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Abstract. This paper considers the learning-ability for discrete-time iterative learning control
(ILC) systems with feedforward. More specifically, the relation between the output realizability
and the feedforward matrix is first established. Then, the learning-ability of four ILC systems is
considered. It is shown that the proportional type (P-type) update law can only ensure the fully
asymptotic learning-ability. By only using the feedforward matrix, a more efficient point-wise P-type
update law is developed, which can ensure the fully (T +2)-step learning-ability, where T is the trial
length. In the case that the state is measurable and controllable, it is proven that the update law with
current state feedback can ensure the fully monotone learning-ability and the fully 2-step learning-
ability, respectively. In addition, by only using the output data at the previous trial, a full output
feedback update law is proposed, which can respectively ensure the fully 2-step learning-ability and
the fully monotonic learning-ability.

Key words. iterative learning control, output realizability, discrete-time systems, learning-
ability, convergence performance
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1. Introduction. Iterative learning control (ILC) technique is developed for
systems repetitively operated over the finite time interval whose task is to track the
given desired trajectory over the whole finite time interval. Since ILC can achieve the
tracking task over the whole finite time interval with a satisfactory precision [1], it
has been widely studied during the past three decades, and great progress has been
made in both fundamental theories [2, 5, 10, 22] and practical applications [6, 7, 17].

The idea of ILC is to exploit the repetitive operation characteristics of control
system and all the available information to design an update law for the system in-
put, which can drive the control system to track the given desired trajectory. Here,
the available information may include the known part of system dynamics, the in-
put data, the measurable output data, and the measurable state data. Clearly, if
it is expected that the ILC update law designed can drive the control system to
track the given desired trajectory with any given precision, there must exist at least
a desired initial state and a desired input such that supplying them to the control
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544 J. LIU, X. RUAN, Y. ZHENG, Y. YI, AND C. WANG

system yields the given desired trajectory, i.e., the given desired trajectory must be
realizable over the whole finite time interval [14]. This means that the study of out-
put realizability is crucial for ILC systems. On the output realizability, one can see
that the existing literature falls into two categories. Some literature directly assumes
that the given desired trajectory is realizable [3, 9, 20, 21], while others directly
ignore the realizability of the given desired trajectory [5, 16, 18]. The main reason
for this phenomenon is the technical route of convergence analysis for the system out-
put sequence. When the indirect technical route is adopted, i.e., the convergence of
the output sequence follows from the convergence of the input sequence, it requires
the desired state and output equations to get the convergence of the input sequence.
This is the immediate cause of the hypothesis that the desired trajectory is real-
izable. However, when we directly conduct the convergence analysis of the output
sequence, i.e., the direct technical route is adopted, the desired state and output
equations are not needed any more. This creates an illusion that the realizability
assumption can be removed.

Up to now, the research of output realizability has made some progress. It was
shown in [12, 13] that for a class of single-input-single-output (SISO) discrete-time
systems, when the input-output coupling parameter (IOCP) is nonzero, any given
desired trajectory is realizable and for any given initial state there is a unique de-
sired input corresponding to the given desired trajectory. The article [11] extended
the results in [12, 13] to discrete-time system with time-varying IOCP. The article
[14] studied the output realizability for a class of multi-input-multioutput (MIMO)
discrete-time systems, and built the relation between the output realizability and the
input-output coupling matrix (IOCM). It reported that when the IOCM is full-row
rank, any given desired trajectory is realizable and when the IOCM is not full-row
rank, the output is unrealizable almost everywhere. However, the output realizabil-
ity criterion for systems with feedforward has not been addressed yet, though it is a
problem of great interest.

In ILC, under the premise of the given desired trajectory being realizable, the core
problem becomes to design an effective ILC update law for the system input sequence
that can drive the control system to track the given desired trajectory. The primary
concern is the convergence properties of the iterative learning process: asymptotic
convergence, monotone convergence, finite-step convergence, and so on. Obviously,
the convergence properties of ILC process are mainly determined by the ILC update
law, and the designs of the ILC update laws are inseparable from the information
of dynamics structure or dynamics matrices. It can be found that the convergence
performance of the designed ILC system will be better and better as the available
information becomes more and more [4, 19, 23], in which the control system together
with an ILC update law designed is termed as an ILC system. When the IOCM is
full-row rank and available, for linear or local-Lipschitz-nonlinear-affine systems, the
proportional type (P-type) update law can only ensure the exponential convergence of
output sequence and for continuous-nonlinear-affine systems, the P-type update law
can only guarantee the asymptotic convergence of output sequence [23]. When the full-
row rank IOCM and the state-output coupling matrix (SOCM) are available, for the
linear time-invariant (LTI) system, the P-type update law with current state feedback
can ensure the 2-step convergence [8]. When the full-row rank IOCMs, the SOCMs,
and the output matrices are available, for a class of linear time-varying continuous-
time systems, the P-type update law with current state feedback can ensure the 2-step
convergence [15]. Clearly, the convergence performance of an ILC system depends on
not only the ILC update law designed but also the available information of system

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

04
/1

7/
23

 to
 1

13
.2

00
.1

74
.1

8 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



LEARNING-ABILITY OF DISCRETE-TIME ILC SYSTEMS 545

dynamics. This motivates us to further investigate how to leverage the different parts
of system dynamics to design an highly efficient update law, and whether the required
system dynamics are learnable.

Inspired by the above observations, this paper intends to explore the output re-
alizability, how to exploit the different parts of system dynamics to design highly
efficient update law, and whether the dynamics required by the ILC update law de-
signed are finite-step learnable. The main differences between this paper and [14] lie
in two aspects. Clearly, the control systems considered in this paper and [14] are
different. Note that [14] considered the relation between the output realizability and
the IOCM, the learning mechanisms for system dynamics and the monotone conver-
gence of D-type update law with current state feedback. Therefore, the problems
considered in this paper and [14] are different. The main contributions of this paper
are highlighted as follows.

\bullet The output realizability over the whole time interval is considered. It gives
the sufficient and necessary condition for the output to be fully realizable.
Meanwhile, it presents an upper bound of the dimension of the realizable out-
put space in the case the feedforward matrix is not full-row rank. Moreover,
in the case the feedforward matrix is full column-rank and the input dimen-
sion is less than that of output, for a fixed initial state, any given desired
trajectory corresponds to at most a desired input.

\bullet It is shown that in the case the output dimension is less than that of the input,
there are infinite many desired inputs and states corresponding to the given
desired trajectory. And we show how to utilize the direct technique route
of convergence analysis and the Cauchy convergence criterion to prove the
exponential convergence of system input and state sequences for the classic
P-type update law without resorting to the input transformation technique
used in [14, 16, 23].

\bullet It establishes the relations between the convergence performances of ILC
systems and the output, feedforward, and lower triangle Toeplitz-type block
matrices. The P-type update law can only ensure the fully asymptotic learning-
ability, in which the feedforward matrix required for designing the gain ma-
trix is (p+1)-step learnable. In addition, only using the feedforward matrix,
we can get a more efficient point-wise update law that can ensure the fully
(T +2)-step learning-ability. When the state is measurable and controllable,
we can obtain a P-type update law with current state feedback that can en-
sure the fully 2-step learning-ability and the fully monotone learning-ability,
respectively, in which the required output matrix is at least (np + 1)-step
learnable. In the case that the state is unmeasurable or uncontrollable, only
using the output data at the previous trial can also get an update law that
can, respectively, ensure the fully 2-step learning-ability and the fully mono-
tonic learning-ability, in which the required lower triangle Toeplitz-type block
matrix is (p+ 1)-step learnable.

The rest of this paper is organized as follows. In section 2, the output realizability is
considered. Section 3 considers the learning-ability of ILC system. Section 4 concludes
the paper.

Notation. Throughout this paper, N = \{ 1,2, . . .\} , N + = \{ 2,3, . . .\} , and \BbbR n

refers to the n-dimensional real column vector space. For a given vector or matrix
x, x\top denotes its transpose and \| x\| \vargamma labels its \vargamma -norm (\vargamma = 1,2,\infty ). Let S =
\{ 0,1, . . . , T\} , S + = \{ 1, . . . , T\} , and S  - = \{ 0,1, . . . , T  - 1\} , where the positive integer
T labels the trial length. For a matrix D \in \BbbR q\times p with columns being d1, . . . , dp,
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546 J. LIU, X. RUAN, Y. ZHENG, Y. YI, AND C. WANG

span(D) denotes the linear space \{ \alpha 1d1+ \cdot \cdot \cdot +\alpha pdp : [\alpha 1, . . . , \alpha p]
\top \in \BbbR p\} and rank(D)

refers to the rank of D. For given positive integers m and n, In denotes the n \times n
identify matrix, 0n labels the n-dimensional zero column vector and 0m\times n denotes
the m \times n matrix whose entries are all zero. \rho (A) denotes the spectral radius of a
square matrix A\in \BbbR m\times m.

2. Output realizability. Consider the following MIMO discrete-time repetitive
system:

(2.1)

\left\{     
xk(t+ 1) =Axk(t) +Buk(t), t\in S  - ,

yk(t) =Cxk(t) +Duk(t), t\in S ,

xk(0) = x0,

where t denotes the discrete time and k \in N labels the trial number. uk(t) \in \BbbR p is
the input, yk(t)\in \BbbR q is the output, and xk(t)\in \BbbR n is the state. A\in \BbbR n\times n, B \in \BbbR n\times p,
C \in \BbbR q\times n, and D \in \BbbR q\times p are the unknown matrices. xk(0) = x0 means that the initial
state can be reset to a fixed state x0.

In ILC, the control objective is to exploit the available information to design an
update law for the input sequence uk(\cdot ) such that the output sequence yk(\cdot ) can track
the given desired trajectory/output yd(\cdot ) when k tends to infinity, i.e., limk\rightarrow \infty yk(t) =
yd(t) for all t \in S . Here, the available information may include the known system
dynamics information and the input, output, and state data. The control objective
inherently requires yd(\cdot ) to be realizable, i.e., there exists at least a desired input ud(\cdot )
that can drive the control system to yield yd(\cdot ). Note that the system state signals
over the finite time interval S + are only determined by the system input. Therefore,
yd(\cdot ) is realizable means that there at least exists a pair of ud(\cdot ) and xd(\cdot ) satisfying

(2.2)

\left\{     
xd(t+ 1) =Axd(t) +Bud(t), t\in S  - ,

yd(t) =Cxd(t) +Dud(t), t\in S ,

xd(0) = x0.

In this paper, one of the issues we are interested in is to explore the criterion for
the output realizability of system (2.1). The following definitions are useful.

Definition 2.1.
\bullet A given desired output yd(\cdot ) for system (2.1) is said to be realizable if there

exists at least a pair of ud(\cdot ) and xd(\cdot ) satisfying (2.2).
\bullet The set Yd defined by\bigl\{ 

[(yd(0))
\top , . . . , (yd(T ))

\top ]\top : yd(\cdot )is realizable for system (2.1)
\bigr\} 

is termed as the realizable output space (ROS).
\bullet The output is said to be fully realizable if Yd =\BbbR q(T+1).

The following theorem gives the necessary and sufficient conditions for the output
to be fully realizable.

Theorem 2.2. The output of system (2.1) is fully realizable if and only if D is
full-row rank.

Proof. First, we prove the sufficiency. On account of rank(D) = q, we have p\geq q.
Case 1: p= q.
This case implies that D is nonsingular. Therefore, for any given yd(\cdot ), there

exists a unique pair of ud(\cdot ) and xd(\cdot ), given by the recursion formula (2.3), satisfying
(2.2). This means that the output of system (2.1) is fully realizable:
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LEARNING-ABILITY OF DISCRETE-TIME ILC SYSTEMS 547

(2.3)

\left\{     
ud(t) =D - 1[yd(t) - Cxd(t)], t\in S ,

xd(t+ 1) =Axd(t) +Bud(t), t\in S  - ,

xd(0) = x0.

Case 2: p > q.
Let di(1 \leq i \leq p) denote the ith column of D. Due to rank(D) = q < p, there

exist di1 , . . . , diq (1 \leq i1 < \cdot \cdot \cdot < iq \leq p) such that the matrix D1 \triangleq [di1 , . . . , diq ] is

nonsingular. Let D2 \triangleq [bj1 , . . . , bjp - q ], where 1\leq j1 < \cdot \cdot \cdot < jp - q \leq p,

\{ i1, . . . , iq\} 
\bigcap 

\{ j1, . . . , jp - q\} = \emptyset ,

\{ i1, . . . , iq\} 
\bigcup 

\{ j1, . . . , jp - q\} = \{ 1, . . . , p\} .

For t\in S , uid(t) denotes the ith component of ud(t). Let

u\prime d(t)\triangleq [ui1d (t), . . . , u
iq
d (t)]\top ,

u\prime \prime d(t)\triangleq [uj1d (t), . . . , u
jp - q

d (t)]\top .

Then, (2.2) becomes

(2.4)

\left\{     
xd(t+ 1) =Axd(t) +Bud(t), t\in S  - ,

yd(t) =Cxd(t) +D1u
\prime 
d(t) +D2u

\prime \prime 
d(t), t\in S ,

xd(0) = x0,

which together with the nonsingularity of D1 yields

(2.5)

\left\{     
u\prime d(t) =

\bigl[ 
D1

\bigr]  - 1\bigl[ 
yd(t) - Cxd(t) - D2u

\prime \prime 
d(t)

\bigr] 
, t\in S ,

xd(t+ 1) =Axd(t) +Bud(t), t\in S  - ,

xd(0) = x0.

According to (2.5), for any given yd(\cdot ) and u\prime \prime d(\cdot ), there exists a unique pair of u\prime d(\cdot )
and xd(\cdot ) satisfying (2.4). Therefore, the output of system (2.1) is fully realizable.

Next, we prove the necessity by contradiction.
What we need to do is to show that if rank(D)< q, there exists at least a desired

trajectory yd(t)(t\in S ) that is not realizable.
Let r= rank(D) and span(D) be a vector space spanned by the column vectors of

D. Clearly, span(D) is a r-dimensional true subspace of \BbbR q. Therefore, there exists
y\prime d(0) that belongs to \BbbR q and does not belong to span(D). It is easy to check that if
yd(t)(t\in S ) satisfies yd(0) = y\prime d(0)+Cxd(0), then it is not a realizable desired output
for system (2.1). This completes the proof of necessity.

The following theorem gives the upper bound of the dimension of the ROS Yd in
the case the rank of D is less than q.

Theorem 2.3. If the rank of D is less than q, then the dimension of the ROS
Yd is no more than qT + r, where r= rank(D).

Proof. Case 1: r= p < q.
In this case, there exists a nonsingular matrix Q to ensure that QD= [ Ir

0q - r
].

Let y\prime d(0) =Qyd(0). We partition y\prime d(0) and Q as

(2.6) y\prime d(0) =

\biggl[ 
y\prime d(1,0)
y\prime d(2,0)

\biggr] 
and Q=

\biggl[ 
Q1

Q2

\biggr] 
,
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548 J. LIU, X. RUAN, Y. ZHENG, Y. YI, AND C. WANG

where y\prime d(1,0)\in \BbbR r, y\prime d(2,0)\in \BbbR q - r, Q1 \in \BbbR r\times q, and Q2 \in \BbbR (q - r)\times q. Then, we have

(2.7)

\Biggl\{ 
y\prime d(1,0) =Q1Cxd(0) + ud(0),

y\prime d(2,0) =Q2Cxd(0).

Obviously, for any given y\prime d(1,0), there exists a unique ud(0) satisfying (2.7). On
account of yd(0) =Q - 1y\prime d(0), yd(t)(t \in S ) is not realizable if yd(0) does not take the
form of (2.8). This means that the dimension of the ROS Yd for system (2.1) is at
most qT + r:

(2.8) yd(0) =Q - 1

\biggl[ 
y\prime d(1,0)
Q2Cxd(0)

\biggr] 
.

Case 2: r < p.
In this case, there exist the nonsingular matrices Q and P satisfying

(2.9) QDP =

\biggl[ 
Ir 0r\times (p - r)

0(q - r)\times r 0(q - r)\times (p - r)

\biggr] 
.

Let u\prime d(0) = P - 1ud(0). Due to r < p, we partition u\prime d(0) as

(2.10) u\prime d(0) =

\biggl[ 
u\prime d(1,0)
u\prime d(2,0)

\biggr] 
,

where u\prime d(1,0)\in \BbbR r and u\prime d(2,0)\in \BbbR p - r.
Using (2.6), (2.9), and (2.10) together with yd(0) =Cxd(0) +Dud(0) yields

(2.11)

\Biggl\{ 
y\prime d(1,0) =Q1Cxd(0) + u\prime d(1,0),

y\prime d(2,0) =Q2Cxd(0).

Then, for any given y\prime d(1,0), there is a unique u\prime d(1,0) to meet (2.11). Since yd(0) =
Q - 1y\prime d(0), yd(t)(t \in S ) is not realizable if yd(0) does not take the form of (2.8).
Therefore, the dimension of the ROS Yd is less than qT + r.

This completes the proof of Theorem 2.3.

The following theorem shows that when D is full-column rank and the output
dimension is greater than that of the input for a given desired trajectory there exists
at most a pair of desired input and state satisfying (2.2).

Theorem 2.4. Assume that rank(D) = p < q. For an arbitrarily given desired
trajectory yd(\cdot ), there exists at most a pair of ud(\cdot ) and xd(\cdot ) satisfying (2.2).

Proof. We will complete the proof by contradiction.
Assume that ud(\cdot ) and xd(\cdot ) is a pair of desired input and state satisfying (2.2)

and u\prime d(\cdot ) and x\prime d(\cdot ) is another pair of desired input and state satisfying (2.12):

(2.12)

\left\{     
x\prime d(t+ 1) =Ax\prime d(t) +Bu\prime d(t), t\in S  - ,

yd(t) =Cx\prime d(t) +Du\prime d(t), t\in S ,

x\prime d(0) = x0.

Since the state signals over S + are only determined by the input signals over S  - 

and the initial state signal x0, what we need to do is to show

(2.13) ud(t) = u\prime d(t) for all t\in S .
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LEARNING-ABILITY OF DISCRETE-TIME ILC SYSTEMS 549

It follows from (2.2) and (2.12) that

xd(t+ 1) - x\prime d(t+ 1) =A[xd(t) - x\prime d(t)] +B[ud(t) - u\prime d(t)], t\in S  - ,(2.14)

0q =C[xd(t) - x\prime d(t)] +D[ud(t) - u\prime d(t)], t\in S ,(2.15)

xd(0) - x\prime d(0) = 0n.(2.16)

Using (2.15) and (2.16) leads to

(2.17) D[ud(0) - u\prime d(0)] = 0q.

By (2.17), together with the condition q > p= rank(D), we get

ud(0) = u\prime d(0).

What the rest we need to do is to show

(2.18) ud(s+ 1) = u\prime d(s+ 1)

provided that

(2.19) ud(t) = u\prime d(t) for all t\in \{ 0,1, . . . , s\} ,

where 0\leq s\leq T  - 1.
Using the induction hypothesis (2.19) together with the condition xd(0) = x\prime d(0) =

x0 gives

(2.20) xd(s+ 1) = x\prime d(s+ 1).

By (2.15) and (2.20), we get

(2.21) D[ud(s+ 1) - u\prime d(s+ 1)] = 0q.

Using rank(D) = p < q and (2.21) yields (2.18). This completes the proof.

Remark 2.5. According to Theorem 2.3, it makes no sense to assume that a given
desired output is realizable when system (2.1) contains unknown dynamics informa-
tion. However, this does not deny the theoretical feasibility of the indirect technology
route of the convergence analysis. According to Theorem 2.4, any realizable desired
trajectory only has a pair of desired input and state satisfying (2.2) if D is full-column
rank. This means we can use the desired state and output equations (2.2) to get the
convergence of input and output sequences.

Remark 2.6. It follows from Theorems 2.2 and 2.3 that the output realizability
does not depend on the trial length, the ILC update law designed, and the repetitive-
ness of the control system, which is an inherent property of the control system.

3. Learning-ability of ILC system. In the previous section, we have discussed
the output realizability. It is observed that the output realizability only depends on
the dynamics of control system including its initial state. The output realizability
only reflects whether the control system has the potential ability to achieve the control
objective. Clearly, that the output is realizable is only a prerequisite for the control
objective to be feasible.

In this section, what we care about is the learning-ability of ILC system. We
should first clarify what the learning-ability of ILC system is. System (2.1) together
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550 J. LIU, X. RUAN, Y. ZHENG, Y. YI, AND C. WANG

with an ILC update law designed is termed as an ILC system. Since the dynamics
matrices of system (2.1) are completely unknown, the connotation of the learning-
ability of ILC system should include three aspects: the given desired trajectory to
be realizable, the output sequence convergent to the given desired trajectory and the
required system dynamics information to be learnable.

The following definitions are useful.

Definition 3.1.
\bullet \Upsilon \in \{ A,B,C,D,H\} is said to be m-step learnable if there is a learning scheme

by which we can obtain \Upsilon through running system (2.1) m times, where m
is a positive integer and H is the lower triangle Toeplitz-type block matrix
defined by

(3.1) H =

\left[       
D
CB D
CAB CB D
...

. . .
. . .

. . .

CAT - 1B \cdot \cdot \cdot CAB CB D

\right]       .

\bullet System (2.1) with an ILC update law is said to have fully asymptotic learning-
ability if (1) any given desired trajectory is realizable; (2) for any initial input,
the output sequence can asymptotically converge to any given desired trajec-
tory; and (3) the required system dynamics information is m-step learnable.

\bullet System (2.1) with an ILC update law is said to have fully monotonic learning-
ability in the sense of \vargamma -norm if (1) any given desired trajectory is realizable;
(2) for any initial input, the output sequence can monotonically converge to
any given desired trajectory in the sense of \vargamma -norm; and (3) the required
system dynamics information is m-step learnable, where \vargamma = 1,2,\infty .

\bullet System (2.1) with an ILC update law is said to have fully M -step learning-
ability if (1) any given desired trajectory is realizable; (2) for any initial input,
the output at the M th trial can be any given desired trajectory; and (3) the
required system dynamics information is m-step learnable, where M is a pos-
itive integer.

\bullet The state of system (2.1) is said to be measurable if it can be obtained directly
by a sensor or other means of measurement.

3.1. P-type update law. We first show that if D is full-row rank, system (2.1)
with P-type update law (3.2) can ensure the fully asymptotic learning-ability:

(3.2) uk+1(t) = uk(t) + \Gamma \delta yk(t),

where \Gamma \in \BbbR p\times q is the learning gain matrix and \delta yk(t) = yd(t) - yk(t).
It is well known that under the condition rank(D) = q < p, the output sequence

of system (2.1) with update law (3.2) is exponentially convergent to the desired tra-
jectory if and only if \rho (Iq  - D\Gamma ) < 1. It follows from the proof of Theorem 2.2 that
for any given desired trajectory, there are infinitely many desired inputs and states
satisfying (2.2). Therefore, we cannot directly use (2.2) to prove the convergence of
system input and state sequences. However, by Cauchy convergence criterion together
with the direct technique route of convergence analysis, we can get the exponential
convergence of the input and state sequences, respectively. The above fact can be
summed up in Theorem 3.2 whose proof can be found in the appendix.
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LEARNING-ABILITY OF DISCRETE-TIME ILC SYSTEMS 551

Theorem 3.2. Assume that the update law (3.2) is applied to system (2.1) and
D is full-row rank. Then, for any given yd(\cdot ) and u1(\cdot ), yk(\cdot ) exponentially converges
to yd(\cdot ) when k tends to infinity, and uk(\cdot ) and xk(\cdot ) are exponentially convergent
when k tends to infinity whose limits together with yd(\cdot ) satisfy (2.2) if and only if
\rho (Iq  - D\Gamma )< 1.

Let
(3.3)
Yk = [(yk(0))

\top , . . . , (yk(T ))
\top ]\top , Yd = [(yd(0))

\top , . . . , (yd(T ))
\top ]\top ,\BbbG =diag\{ \Gamma , . . . ,\Gamma \underbrace{}  \underbrace{}  

T+1

\} .

Then, the output sequence Yk of system (2.1) with update law (3.2) satisfies

(3.4) \delta Yk+1 = [Iq(T+1)  - H\BbbG ]\delta Yk,

where \delta Yk = Yd  - Yk and H is given by (3.1).
It is easy to verify that for any initial input, the output sequence monotonically

converges to the desired trajectory in the sense of \vargamma -norm, i.e., limk\rightarrow \infty Yk = Yd and
\| \delta Yk+1\| \vargamma \leq \| \delta Yk\| \vargamma if and only if \rho (Iq  - D\Gamma ) < 1 and \| Iq(T+1)  - H\BbbG \| \vargamma \leq 1, where
\vargamma = 1,2,\infty . However, by only tuning the learning gain \Gamma , the monotone convergence
condition cannot be ensured.

Theorem 3.2 tells that for system (2.1) with update law (3.2), D is the only
system dynamics information involved in designing the learning gain matrix \Gamma . Now,
we show how to use the column-by-column learning mechanism given in [11] to get
the feedforward matrix D through running the repetitive system (2.1) p+ 1 times.

Let dj be the jth column ofD, where j = 1, . . . , p. uik(t) denotes the ith component
of the column vector uk(t), where 1\leq i\leq p and t\in S .

Step 1. Arbitrarily choose an admissible initial system input u1(t)(t \in S ). Sup-
plying system (2.1) with it yields y1(t)(t\in S ).

Step 2. Let uj+1(t)(t \in S ) satisfy ujj+1(0) = uj1(0) + \theta , uij+1(0) = ui1(0) for i \not = j
and uj+1(t) = u1(t) for t \not = 0, where \theta is a nonzero constant. Using uj+1(t)(t\in S ) to
drive system (2.1) gives yj+1(t)(t\in S ).

By steps 1 and 2 together with xj+1(0) = x1(0) = x0, we have

(3.5) yj+1(0) - y1(0) = \theta dj .

Thanks to \theta \not = 0, using (3.5) gives dj =
yj+1(0) - y1(0)

\theta .
Following the facts above yields Theorem 3.3.

Theorem 3.3. The feedforward matrix D is (p+ 1)-step learnable.

According to Theorems 2.2, 3.2, and 3.3 and the facts stated above, there holds
Theorem 3.4.

Theorem 3.4. Assume that D is full-row rank. System (2.1) with update law
(3.2) can ensure the fully asymptotic learning-ability if and only if \rho (Iq  - D\Gamma )< 1.

3.2. Pointwise update law. The following theorem shows that when D is
available, we can get a better pointwise update law (3.6) such that the output of
system (2.1) with update law (3.6) at the (T + 2)th trial is the desired trajectory:

(3.6) uk+1(t) =

\Biggl\{ 
uk(k - 1) + \Gamma \delta yk(k - 1) for t= k - 1,

uk(t) for t \not = k - 1,

where the initial input u1(t)(t\in S ) is arbitrarily given and 1\leq k\leq T + 1.
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552 J. LIU, X. RUAN, Y. ZHENG, Y. YI, AND C. WANG

Theorem 3.5. Assume that D is full-row rank. System (2.1) with the pointwise
update law (3.6) can ensure the fully (T + 2)-step learning-ability if D\Gamma = Iq.

Proof. Since the full-row rank matrix D is (p+ 1)-step learnable, what we need
to do is to show that when D\Gamma = Iq, for any given yd(\cdot ) and u1(\cdot ), the output at the
(T + 2)th trial is the given desired trajectory, i.e., yT+2(t) = yd(t)(t\in S ).

At the 1st trial, supplying system (2.1) with u1(t)(t\in S ) yields y1(t)(t\in S ).
Since u2(0) = u1(0)+\Gamma \delta yk(0) and u2(t) = u1(t) for t \not = 0, it follows from D\Gamma = Iq

that y2(0) = yd(0).
Next, we show that when uk+2(t)(t \in S ) is applied to system (2.1), the output

yk+2(t)(t \in S ) satisfies yk+2(t) = yd(t) for 0 \leq t \leq k provided that when we apply
uk+1(t)(t\in S ) to system (2.1), the output yk+1(t)(t\in S ) satisfies yk+1(t) = yd(t) for
0\leq t\leq k - 1(k\geq 1).

On account of yk+1(t) = yd(t) for 0\leq t\leq k - 1, using (3.6) yields

(3.7) uk+2(t) =

\Biggl\{ 
uk+1(k) + \Gamma \delta yk+1(k) fort= k,

uk+1(t) fort \not = k.

Using (2.1) and (3.7) together with D\Gamma = Iq gives rise to yk+2(t) = yd(t) for 0\leq t\leq k.
It follows from mathematical induction that yT+2(t) = yd(t)(t\in S ).

Remark 3.6. It follows from Theorems 3.4 and 3.5 that if the full-row rank
feedforward matrix D is available, from the point of view of efficiency, the learning-
ability of system (2.1) with pointwise update law (3.6) outperforms that of system
(2.1) with update law (3.2). Clearly, neither of the above two ILC systems can
guarantee the fully monotone learning-ability.

3.3. P-type update law with current state feedback. When the system
state is controllable and measurable, incorporating the state feedback mechanism
into update law (3.2) gives rise to a more efficient update law (3.8). Applying it to
system (2.1) achieves Theorem 3.7:

(3.8) uk+1(t) = uk(t) +K[xk+1(t) - xk(t)] + \Gamma \delta yk(t),

where K is the state gain matrix and \Gamma is the learning gain matrix.

Theorem 3.7. Assume that D is full-row rank and the state of system (2.1)
is controllable, i.e., the controllability matrix Qc = [An - 1B,An - 2B, . . . ,AB,B] is
full-row rank. Then, system (2.1) with update law (3.8) can ensure the fully 2-step
learning-ability if D\Gamma = Iq and C+DK = 0q\times n. Meanwhile, system (2.1) with update
law (3.8) can ensure the fully monotone learning-ability in the sense of \vargamma -norm if and
only if \rho (Iq  - D\Gamma )< 1 and \| Iq(T+1)  - \=H\BbbG \| \vargamma \leq 1, where \vargamma = 1,2,\infty ,

\=H =

\left[       
D
\=CB D
\=C \=AB \=CB D
...

. . .
. . .

. . .
\=C \=AT - 1B \cdot \cdot \cdot \=C \=AB \=CB D

\right]       ,

\=C =C +DK, and \=A=A+BK.

Proof. SinceD is full-row rank, it follows from Theorem 2.2 that any given desired
trajectory for system (2.1) is realizable.
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LEARNING-ABILITY OF DISCRETE-TIME ILC SYSTEMS 553

The rest of what we need to do is show that (i) when D\Gamma = Iq and C+DK = 0q\times n

for any given yd(\cdot ) and u1(\cdot ), the output at the 2nd trial is the desired trajectory, i.e.,
y2(t) = yd(t)(\forall t); (ii) for any given yd(\cdot ) and u1(\cdot ), the output sequence yk(t) is
monotonically convergent to yd(t) in the sense of \vargamma -norm if and only if \rho (Iq - D\Gamma )< 1
and \| Iq(T+1)  - \=H\BbbG \| \vargamma \leq 1; and (iii) under the conditions that the state is measurable
and Qc is full-row rank, A, B, and C are M -step learnable, where M is some positive
integer.

We first prove (i).
Since D is full-row rank, there exists the gain matrices \Gamma and K such that D\Gamma = Iq

and C +DK = 0q\times n. Using (2.1) and (3.8) yields

(3.9) \delta y2(t) = [Iq  - D\Gamma ]\delta y1(t) - [C +DK][x2(t) - x1(t)]

for t \in S . It follows from (3.9) together with D\Gamma = Iq and C + DK = 0q\times n that
y2(t) = yd(t) for t\in S .

Next, we prove the sufficiency of (ii).
Using (2.1) and (3.8) yields

(3.10) \delta Yk+1 =\Xi \delta Yk,

where \Xi = Iq(T+1)  - \=H\BbbG .
Since \rho (Iq  - D\Gamma ) < 1 and \Xi is a lower triangle Toeplitz-type block matrix with

Iq  - D\Gamma being its main diagonal block entries, it follows that \rho (\Xi )< 1 which implies
that limk\rightarrow \infty Yk = Yd. Using (3.10) together with the condition \| \Xi \| \vargamma \leq 1 leads to
\| \delta Yk+1\| \vargamma \leq \| \delta Yk\| \vargamma , where \vargamma = 1,2,\infty . This completes the proof of the sufficiency
of (ii).

Now, we move to prove the necessity of (ii). What we need to do is to show that
when \rho (Iq  - D\Gamma ) \geq 1 or \| \Xi \| \vargamma > 1, there exist a desired trajectory Yd and an initial
input u1(t) such that the output sequence Yk does not monotonically converge to Yd
in the sense of \vargamma -norm, where \vargamma = 1,2,\infty .

In the case \rho (Iq - D\Gamma )\geq 1, it follows that \rho (\Xi )\geq 1. Since D is full-row rank, using
(3.10) and \rho (\Xi )\geq 1 together with the same arguments used in the proof of Theorem
3.2 gives that there does exist a desired trajectory Yd and an initial input u1(t) such
that the output sequence Yk does not converge to Yd. Therefore, \rho (Iq - D\Gamma )\geq 1 implies
that there are Yd and u1(\cdot ) such that the output sequence Yk does not monotonically
converge to Yd in the sense of 1/2/\infty -norm.

In the case \rho (Iq - D\Gamma )< 1 and \| \Xi \| \vargamma > 1, there exists a column vector \xi \vargamma \in \BbbR q(T+1)

such that \| \xi \vargamma \| \vargamma = 1 and \| \Xi \xi \vargamma \| \vargamma = \| \Xi \| \vargamma , where \vargamma = 1,2,\infty . Since D is full-row rank,
for a given initial input u1(\cdot ) there exists a desired trajectory Yd such that \delta Y1 = \xi \vargamma .
Therefore, \| \delta Y2\| \vargamma > \| \delta Y1\| \vargamma . The above fact implies that the conditions \rho (Iq - D\Gamma )< 1
and \| \Xi \| \vargamma > 1 cannot ensure the output sequence to be monotonically convergent in
the sense of \vargamma -norm. This completes the proof of the necessity of (ii).

Finally, we prove (iii).
Under the condition that the state is measurable, by the column-by-column learn-

ing scheme, we can obtain the input matrix B through running the repetitive system
(2.1) p+1 times. When Qc is full-row rank, by the learning scheme developed in [14]
we can conclude that A and C are at least (np+ 1)-step learnable. This completes
the proof of (iii).

Remark 3.8. A direct computation yields

\| \Xi \| 1 \leq \| Iq  - D\Gamma \| 1+\| C +DK\| 1

\Biggl( 
T - 1\sum 
i=0

\| A+BK\| i1

\Biggr) 
\| B\Gamma \| 1,
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554 J. LIU, X. RUAN, Y. ZHENG, Y. YI, AND C. WANG

\| \Xi \| \infty \leq \| Iq  - D\Gamma \| \infty +\| C +DK\| \infty 

\Biggl( 
T - 1\sum 
i=0

\| A+BK\| i\infty 

\Biggr) 
\| B\Gamma \| \infty ,

\| \Xi \| 2 \leq 
\sqrt{} 
\| \Xi \| 1\| \Xi \| \infty ,

where \| A + BK\| 01 = 1 and \| A + BK\| 0\infty = 1. Clearly, there are two options for
designing the gain matrix K. One is to utilize the available information of A and B.
However, it cannot ensure the monotone convergence even if A and B are completely
available. Another is to leverage the available information of C and D to design K.
Under the condition that D is full-row rank, this option can ensure the monotone
convergence as long as the available information of D and C is accurate enough.

3.4. Full output feedback update law. When the state is unmeasurable, the
update law (3.8) is unfeasible. Next, we will show that the ILC update law (3.11)
using only the output signals of the previous trial, which is termed as full output
feedback update law, can also guarantee the fully 2-step learning-ability and the fully
monotone learning-ability in the sense of 1/2/\infty -norm, respectively.

(3.11) uk+1(t) = uk(t) +

t\sum 
s=0

\Gamma t - s\delta yk(s),

where \Gamma t \in \BbbR p\times q(0\leq t\leq T ) are the learning gain matrices.

Theorem 3.9. Assume that D is full-row rank. Then, (a) there exist the gain
matrices \Gamma t(0 \leq t \leq T ) such that system (2.1) with update law (3.11) can ensure the
fully 2-step learning-ability; (b) system (2.1) with update law (3.11) can ensure the
fully monotone learning-ability in the sense of \vargamma -norm if and only if \rho (Iq  - D\Gamma ) < 1
and \| Iq(T+1)  - HG \| \vargamma \leq 1, where \vargamma = 1,2,\infty and

G =

\left[       
\Gamma 0

\Gamma 1 \Gamma 0

\Gamma 2 \Gamma 1 \Gamma 0

...
. . .

. . .
. . .

\Gamma T \cdot \cdot \cdot \Gamma 2 \Gamma 1 \Gamma 0

\right]       .

Proof. We first prove (a).
Since D is full-row rank, any given desired trajectory for system (2.1) is realizable.
Next, we illustrate that for any given desired trajectory and initial input, there

exist the gain matrices \Gamma t(0\leq t\leq T ) such that the output at the 2nd trial is the given
desired trajectory. Using (2.1) and (3.11) gives rise to

(3.12) \delta Y2 = [Iq(T+1)  - HG ]\delta Y1.

where H is given by (3.1). Let \psi 0 = D\Gamma 0 and \varphi i =
\sum i - 1

s=0CA
i - 1 - sB\Gamma s + D\Gamma i for

i= 1,2, . . . , T . Then, a direct computation yields

(3.13) HG =

\left[       
\psi 0

\psi 1 \psi 0

\psi 2 \psi 1 \psi 0

...
. . .

. . .
. . .

\psi T \cdot \cdot \cdot \psi 2 \psi 1 \psi 0

\right]       .
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Therefore, what we need to do is to show that there exist the matrices \Gamma t(0\leq t\leq T )
solving D\Gamma 0 = Iq and

(3.14)

i - 1\sum 
s=0

CAi - 1 - sB\Gamma s +D\Gamma i = 0q\times q fori= 1,2, . . . , T.

On account of rank(D) = q, there is \Gamma 0 solvingD\Gamma 0 = Iq. For such a \Gamma 0 there exists
\Gamma 1 solving the matrix equation CB\Gamma 0+D\Gamma 1 = 0q\times q. Suppose that for 1\leq i0 <T there

exist \Gamma 0,\Gamma 1, . . . ,\Gamma i0 solving the matrix equation
\sum i0 - 1

s=0 CA
i0 - 1 - sB\Gamma s +D\Gamma i0 = 0q\times q.

For such a group of gain matrices \Gamma 0,\Gamma 1, . . . ,\Gamma i0 , using the condition D is full-row
rank yields that there exists \Gamma i0+1 solving the matrix equation

\sum i0
s=0CA

i0 - sB\Gamma s +
D\Gamma i0+1 = 0q\times q. It follows from mathematical induction that there exist the gain
matrices \Gamma 0,\Gamma 1, . . . ,\Gamma T solving D\Gamma 0 = Iq and (3.14).

Clearly, the design of the gain matrices \Gamma 0,\Gamma 1, . . . ,\Gamma T requires the information of
the matrix H. Since the first p columns of H contain all of its information, what we
need to do is to design a learning scheme for the first p columns of H.

Let Uk = [(uk(0))
\top , . . . , (uk(T ))

\top ]\top and \Phi =
\bigl[ 
C\top (CA)\top \cdot \cdot \cdot (CAT )\top 

\bigr] \top 
.

Then, we can get

(3.15) Yk =HUk +\Phi x0,

where Yk is defined by (3.3).
Let hi denote the ith column of H, where 1 \leq i \leq p. Arbitrarily choose an

admissible initial system input u1(\cdot ). Supplying system (2.1) with u1(\cdot ) yields Y1.
Let the input ui+1(\cdot ) satisfy uii+1(0) = ui1(0) + \theta , uli+1(0) = ul1(0) for l \not = i and
ui+1(t) = u1(t) for t \not = 0, where \theta is a nonzero constant. Using ui+1(\cdot ) to drive system
(2.1) gives Yi+1. By (3.15) together with a simple computation, we obtain

hi =
Yi+1  - Y1

\theta 
(1\leq i\leq p).

The above fact implies that we can get the first p columns of H through running the
repetitive system (2.1) p+ 1 times. Therefore, the lower triangle Toeplitz-type block
matrix H is (p+ 1)-step learnable. This completes the proof of (a).

Now, we move to prove (b).
In the proof of (a), we have shown that under the condition D is full-row rank,

any given desired trajectory is realizable and the matrix H is (p+ 1)-step learnable.
Therefore, the rest of what we need to do is show that for any given desired trajectory
Yd and initial input u1(\cdot ), the output sequence Yk of system (2.1) with update law
(3.11) monotonically converges to Yd in the sense of \vargamma -norm if and only if \rho (Iq - D\Gamma )<
1 and \| Iq(T+1)  - HG \| \vargamma , where \vargamma = 1,2,\infty .

Using (2.1) and (3.11) yields

(3.16) \delta Yk+1 = [Iq(T+1)  - HG ]\delta Yk.

Then, by (3.16) together with the same arguments as those used in the proof of
Theorem 3.7, we can prove that Yk monotonically converges to Yd in the sense of
\vargamma -norm if and only if \rho (Iq  - D\Gamma 0) < 1 and \| Iq(T+1)  - HG \| \vargamma \leq 1, where \vargamma = 1,2,\infty .
To save space, we omit it. This completes the proof of (b).

Remark 3.10. The column-by-column learning scheme for D or H only requires
the information of system input and output and does not require any additional
information. Therefore, D and H are unconditionally learnable.
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4. Conclusions. This paper first studies the output realizability over the whole
operation time interval. In the case the feedforward matrix is full-row rank, the output
is fully realizable, and the initial state has no influence on the output realizability. In
the case the feedforward is not full-row rank, the dimension of the ROS is no more
than qT +rank(D), and the initial state may have influence on the realizability of the
given desired trajectory. When the feedforward matrix is full-column rank and the
output dimension is greater than the input dimension, for any given desired trajectory
there exists at most a pair of desired input and state. Then, the learning-ability of ILC
system is considered, in which we consider the fully asymptotic learning-ability, the
fully monotone learning-ability, and the fully finite-step learning-ability. We show that
the classic P-type ILC update law can only ensure the fully asymptotic learning-ability,
in which the full-row rank feedforward matrix is (p+ 1)-step learnable. Meanwhile,
we show how to utilize the Cauchy convergence criterion and the direct technique
route of convergence analysis to prove the exponential convergence of system input
and state sequences for the classic P-type update law without resorting to the input
transformation technique. Furthermore, a pointwise P-type update law is given to
show that we can only use the information of the feedforward matrix to design an
update law for ensuring the fully (T + 2)-step learning-ability. It should be pointed
that the above two ILC update laws cannot ensure the monotone learning-ability. If
the state is measurable and controllable, the P-type ILC update law with current state
feedback can ensure the fully 2-step learning-ability and the fully monotone learning-
ability, respectively, in which the required output matrix for designing the state gain
matrix is (np+ 1)-step learnable. If the state is unmeasurable or uncontrollable, an
ILC update law only using the output data at the previous trial can also ensure the
fully 2-step learning-ability and the fully monotone learning-ability, respectively, in
which the required Lower Toeplitz-type block matrix is (p+1)-step learnable. In brief,
more available information of system dynamics may mean better learning-ability.

Appendix. The following is the proof of Theorem 3.2.

Proof. Using (2.1) gives rise to

(4.1)

\Biggl\{ 
yk(0) =Cx0 +Duk(0),

yk(t) =CAtx0 +
\sum t - 1

s=0CA
t - s - 1Buk(s) +Duk(t) fort\in S +,

where A0 refers to the identify matrix In. By (4.1) and (3.1), for all k \in N we have

\delta yk+1(0) = [Iq  - D\Gamma ]\delta yk(0),(4.2)

\delta yk+1(t) = [Iq  - D\Gamma ]\delta yk(t) - 
t - 1\sum 
s=0

CAt - s - 1B\Gamma \delta yk(s) fort\in S +.(4.3)

We first prove the sufficiency.
Under the condition \rho (Iq  - D\Gamma ) < 1, by direct technique route of convergence

analysis we can get the exponential convergence of the output sequence yk(\cdot ), i.e.,
there exist two positive constant numbers \Phi and \rho \in (0,1) such that

(4.4) \| \delta yk(t)\| 1 \leq \Phi \rho k for allt\in S andk \in N .

In addition, it follows from (3.1) and (4.4) that for all k\geq 1, m\geq 1, and t\in S ,

(4.5) \| uk+m(t) - uk(t)\| 1 \leq 
\Phi \| \Gamma \| 1
1 - \rho 

\rho k,
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which together with Cauchy convergence criterion yields that the system input se-
quence uk(t) is convergent when k tends to infinity for all t\in S . Furthermore, taking

(4.6) xk(t) =Atx0 +

t - 1\sum 
s=0

At - s - 1Buk(s) for allt\in S +

into consideration yields that xk(t) converges when k tends to infinity over S . Let

ud(t)\triangleq lim
k\rightarrow \infty 

uk(t)(t\in S ) and xd(t)\triangleq lim
k\rightarrow \infty 

xk(t)(t\in S ).

It is easy to check that ud(\cdot ) and xd(\cdot ) together with the corresponding desired tra-
jectory yd(\cdot ) satisfy (2.2).

Next, we illustrate that uk(t) and xk(t) exponentially converge to ud(t) and xd(t),
respectively. Since (4.5) holds for all m\geq 1, it follows that

(4.7) \| ud(t) - uk(t)\| 1 \leq 
\Phi \| \Gamma \| 1
1 - \rho 

\rho k for allk.

In addition, by (4.6) and (4.7) together with xd(t) =Atx0 +
\sum t - 1

s=0A
t - s - 1Bud(s) for

t\in S +, we get

(4.8) \| \delta xk(t)\| 1 \leq 

\Biggl( 
T - 1\sum 
s=0

\| A\| T - s - 1
1

\Biggr) 
\Phi \| B\| 1\| \Gamma \| 1

1 - \rho 
\rho k for allt\in S +,

where \delta xk(t) = xd(t) - xk(t) and \delta uk(t) = ud(t) - uk(t). Note that xd(0) = xk(0) = x0

for all k. Therefore, we have

(4.9) \| \delta xk(t)\| 1 \leq 

\Biggl( 
T - 1\sum 
s=0

\| A\| T - s - 1
1

\Biggr) 
\Phi \| B\| 1\| \Gamma \| 1

1 - \rho 
\rho k for allt\in S .

By (4.7) and (4.9), we get that xk(\cdot ) and uk(\cdot ) are exponentially convergent to xd(\cdot )
and ud(\cdot ), respectively. This completes the proof of sufficiency.

Next, we move to prove necessity.
What we need to do is to prove that if \rho (Iq  - D\Gamma )\geq 1, then there at least exists

a desired trajectory yd(\cdot ) and an initial input signal u1(0) such that yk(0) does not
converge to yd(0). According to Jordan canonical form theorem, there is a nonsingular
matrix \Psi such that

\Psi (Iq  - D\Gamma )\Psi  - 1 =

\left[     
Jm1

(\lambda 1)
Jm2

(\lambda 2)
. . .

Jm\nu 
(\lambda \nu )

\right]     ,
where Jmi(\lambda i) is an mi-by-mi Jordan block taking the form of\left[     

\lambda i
1 \lambda i

. . .
. . .

1 \lambda i

\right]     ,
where \lambda 1, . . . , \lambda \nu are the eigenvalues of the matrix Iq - D\Gamma and m1+ \cdot \cdot \cdot +m\nu = q. Due
to \rho (Iq  - D\Gamma ) = max1\leq i\leq \nu | \lambda i| and \rho (Iq  - D\Gamma ) \geq 1, there exists i0 \in \{ 1, . . . , \nu \} such
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that | \lambda i0 | \geq 1. Without loss of generality, assume that i0 = 1, which implies | \lambda 1| \geq 1.
Let \varphi 1 be the first row of \Psi . Then, using (4.2) leads to

\varphi 1\delta yk+1(0) = \lambda 1\varphi 1\delta yk(0),

which together with | \lambda 1| \geq 1 implies

(4.10) | \varphi 1\delta yk(0)| \geq | \varphi 1\delta y1(0)| for allk \in N .

Let u1(0) = 0p. Then, y1(0) = Cx0. On account of the nonsingularity of \Psi , \varphi 1 is a
nonzero row vector. Let \varphi i

1 be the ith entry of the row vector \varphi 1. Therefore, there
exists i1 \in \{ 1, . . . , q\} such that \varphi i1

1 \not = 0. Let yi1(0) and yid(0) be the ith entries of
y1(0) and yd(0), respectively. Choose yd(0) satisfying yid(0) = yi1(0) for i \not = i1 and
yi1d (0) = yi11 (0) + 1. Using (4.10) gives rise to

| \varphi 1\delta yk(0)| \geq | \varphi i1
1 | > 0 for allk \in N ,

which implies that yk(0) do not converge to yd(0). This proves the necessity.

REFERENCES

[1] S. Arimoto, S. Kawamura, and F. Miyazaki, Bettering operation of robots by learning, J.
Robotic Syst., 1 (1984), pp. 123--140.

[2] D. A. Bristow, M. Tharayil, and A. G. Alleyne, A survey of iterative learning control ,
IEEE Control Syst. Mag., 26 (2006), pp. 96--114.

[3] X. Bu, F. Yu, Z. Hou, and F. Wang, Iterative learning control for a class of nonlinear systems
with random packet losses, Nonlinear Anal. Real World Appl., 14 (2013), pp. 567--580.

[4] H. Chen, Almost sure convergence of iterative learning control for stochastic systems, Sci.
China, 46 (2003), pp. 67--79.

[5] Y. Chen, C. Wen, Z. Gong, and M. Sun, An iterative learning controller with initial state
learning, IEEE Trans. Automat. Control, 44 (1999), pp. 371--376.

[6] D. Huang, V. Venkataramanan, J. Xu, and T. Huynh, Contact-induced vibration in dual-
stage hard disk drive servo systems and its compensator design, IEEE Trans. Ind. Electron.,
61 (2014), pp. 4052--4060.

[7] H. Ji, Z. Hou, and R. Zhang, Adaptive iterative learning control for high-speed trains with
unknown speed delays and input saturations, IEEE Trans. Automat. Sci. Eng., 13 (2016),
pp. 260--273.

[8] J. E. Kurek and M. B. Zaremba, Iterative learning control synthesis based on 2-d system-
theory, IEEE Trans. Automat. Control, 38 (1993), pp. 121--125.

[9] X. Li, J. Xu, and D. Huang, An iterative learning control approach for linear systems with
randomly varying trial lengths, IEEE Trans. Automat. Control, 59 (2014), pp. 1954--1960.

[10] X. F. Li, J. X. Xu, and D. H., An iterative learning control approach for linear systems with
randomly varying trial lengths, IEEE Trans. Automat. Control, 59 (2014), pp. 1954--1960.

[11] J. Liu, W. Chen, X. Ruan, and Y. Zheng, Data-based iterative learning mechanism for
unknown input-output coupling parameters/matrices, Intern. J. Robust Nonlinear Control,
30 (2020), pp. 1275--1297.

[12] J. Liu and X. Ruan, Convergence properties of two networked iterative learning control
schemes for discrete-time systems with random packet dropout , Internat. J. Systems Sci.,
49 (2018), pp. 2682--2694.

[13] J. Liu and X. Ruan, Synchronous-substitution-type iterative learning control for discrete-time
networked control systems with bernoulli-type stochastic packet dropouts, IMA J. Math.
Control Inform., 35 (2018), pp. 939--962.

[14] J. Liu, X. Ruan, and Y. Zheng, Iterative learning control for discrete-time systems with full
learnability, IEEE Trans. Neural Netw. Learn. Syst., 33 (2022), pp. 629--643.

[15] D. Meng, Y. Jia, J. Du, and S. Yuan, Feedback approach to design fast iterative learn-
ing controller for a class of time-delay systems, IET Control Theory Appl., 3 (2009),
pp. 225--238.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

04
/1

7/
23

 to
 1

13
.2

00
.1

74
.1

8 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



LEARNING-ABILITY OF DISCRETE-TIME ILC SYSTEMS 559

[16] D. Meng and J. Zhang, Convergence analysis of robust iterative learning control against
nonrepetitive uncertainties: System equivalence transformation, IEEE Trans. Neural Netw.
Learn. Syst., 32 (2021), pp. 3867--3879.

[17] C. Mi, H. Lin, and Y. Zhang, Iterative learning control of antilock braking of electric and
hybrid vehicles, IEEE Trans. Vehicular Technol., 54 (2005), pp. 486--494.

[18] X. Ruan, Z. Bien, and Q. Wang, Convergence properties of iterative learning control processes
in the sense of the Lebesgue-p norm, Asian J. Control, 14 (2012), pp. 1095--1107.

[19] D. Shen and Z. Hou, Iterative learning control with unknown control direction: A novel data-
based approach, IEEE Trans. Neural Netw., 22 (2011), pp. 2237--2249.

[20] D. Shen and J. Xu, An iterative learning control algorithm with gain adaptation for stochastic
systems, IEEE Trans. Automat. Control, 65 (2020), pp. 1280--1287.

[21] D. Wang, Convergence and robustness of discrete time nonlinear systems with iterative learn-
ing control , Automatica, 34 (1998), pp. 1445--1448.

[22] J. Wu, Y. Zhu, Y. Zheng, and H. Wang, Resilient bipartite consensus of second-order multi-
agent systems with event-triggered communication, IEEE Syst. J., (2021), https://doi.org/
10.1109/JSYST.2021.3132623.

[23] Y. Zhang, J. Liu, and X. Ruan, Equivalence and convergence of two iterative learning control
schemes with state feedback , Internat. J. Robust Nonlinear Control, 32 (2022), pp. 1561--
1582, https://doi.org/10.1002/rnc.5891.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

04
/1

7/
23

 to
 1

13
.2

00
.1

74
.1

8 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1109/JSYST.2021.3132623
https://doi.org/10.1109/JSYST.2021.3132623
https://doi.org/10.1002/rnc.5891

	Introduction
	Output realizability
	Learning-ability of ILC system
	P-type update law
	Pointwise update law
	P-type update law with current state feedback
	Full output feedback update law

	Conclusions
	Appendix
	References

