dynamics of system (2.1) are PES for almost
all t ≥ t0. Therefore, the system studied in Theorem 3.1 can be viewed as the second class of impulsive system, which is
described in the Introduction.

Remark 3.4. A lower bound of ε is given explicitly in condition (H5), which implies that the destabilizing impulses should
not happen so frequently. Meanwhile, combining Assumption 2.3 with condition (H5), one can see that an upper bound
of h is also required, which implies that the destabilizing impulses should also be frequent in some degree. Therefore, the
impulsive intervals must be bounded, and meet some necessary conditions. Moreover, from conditions (H3) and (H5), one
may find that the amplitude of the impulses must be appropriately associate with the decline rate of EV , distributed delay
γk and time delay τ . Theorem 3.1 tells us what extent we can reduce the restriction on the distributed-delay dependent
impulses such that system (2.1) still maintain the PESpM, in the case when the impulses potentially destroy the PES of
the given system.

Remark 3.5. The derivative of the Razumikhin function c(t), which is a time-varying function, is allowed to take values on
R+ in our results. This is more general than [28], where the derivative is given by a fixed constant c . In fact, the constant
c frequently does not exist in lots of systems, especially the systems with time-varying coefficients (refer to [31]).

Remark 3.6. In [4,5], the PES of the systems with unstable continuous stochastic dynamics and stabilizing impulsive
effects is investigated. In this paper, we discussed the PES of the systems with stable continuous stochastic dynamics and
destabilizing impulsive effects. To the best of our knowledge to date, so far little is known concerned with this case, and
the aim of Theorem 3.1 is to close the gap. Moreover, as far as the addressed stability is concerned, the stability concept
in this paper is also more general than [8,23,24,28,30,32]

Corollary 3.7. If the required conditions in Theorem 3.1 are all fulfilled, except that condition (H5) is replaced by 1 <

W1κ + W2c2 2p−1

c1
Lp3
(
Lp1γ

2p
+ Lp3γ

2prp
)
ec̄(τ+γ ) < q < ec̄ε, inft≥t0 c(t) ≥ c̄ , we then derive that the deterministic impulsive

system with distributed-delay dependent impulses is PESpM. Moreover, if we further assume y(t, 0) ≡ 0 for all t ≥ t0 and
α = ρ = δ = 0, then this system is ESpM.

We now give some sufficient conditions for the ASPES of system (2.1).

Theorem 3.8. Assume the required conditions of Theorem 3.1 with p ≥ 2 are all satisfied, and there exist positive constants
, µ and H ≥ 1 such that for all (t, ϕ) ∈ [t0, ∞) × LpFt ([−τ , 0];Rn),

E
(
|f (t, ϕ)|p + |g(t, ϕ)|p

)
≤ L sup E|ϕ(s)|p + µ. (3.43)
s∈[−τ ,0]

11
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Fig. 1. Trajectory of y to system (4.1) without impulses.

Then, (3.42) implies that

|y (t)| ≤ C∥φ∥
p
τ e

−z(t−t0)
+ H

1
p , ∀t ≥ t0, a.s. (3.44)

In other words, for system (2.1), the PESpM implies the ASPES.

roof. The detailed proof of Theorem 3.8 is omitted since it can be completed by using the similar proof process of
heorem 3.3 in [4] for impulsive stochastic functional differential system. □

emark 3.9. Noting that the system given in [4] is the first class of impulsive system, which is described in the
ntroduction. Therefore, in [4], impulses are utilized to stabilize the unstable continuous stochastic dynamics of the given
ystem in the PES sense, which is different from our results.

emark 3.10. In this paper, Theorems 3.1 and 3.8 can be interpreted as two kinds of PS results because the system in the
bsence of distributed-delay dependent impulses is PESpM, but the system with destabilizing ones is still PESpM if we
mpose some basic constraints on the ones. Also, if the system is already PESpM before the distributed-delay dependent
mpulses are considered, the obtained results give sufficient conditions for the system with destabilizing ones to maintain
ESpM. The above discussion shows that the stable systems may bear some controlled impulsive perturbations, which
mplies the robustness.

. An example

In this section, an example will be provided to verify the efficiency of the proposed results.

xample 4.1. Let us consider the following system with distributed-delay dependent impulses:⎧⎪⎪⎨⎪⎪⎩
dy(t) = (−2y(t) + 0.5 |cos(tanh(y(t − τ ) + 0.5π ))|) dt+

0.5y(t − τ )dw(t), t ̸= tk, t ≥ 0,
∆y (tk) = 0.09

∫ tk
tk−γk

y(s)ds, k ∈ N,

yt0 = 0.2,

(4.1)

here the system data are given by 0.55 ≤ tk − tk−1 ≤ 1, γk = γ = 0.6 and τ = 0.7. Then, f (t, yt ) = −2y(t) +

0.5| cos(tanh(y(t − 0.7) + 0.5π ))| and g(t, yt ) = 0.5y(t − 0.7). The impulses can be regarded as perturbations of the
continuous stochastic dynamics of system (4.1). Fig. 1 shows that system (4.1) is PES when there is no impulsive effect.

In what follows, we will apply Theorem 3.1 to derive a PESpM result of system (4.1). Here, we can choose p = 2 and
V (t, y) = |y|2, then Cp = 4 (see [34] ) and

E|f (t, yt )|2 + E|g(t, yt )|2 ≤ 8
(
E|y(t)|2 + E|y(t − 0.7)|2

)
+ 0.1.
12
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Fig. 2. Trajectory of y to system (4.1) under destabilizing distributed-delay dependent impulses..

Therefore, (3.43) is satisfied for system (4.1) with L = 8 and µ = 0.1. By a simple computation, the constants in
Theorem 3.1 can be chosen as c1 = c2 = 1, q = 4.4, δ = 0, r = 1, L1 = 2.5, L2 = 0.5 and L3 = 0.1. Obviously, we can see
that

ELV (t, yt) ≤ −4E|y(t)|2 + E|y(t)y(t − 0.7)| + 0.25E|y(t − 0.7)|2

≤ −2.75EV (t, y) + 0.005e−z(tk−t0),

and

EV (t, x + y) ≤ 2EV (t, x) + 2EV (t, y).

Thus, c(t) ≡ c̄ = 2.75, α = 0.005, W1 = 2 and W2 = 2. As mentioned in [28], condition (H2) can be satisfied with
k = (1+0.09γ )2 = 1.110916 and ρk ≡ ρ = 0.002. Moreover, one can see that (H5) also holds with d1 = W1κ = 2.221832
and d2 = W2c2 3p−1

c1
Lp3
(
Lp1γ

2p
+ Lp2γ

3p
2 Cp + Lp3γ

2prp
)

= 0.05. Now, let z = 0.05, we have

ς ≥ max

{
q̄αh
q̄ − 1

,
q̄α

c̄ − z
− αh,

(
d1 + d2ec̄(τ+γ )

)
αh

q̄ − d1 − d2ec̄(τ+γ ) − αh − ρ

}
= 0.16,

and thus, we can set ς = 0.16.
Therefore, from the abovementioned discussion, the required conditions in Theorem 3.1 are all fulfilled. Hence, system

(4.1) is PES in mean square and ASPES with η =
ς

c1
= 0.16. It is clearly demonstrated from Fig. 1 and Fig. 2 that the PS

property can be preserved irrespective of destabilizing distributed-delay dependent impulses.

Remark 4.2. [4,28,29] considered the systems with unstable continuous-time dynamics and stable discrete-time
dynamics, which is different from this paper. For system (4.1), the condition (iii) of Theorem 3.1 in [4] satisfies

ELV (t, yt) ≤ −4E|y(t)|2 + E|y(t)y(t − 0.7)| + 0.25E|y(t − 0.7)|2

≤ −2.75EV (t, y) + 0.005.

One can get c = −2.75, which is a contradiction with the fact that c is a positive constant in [4]. On the other hand, if
we do not consider the stochastic effect in system (4.1), then the condition (ii) of Theorem in [28] satisfies

LV (t, yt) ≤ −4|y(t)|2 + |y(t)y(t − 0.7)|
≤ −3V (t, y).

One can see c = −3, which is also a contradiction with the fact that c is a positive constant in [28]. Moreover, in [29],
it is easy to verify that 0 < v < 1. However, for system (4.1), there holds that v = (1 + 0.09γ )2 = 1.110916. Therefore,
system (4.1) does not satisfy the sufficient conditions presented in [4,28,29]. Together with the argument in Example 4.1,
the PES result of system (4.1) is further verified.
13
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5. Conclusions

In this paper, we have investigated the PS problem of stochastic functional differential system subject to destabilizing
istributed-delay dependent impulses, and obtained some Razumikhin-type conditions for the PESpM and the ASPES of the
uggested system. It has been shown that, the PES of the system subject to impulsive perturbations can be guaranteed
hen we impose some conditions on the destabilizing impulses. Finally, an example has been given to illustrate the
ffectiveness of the stability results. In the future, it would be interesting to consider the synchronization (or practical
ynchronization) problem of the nonlinear impulsive stochastic systems with delay effects (see e.g., [35–37]).
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