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a b s t r a c t

This note considers the problem whether we can design a time-varying learning gain to ensure the
monotone convergence of system output tracking errors (SOTEs) in the sense of unweighted 1/2/∞-
norm for iterative learning control systems. Firstly, it points that the iterative learning control update
law with the exponentially decaying learning factor considered in Moore et al. (2005) cannot ensure the
monotonic convergence of SOTEs in the sense of unweighted 1-norm, 2-norm or ∞-norm. Secondly, it
is strictly proven that there exists a time-varying learning gain to ensure the monotone convergence
of SOTEs in the sense of unweighted ∞-norm and there is no time-varying learning gain to ensure
the monotone convergence of SOTEs in the sense of unweighted 1-norm. Finally, this paper presents
a sufficient condition under which there exists a time-varying learning gain to ensure the monotone
convergence of SOTEs in the sense of unweighted 2-norm.

© 2023 Elsevier Ltd. All rights reserved.
1. Introduction

In iterative learning control (ILC), the main task is to utilize
he available information of system dynamics and the historical
nput and output data to formulate an update law of system
nput sequence such that the system output sequence can track
he given desired trajectory over the given finite time interval
long the iteration axis (Ahn, Chen, & Moore, 2007; Arimoto,
awamura, & Miyazaki, 1984; Chi, Huang, Hou, & Jin, 2018; Jin,
018; Liu, Ruan, Zheng, Yi, & Wang, 2023; Shen & Li, 2019; Sun
Wang, 2002; Zhang & Meng, 2020). In practical application of

LC, the main concerns are the transient tracking performance and
onvergence rate of ILC process.
As reported in Lee and Bien (1997), although the classical

roportional–derivative-type (PD-type) ILC update law can en-
ure the exponential convergence of the tracking error in the
ense of unweighted 1, 2, ∞-norm for linear time-invariant (LTI)
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system, huge overshoot may appear before the tracking error
converges to a desired level. Meanwhile, Lee and Bien (1997)
pointed in simulations that the overshoot can be overcome by
incorporating an exponentially decaying factor into the learning
gain of PD-type ILC update law and gave an example to illustrate
its effectiveness. However, Lee and Bien (1997) did not answer
whether the ILC update law with exponentially decaying factor
was able to eliminate the huge overshoot in theory. Clearly, the
monotonic convergence technique is an effective method to elim-
inate the huge overshoot. Moore, Chen, and Bahl (2005) studied
the monotone convergence of the Arimoto-type ILC update law
with an exponentially decaying factor for LTI discrete-time sys-
tem. It was claimed that the monotone convergence in the sense
of unweighted 1/2-norm can be ensured via tuning the exponen-
tially decaying factor. However, due to the defects of its analytical
techniques, whether there is an exponentially decaying factor to
ensure the monotone convergence in the sense of unweighted
1/2/∞-norm for discrete-time system is still unresolved. So far, it
is still up in the air whether there is a time-varying learning gain
in Arimoto-type ILC update law to ensure the monotone conver-
gence in the sense of unweighted 1/2/∞-norm. This technique
note attempts to answer the above questions.

The main contributions of this note are as follows.

• This note shows that for discrete-time system the Arimoto-
type ILC update law with an exponentially decaying fac-
tor considered in Moore et al. (2005) cannot ensure the
monotone convergence of SOTEs in the sense of unweighted
1/2/∞-norm.

https://doi.org/10.1016/j.automatica.2023.111259
https://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2023.111259&domain=pdf
mailto:liujianzym@outlook.com
mailto:zhengyuanshi2005@163.com
mailto:ychen53@ucmerced.edu
https://doi.org/10.1016/j.automatica.2023.111259


J. Liu, Y. Zheng and Y. Chen Automatica 157 (2023) 111259

T
a
i

P

Y

• It proves that there is no time-varying learning gain for
Arimoto-type ILC update law to ensure the monotone con-
vergence of SOTEs in the sense of 1-norm.

• A time-varying learning gain with an exponentially increas-
ing factor is designed to guarantee the monotone conver-
gence of SOTEs in the sense of unweighted ∞-norm.

• It gives a sufficient condition under which there is time-
varying learning gain to guarantee the monotone conver-
gence of SOTEs in the sense of unweighted 2-norm. Mean-
while, it reveals that the initial system input and the trial
length may have a significant influence on both the tran-
sient tracking performance and the convergence rate of ILC
process.

The rest is organized as follows. Section 2 gives the problem
formation, and the convergence results about the ILC update law
developed in Moore et al. (2005). In Section 3, a time-varying
gain ILC update law that can ensure the monotone convergence of
SOTEs is proposed. An illustrative example is given in Section 4.
Section 5 concludes the paper.

2. Is there time-varying learning gain to ensure monotone
convergence?

Consider the following discrete-time, linear time-invariant
(LTI) system that has been considered in Moore et al. (2005):

yk(t) =

t−1∑
i=0

ht−iuk(i), (1)

where t in S +
= {1, 2, . . . , T } is the discrete time, k in N∗

=

{1, 2, . . .} labels the trial number, yk(t)(t ∈ S +) and uk(t)(t ∈

S −
= {0, 1, . . . , T − 1}) are the system output and input at the

k trial, hi(i ∈ S +) are the Markov parameters and T is the trial
length.

The problem we care about is whether there is a time-varying
learning gain γt+1 to ensure the monotone convergence of SOTEs
in the sense of 1-norm, 2-norm or ∞-norm when the ILC update
law (2) is applied to system (1).

uk+1(t) = uk(t) + γt+1[yd(t + 1) − yk(t + 1)], (2)

where yd(t) is the given desired trajectory over the finite time
interval S +.

Remark 1. In practical applications of ILC, non-monotone conver-
gence ILC algorithms can be accepted, but huge overshoot should
be avoided. In this paper, we use the technique of monotone
convergence to completely eliminate overshoot.

The following definitions are useful.

Definition 1. For system (1) with a given ILC update law, the
SOTEs are said to be monotonically convergent in the sense of
1-norm if for any given initial system input u1(t)(t ∈ S −),
limk→∞ yk(t) = yd(t) and
T∑

t=1

|yd(t) − yk+1(t)| ≤

T∑
t=1

|yd(t) − yk(t)|

for all k ∈ N∗.

Definition 2. For system (1) with a given ILC update law, the
SOTEs are said to be monotonically convergent in the sense of
∞-norm if for any given u1(t)(t ∈ S −), limk→∞ yk(t) = yd(t) and

max
1≤t≤T

|yd(t) − yk+1(t)| ≤ max
1≤t≤T

|yd(t) − yk(t)|

for all k ∈ N∗.
2

Definition 3. For system (1) with a given ILC update law, the
SOTEs are said to be monotonically convergent in the sense of
2-norm if for any given u1(t)(t ∈ S −), limk→∞ yk(t) = yd(t) and√ T∑

t=1

|yd(t) − yk+1(t)|2 ≤

√ T∑
t=1

|yd(t) − yk(t)|2

for all k ∈ N∗.

Remark 2. As pointed in Lee and Bien (1997) and Moore et al.
(2005), when applying the non-monotone convergence ILC algo-
rithms to the repetitive control system, we may observe the huge
overshoot in the sense of 1-norm, 2-norm and ∞-norm, which
is unacceptable in practical applications, and may hinder the ap-
plication of non-monotone ILC algorithms. How to eliminate the
huge overshoot in iterative learning process is a challenging prob-
lem in ILC community. The monotone convergence ILC algorithms
can completely eliminate the overshoot phenomenon, which are
more popular in practical applications than those non-monotone
convergence ILC algorithms. Moreover, monotone convergence is
more in line with the expectation of iterative learning, i.e., we can
get better tracking precision from trial to trial.

Remark 3. It is well known that ILC is developed for repetitive
control systems with unknown dynamics information. Therefore,
we can only use the rough information of system dynamics to
design ILC update law. Furthermore, the influence of system
initial input on the tracking performance of ILC system is very
complex. To the best of our knowledge, up to now, there is no
good way to quantify and analyze the impact of initial input on
the tracking performance of ILC system. Therefore, in a certain
sense, it is necessary to require that the monotone convergence
is independent of the initial input signals.

When the time-varying learning gain γt takes the form of
γt = ηe−αt , the ILC update law (2) becomes (3) that has been
considered in Moore et al. (2005).

uk+1(t) = uk(t) + ηe−αt
[yd(t + 1) − yk(t + 1)], (3)

where η is a constant and α > 0 is an exponentially decaying
factor of the time-varying learning gain.

Remark 4. When the ILC update law (3) is applied to system (1),
it is easy to verify that the output sequence yk(t) of ILC system
(1)–(3) is convergent to the given desired output yd(t) if and only
|1 − ηh1| < 1. The convergence condition |1 − ηh1| < 1 tells
that the parameter η must have the same sign as h1. The main
function of η is to determine the direction of ILC and the main
function of α is to improve the transient tracking performance of
the output sequence of ILC process by tuning the learning step
size at each time instant. Therefore, in ILC update law (3), the
parameter η characterizes the control direction and the positive
constant α characterizes the learning step size.

Firstly, we show that for system (1) with ILC update law
(3), the monotone convergence of SOTEs in the sense of 1-norm
cannot be ensured only by tuning the parameters α and η if
|h1| <

∑T
j=2 |hj|.

heorem 1. For system (1) with ILC update law (3), there are no α
nd η to ensure the monotone convergence of

∑T
t=1 |yd(t) − yk(t)|

f |h1| <
∑T

j=2 |hj|.

roof. Let

= [y (1), . . . , y (T )]⊤,
k k k
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d = [yd(1), . . . , yd(T )]⊤,

k = [uk(0), . . . , uk(T − 1)]⊤,

= ηdiag
{
1, e−α, e−2α, . . . , e−α(T−1)},

i = 1 − ηh1e−α(i−1)(i = 1, . . . , T ),

=

⎡⎢⎢⎣
h1
h2 h1
...

. . .
. . .

hT · · · h2 h1

⎤⎥⎥⎦ .
Then, system (1) becomes

k = HUk (4)

nd ILC update law (3) can be written as

k+1 = Uk + Γ Ek, (5)

here Ek = Yd − Yk.
Using (4) and (5) gives rise to

k+1 = ΞEk, (6)

here

=

⎡⎢⎢⎢⎢⎣
σ1

−ηh2 σ2
−ηh3 −ηh2e−α σ3
...

...
...

. . .

−ηhT −ηhT−1e−α
−ηhT−2e−2α

· · · σT

⎤⎥⎥⎥⎥⎦ . (7)

As shown in Moore et al. (2005), the system outputs yk(t) of
ILC (1)–(3) are convergent to yd(t) over the finite time interval
S + if and only if |1 − ηh1| < 1. Therefore, to complete the
proof, what we need to do is to show that under the conditions
|1 − ηh1| < 1 and |h1| <

∑T
j=2 |hj| there is no α to ensure the

monotone convergence of SOTEs in the sense of 1-norm.
Using |1 − ηh1| < 1 yields that 0 < ηh1 < 2.
In the case 0 < ηh1 ≤ 1, using |h1| <

∑T
j=2 |hj| yields

|1 − ηh1| + |η|

( T∑
i=2

|hi|

)
> 1 − ηh1 + |η||h1| = 1. (8)

In the case 1 < ηh1 < 2, using |h1| <
∑T

j=2 |hj| gives

|1 − ηh1| + |η|

( T∑
i=2

|hi|

)
> ηh1 > 1. (9)

By |1 − ηh1| < 1, we get h1 ̸= 0, which implies that H
is nonsingular. Thus, there exists a unique initial system input
u1(t)(t ∈ S −) such that y1(1) = yd(1) − 1 and y1(t) = yd(t)
for t = 2, . . . , T . Then, using (8) and (9) together with a simple
computation yields that for any given α, ∥E1∥1 = 1 and ∥E2∥1 =

|1 − ηh1| + |η|

(∑T
i=2 |hi|

)
> 1.

Therefore, there exists an initial system input such that for any
given α, ∥E2∥1 > ∥E1∥1. This completes the proof. □

Secondly, we illustrate that the monotone convergence of
SOTEs in the sense of ∞-norm cannot be guaranteed only by
adjusting α and η in (2) if |h1| <

∑T
i=2 |hi|.

Theorem 2. For system (1) with ILC update law (3), there are no α
and η to ensure the monotone convergence of
max1≤t≤T |yd(t) − yk(t)| if |h1| <

∑T
i=2 |hi|.

Proof. What we need to do is to illustrate that under the con-∑T
|h |, there is no α > 0
ditions |1 − ηh1| < 1 and |h1| < i=2 i d

3

to ensure the monotone convergence of SOTEs in the sense of
∞-norm.

Using |1 − ηh1| < 1 together with α > 0 yields
|1 − ηh1e−(T−1)α

| < 1, which implies 0 < ηh1e−(T−1)α < 2.
In the case 0 < ηh1e−(T−1)α

≤ 1, using |h1| <
∑T

i=2 |hi| and
α > 0 gives rise to

|η|

( T∑
i=2

|hT−i+2|e−(i−2)α
)

+ |1 − ηh1e−(T−1)α
| > 1 (10)

for all α > 0.
In the case 1 < ηh1e−(T−1)α < 2, using |h1| <

∑T
i=2 |hi| and

α > 0 yields

|η|

( T∑
i=2

|hT−i+2|e−(i−2)α
)

+ |1 − ηh1e−(T−1)α
| > 1 (11)

for all α > 0.
It follows from |1 − ηh1| < 1 that h1 ̸= 0, which implies H is

nonsingular. Therefore, there exists a unique u1(t)(t ∈ S −) such
that

y1(t) = yd(t) + sgn(ηhT−t+1) for 1 ≤ t ≤ T − 1

nd y1(T ) = yd(T )− sgn(1− ηh1e−(T−1)α), where sgn(·) is defined
s

gn(z) =

{
1 if z ≥ 0,
−1 if z < 0.

hen, using (10) and (11) gives that for any given α, ∥E1∥∞ = 1
nd

E2∥∞ ≥ |η|

( T∑
i=2

|hT−i+2|e−(i−2)α
)

+ |1 − ηh1e−(T−1)α
| > 1.

Therefore, for any given α, there exists an initial system input
such that ∥E2∥∞ > ∥E1∥∞. This completes the proof. □

Remark 5. In the case α = 0, (3) becomes the Arimoto-type ILC
update law

uk+1(t) = uk(t) + η[yd(t + 1) − yk(t + 1)]. (12)

t is easy to prove that under the conditions 0 < ηh1 ≤ 1 and
h1| ≥

∑T
i=2 |hi|, the SOTEs of system (1) with update law (12) are

onotonically convergent in the sense of 1-norm and ∞-norm.

emark 6. Let

=

⎡⎢⎢⎢⎢⎣
1 − ηh1
−ηh2 1 − ηh1
−ηh3 −ηh2 1 − ηh1
...

...
...

. . .

−ηhT −ηhT−1 −ηhT−2 · · · 1 − ηh1

⎤⎥⎥⎥⎥⎦ .
t is easy to derive that the output sequence of system (1) with
pdate law (12) satisfies

k+1 = ΦEk.

learly, the conditions 0 < ηh1 ≤ 1 and
∑T

i=2 |hi| ≤ |h1| imply
Φ∥1 ≤ 1 and ∥Φ∥∞ ≤ 1. Therefore, using the fact ∥Φ∥

2
2 ≤

Φ∥∞∥Φ∥1 yields that the SOTEs of system (1) with update law
12) in the sense of 2-norm are monotonically convergent if 0 <
h1 ≤ 1 and

∑T
i=2 |hi| ≤ |h1|.

Next, we will give as example to show that under the con-∑T
itions |1 − ηh1| < 1 and i=2 |hi| > |h1|, there may be no α
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o ensure the monotone convergence of the SOTEs of system (1)
ith ILC update law (3) in the sense of 2-norm.
Example 1. Let the trial length T being 2, h1 = 1, h2 = 2

nd γ = 1.5. It is obvious that ρ1 = |1 − γ h1| = 0.5 < 1,

1 =

[
1 − γ h1 0
−γ h2 1 − γ h1e−α

]
. Since

⊤

1 Ξ1 =

[
9.25 −3(1 − 1.5e−α)

−3(1 − 1.5e−α) (1 − 1.5e−α)2

]
,

it follows from Gerŝgorin disk theorem that for all α > 0, the
maximum eigenvalue of Ξ⊤

1 Ξ1 is greater than 6.25. This means
that for all α > 0, ∥Ξ1∥2 > 2.5. Therefore, there does not exist
an α to ensure the monotone convergence of SOTEs in the sense
of 2-norm.

Remark 7. We have proven that under the condition |1 − ηh1| <

, only by tuning the exponentially decaying factor α, the mono-
one convergence of the SOTEs of ILC system (1) with (3) in the
ense of 1-norm, ∞-norm or 2-norm cannot be ensured. It should
e pointed that although the ILC update law (3) cannot guarantee
he monotone convergence of the SOTEs, it can guarantee the
onotone convergence of the system input tracking errors. This

s the reason why the ILC update law (3) can be used to improve
he transient tracking performance of the SOTEs in simulations.

emark 8. In Moore et al. (2005), the authors claimed that for
LC system (1) with (3), there is α to ensure the monotone
onvergence of SOTEs in the sense of 1-norm/2-norm. Obviously,
his is inconsistent with the results obtained in the paper. The
ain reason is that there exists a technical defect in the proof
f Theorem 4 in Moore et al. (2005), which is used to derive the
onotone convergence of the SOTEs in the sense of 1-norm/2-
orm. It is easy to check that for all k ∈ N∗ and α > 0, the output
ignals yk(1) and yk(2) of ILC system (1)–(3) satisfy

ēk+1(1)| ≤ ρ1|ēk(1)|, (13)

ēk+1(2)| ≤ ρ2|ēk(2)| + e−α
|ηh2||ēk(1)|, (14)

where ρ1 = |1 − ηh1|, ρ2 = |1 − e−αηh1|, ēk(1) = yd(1) − yk(1)
and ēk(2) = e−α

[yd(2) − yk(2)]. Using (13) together with ρ1 < 1
yields that

|ēk+1(1)| ≤ |ēk(1)| for all k ∈ N∗ andα > 0. (15)

hen, Moore et al. (2005) claimed that due to the boundedness of
ēk(1)| and |ηh2|, it follows from (14) and ρ2 < 1 that there exists
large enough α such that

ēk+1(2)| ≤ |ēk(2)| for all k ∈ N∗. (16)

t follows from the property of the limit that if ēk(2) are indepen-
dent of α, then (16) holds. Unfortunately, ēk(2) highly depends
on α. Therefore, by (14) together with the boundedness of |ēk(1)|
and |ηh2|, we cannot get the inequalities presented in (16) for
arbitrarily given initial system input u1(·) if h2 ̸= 0. This means
that Theorem 4 in Moore et al. (2005) is incorrect. Therefore, it
cannot be used to derive the monotone convergence of the SOTEs
in the sense of 1-norm/2-norm.

3. There does exist time-varying learning gain to ensure
monotone convergence

In Section 2, we have proven that the time-varying gain ILC
update law (3) developed in Moore et al. (2005) cannot ensure the
monotone convergence of the SOTEs in the sense of unweighted
1-norm, 2-norm and ∞-norm, respectively. In this section, we
further explore whether there exists the time-varying gain ILC
 1

4

update law taking the form of (2) to ensure the monotone conver-
gence of the SOTEs in the sense of unweighted 1-norm, 2-norm
or ∞-norm.

The following theorem tells that there exists a time-varying
learning gain γt to ensure the monotone convergence of SOTEs in
the sense of ∞-norm.

Theorem 3. Assume that the time-varying learning gain in (2) takes
the form of γt = ηe−α(T−t)(t ∈ S +), where α is a positive constant.
If 0 < ηh1 ≤ 1, then there is an α to ensure the monotone
convergence of the SOTEs in the sense of ∞-norm.

Proof. By the definitions of Uk, Yk, Yd and Ek, ILC update law (2)
can be written as

Uk+1 = Uk + Γ1Ek, (17)

where Γ1 = diag{γ1, γ2, . . . , γT }.
By (4) and (17), we get

Ek+1 = ΩEk, (18)

where

Ω =

⎡⎢⎢⎢⎢⎣
1 − γ1h1
−γ1h2 1 − γ2h1
−γ1h3 −γ2h2 1 − γ3h1
...

...
...

. . .

−γ1hT −γ2hT−1 −γ3hT−2 · · · 1 − γTh1

⎤⎥⎥⎥⎥⎦ . (19)

Let φ1 = 1 − γ1h1 and

i =

i−1∑
j=1

|ηhi−j+1|e−α(T−j)
+ 1 − ηh1e−α(T−i) (20)

or i = 2, . . . , T .
It follows from the condition 0 < ηh1 ≤ 1 that h1 ̸= 0. Using

he fact

lim
α→+∞

T∑
j=2

|hj|e−α(j−1)
= 0 (21)

ields that there is an α such that
T∑

j=2

|hj|e−α(j−1) < |h1|. (22)

Using (20) and (22) together with the condition 0 < ηh1 ≤ 1
ields that there is an α such that

< φi < 1 for all i ∈ S +. (23)

Therefore, there is an α such that

Ω∥∞ = max
1≤i≤T

φi < 1, (24)

hich implies that ∥Ek∥∞ are monotonically convergent along the
axis. This completes the proof. □

The following theorem shows that there does not exist a
ime-varying learning gain γt (t ∈ S +) to ensure the monotone
onvergence of SOTEs in the sense of 1-norm if

∑T
j=2 |hj| > |h1|.

heorem 4. Assume that
∑T

j=2 |hj| > |h1|. Then, for system (1) with
LC update law (2), there does not exist a learning gain γt (t ∈ S +)
o ensure the monotone convergence of the SOTEs in the sense of

-norm.
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roof. Under the condition max1≤j≤T |1 − γjhj| ≥ 1, the SOTEs
of ILC system (1)–(2) do not converge to zero if the initial
system input is not the desired one. Therefore, assume that
max1≤j≤T |1 − γjhj| < 1, which implies |1 − γ1h1| < 1.

In the case 0 < γ1h1 ≤ 1, it follows from
∑T

j=2 |hj| > |h1| that

1 − γ1h1 + |γ1h2| + · · · + |γ1hT | > 1. (25)

Thus,

∥Φ∥1 > 1, (26)

which implies that ∥Ek∥1 diverges.
In the case 1 < γ1h1 < 2, it follows from

∑T
j=2 |hj| > |h1| that

γ1h1 − 1 + |γ1h2| + · · · + |γ1hT | > 1. (27)

Therefore, ∥Φ∥1 > 1, which implies that ∥Ek∥1 diverges.
The above proves that under the condition

∑T
j=2 |hj| > |h1|,

there does not exist a time-varying learning gain to ensure the
monotone convergence of SOTEs in the sense of 1-norm. This
completes the proof. □

Theorem 5. Assume that
∑T−1

j=2 |hj| < 2|h1|. Then, for system (1)
with update law (2) in which γt = ηe−α(T−t)(t ∈ S +), there do
exist η and α to ensure the monotone convergence of the SOTEs in
the sense of 2-norm.

Proof. Since
∑T−1

j=2 |hj| < 2|h1|, it follows that h1 ̸= 0. Therefore,
there exists η satisfying ηh1 = 1.

The proof is completed by showing that under the condition∑T−1
j=2 |hj| < 2|h1|, there exists a positive α to ensure that the

maximum eigenvalue of Ω⊤Ω is less than 1, i.e., ∥Ω∥2 < 1,
where Ω is defined by (19).

Let Φ = [ϕi,j] = Ω⊤Ω ,

ψ1 = 1 −

(
2 −

T−1∑
j=2

⏐⏐⏐ hj

h1

⏐⏐⏐)e−α(T−1)
+

Th2e−αT

1 − e−α
, (28)

T−1 = 1 − 2e−α
+

(2h2
+ h)e−2α

1 − e−α
, (29)

ψi = 1 −

(
2 −

T−i∑
j=2

⏐⏐⏐ hj

h1

⏐⏐⏐)e−α(T−i)

+
(Th2

+ h)e−α(T−i+1)

1 − e−α
for i = 2, . . . , T − 2, (30)

where h = max1≤j≤T

⏐⏐⏐ hj
h1

⏐⏐⏐.
It is easy to check that

∑T
j=1 |ϕT ,j| = 0 and

T∑
j=1

|ϕi,j| ≤ ψi for i = 1, 2, . . . , T − 1. (31)

Since
∑T−1

j=2 |hj| < 2|h1|, it follows from (28)–(31) that there
xists an α such that
T∑

j=1

|ϕi,j| ≤ ψi < 1 for i = 1, 2, . . . , T . (32)

Using (32) together with Gerŝgorin disk theorem yields that
here exists an α such that the maximum eigenvalue of Ω⊤Ω is
ess than 1. This completes the proof. □

emark 9. It follows from the monotone convergence condi-
ions that the trial length may have a significant influence on
he monotone convergence of ILC process. As the trial length
ncreases, the SOTEs in the sense of 1-norm/2-norm may change
rom monotone convergence to non-monotone convergence.
5

Fig. 1. The profile of Markov parameters h1, h2, . . . , h60 .

4. Illustrative examples

In this section, we use the stable oscillatory system to show
our findings, whose z-transfer function is given in (33). In simu-
lations, all the initial conditions of system (33) are set to 0. The
profile of the involved Markov parameters are displayed in Fig. 1.

H1(z) =
z − 0.8

(z − 0.5)(z + 0.6)
. (33)

Let the desired trajectory be defined as

d(t) =

{ 2t
T , t ∈ {1, 2, . . . , T

2 },
2(T−t)

T , t ∈ {
T
2 + 1, T

2 + 2, . . . , T },
(34)

hich is a triangle with a maximum height 1.

.1. Tracking performances of system (33) with (3)

In this subsection, we aim to show that under the same set-
ings as those in Moore et al. (2005), the ILC update law (3) cannot
nsure the monotone convergence of the SOTEs in the sense of
-norm and 2-norm, respectively.
As done in Moore et al. (2005), let T = 60, η = 0.9 and α =

.025. Since h1 = 1, it follows that |1 − ηh1| = 0.1, which means
hat the convergence condition of system (33) with update law
3) is satisfied. Due to

∑60
i=2 |hi| = 2, it follows from Theorem 1

hat there is no α to ensure the monotone convergence of ∥Ek∥1 =
60
t=1 |yd(t) − yk(t)| for any given initial system input U1.
Fig. 2 shows that the SOTEs in the sense of 2-norm with the

nitial system input U1 being set to 0 converge monotonically.
owever, when the initial input U1 = H−1(Yd − V1) is applied to
LC system (33)–(3), the monotone convergence of the SOTEs in
he sense of 2-norm does not hold any more. Here, V1 satisfying
V1∥2 = 1 is the eigenvector corresponding to the eigenvalue
.799 of the matrix Ξ⊤Ξ , in which Ξ is defined by (7).
Fig. 3 shows that the SOTEs in the sense of 1-norm with

he initial system input U1 being set to 0 are monotonically
onvergent. And when applying

1 = H−1(Yd − V1)(V1 = [1, 0, . . . , 0]⊤)

o ILC system (33)–(3), we get E1 = V1 and

2 = [1 − ηh1,−ηh2, . . . ,−ηhT ]
⊤.

hen, ∥E1∥1 = 1 and ∥E2∥1 = 1.9. This means that the ILC update
aw (3) with α being setting to 0.025 cannot ensure the monotone
onvergence of the SOTEs in the sense of 1-norm.
The above facts imply that if ∥Ξ∥1(∥Ξ∥2) is not less than or

qual to 1, the monotone convergence of the SOTEs in the sense
f 1-norm (2-norm) does depend on the initial system input.
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Fig. 2. SOTEs of system (33) with update law (3) in the sense of 2-norm with
different U1 .

Fig. 3. SOTEs of system (33) with update law (3) in the sense of 1-norm with
different U1 .

.2. Tracking performances of system (33) with update law (2) in
which γt = ηe−α(T−t)

In this subsection, we aim to show the ILC update law (2) with
the time-varying gain γt being set to ηe−α(T−t) can ensure the
monotone convergence of the SOTEs in the sense of ∞-norm and
can ensure the monotone convergence of the SOTEs in the sense
of 2-norm when

∑T−1
j=2 |hj| < 2|h1|.

Let T = 20. Since
∑19

i=2 |hi| = 1.9998 and h1 = 1, it follows
that

∑19
i=2 |hi| < 2|h1|, which means that there exist η and α

to ensure the monotone convergence of the SOTEs in the sense
of 2-norm. Due to |h1| <

∑20
i=2 |hi|, it follows from Theorem 4

that there do not exist η and α to guarantee the monotone
convergence of the SOTEs in the sense of 1-norm.

In simulations, we consider the following two cases.
Case 1: η = 1 and α = 0.4.
A direct computation yields ∥Ω∥2 = 0.999651 and ∥Ω∥∞ =

0.999787, which imply η = 1 and α = 0.4 can ensure the
monotone convergence of the SOTEs in the sense of 2-norm and
∞-norm, respectively. The initial system input is set as U1 =

H−1(Yd − V1), in which the 17th component of V1 is 1 and others
are set to 0. It is easy to check that ∥E2∥1 = ∥Ω∥1 = ∥ΩV1∥1 =

1.180415 and ∥E1∥1 = ∥V1∥1 = 1. Therefore, η = 1 and α = 0.4
cannot ensure the monotone convergence of the SOTEs in the
6

Fig. 4. SOTEs of ILC system (33)–(2) with γt = e−0.4(20−t) in the sense of ∞, 2
and 1-norm, respectively.

Fig. 5. SOTEs of ILC system (33)–(2) with γt = e−0.45(20−t) in the sense of ∞, 2
nd 1-norm, respectively.

ense of 1-norm. Fig. 4 shows the SOTEs in the sense of ∞, 2 and
-norm, respectively. Clearly, ∥Ek∥2 and ∥Ek∥∞ are monotonically
onvergent and ∥Ek∥1 are not.
Case 2: η = 1 and α = 0.45.
It is easy to check that ∥Ω∥2 = 0.999860 and ∥Ω∥∞ =

.999873. Thus, η = 1 and α = 0.45 can ensure the monotone
convergence of the SOTEs in the sense of 2-norm and ∞-norm,
respectively. The initial system input is set as U1 = H−1(Yd −V1),
in which the 17th component of V1 is 1 and others are set to 0.
It is easy to check that ∥E2∥1 = ∥Ω∥1 = ∥ΩV1∥1 = 1.155285
and ∥E1∥1 = ∥V1∥1 = 1. Therefore, η = 1 and α = 0.45 cannot
ensure the monotone convergence of the SOTEs in the sense of
1-norm. Fig. 5 shows the SOTEs in the sense of ∞, 2 and 1-
norm, respectively. Clearly, ∥Ek∥2 and ∥Ek∥∞ are monotonically
convergent and ∥Ek∥1 are not.

Remark 10. It should be pointed that when the upper and lower
bounds of the Markov parameters hi and the sign of h1 are known,
we can give a conservative design method about η and α in the
time-varying gain γt = ηe−α(T−t) to ensure the monotone con-
vergence of the SOTEs. However, large α may significantly reduce
the convergence rate of ILC process, which may be unacceptable
in practices. Note that the transient tracking performance of ILC
system (1)–(2) with γt = ηe−α(T−t) is continuously dependent
on the parameter α. As a rule of thumb, a relatively large α is
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ufficient to eliminate the unacceptable huge overshoot of ILC
rocess.

. Conclusion

The major discoveries in the note are as follows. The ILC
pdate law with an exponentially decaying learning factor de-
eloped in Moore et al. (2005) cannot ensure that the SOTEs
n the sense of unweighted 1, 2 and ∞-norm are monotoni-
ally convergent. There exists a time-varying learning gain to
nsure the monotone convergence of SOTEs in the sense of un-
eighted ∞-norm. There does not exist a time-varying learning
ain that makes the SOTEs in the sense of unweighted 1-norm
onverge monotonically if |h1| <

∑T
j=2 |hj|. Under the condition∑T−1

j=2 |hj| < 2|h1|, there exists a time-varying learning gain to
ensure the monotone convergence of SOTEs in the sense of un-
weighted 2-norm. And the initial system input and the trial length
may have a significant influence on the tracking performance of
ILC process.
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