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Consensus of Hybrid Behavior for Graphical
Coordination Games

Liqi Zhou, Jiamin Wang, Maojiao Ye, Bao-Lin Zhang, Yuanshi Zheng

Abstract—This brief is concerned with consensus of hybrid
behavior for graphical coordination games. We take into account
a multi-agent system with two agent-unions that have various
preferences. Interactions among agents in the multi-agent system
are modelled as a hybrid graphical coordination game, in which
three kinds of payoff matrices are designed. By using potential
game theory, necessary and sufficient conditions are established
for achieving consensus of the hybrid graphical coordination
game. Finally, several numerical simulations are provided to
validate the effectiveness of our theoretical results.

Index Terms—Graphical coordination game, hybrid behavior,
consensus.

I. Introduction

A lot of attention has been paid to games such as aggregative
games [1], multi-player games [2]–[4], trust games [5], bima-
trix games [6], graphical coordination games [7], etc. Among
them, graphical coordination games are representative game
models with numerous applications in biology, economics, and
social sciences.

Graphical coordination games simulate the so-called strate-
gic complements effects, that is, a choice an agent makes is
more appealing for other agents [8]. They can be used to
model social network characteristics like belief adoption and
spread of new technologies. As a type of game with multiple
pure Nash equilibria, the focus of studying such games is to
solve an equilibrium selection problem. Log-linear learning
algorithm [9], [10] is a distributed decision-making rule with
the ability of optimal equilibrium selection, which corresponds
to consensus of the agents [11]–[14]. Therefore, many authors
have applied log-linear learning algorithm to solve consensus
problem for graphical coordination games.

Based on the graphical coordination game and log-linear
learning algorithm, consensus problem was considered in [15]
for the graphical coordination game with adversaries. Collins
et al. [16] looked at a multi-agent system (MAS) modelled
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as a graphical coordination game with log-linear learning
algorithm. Moreover, they presented a threshold below which
the graphical coordination game can guarantee consensus.
In [17], the stochastically stable states were investigated for
the log-linear learning algorithm, which ensured consensus
of the graphical coordination game. By employing log-linear
learning algorithm, the author [18] investigated consensus of
the graphical coordination game under adversarial attacks.

It is worth mentioning that the previously mentioned works
are concerned with graphical coordination games, in which
all the agents have the same preference. However, two agent-
unions with different preferences may exist in graphical co-
ordination games. Therefore, we consider an MAS with two
agent-unions that have different preferences in this brief.
Note that hybrid generally refers to heterogeneity of nature
or composition, such as different types of agents [19]. The
interactions among agents are modelled as a hybrid graphical
coordination game, in which three kinds of payoff matrices
are designed. The log-linear learning algorithm is employed
as the decision-making rule of agents. Difficulties arise from
how to model and analyze the hybrid graphical coordination
game between two agent-unions with diverse preferences. The
main contributions of this brief are threefold. First, a novel
class of hybrid graphical coordination game is developed to
model the MAS composed of two agent-unions with different
preferences. Second, necessary and sufficient conditions are
established for consensus of the hybrid graphical coordination
game developed in this brief. Third, we investigate how
consensus is impacted by the number of agents in agent-
unions.

The remainder of this brief is structured as follows. Some
preliminaries are listed in Section II. Our problem is formu-
lated in Section III. Main results are presented in IV. Several
numerical examples are provided in Section V to illustrate
the validity of our theoretical results. Conclusion is given in
Section VI.
Notations: Throughout this brief, R denotes the set of real
numbers. Null set is represented by ∅. For given sets A and B,
A∪B, A∩B and A×B indicate the set union, set intersection and
cartesian product, respectively. A ⊆ B (A ⊂ B) refers to that
set A is the (proper) subset of set B. |A| denotes the number
of elements in set A. P(A) is the set of all subsets of A.

II. Preliminaries

A. Graph theory

An undirected graph G = (V,E) consists of a vertex set
V = {1, 2, · · · , n} and an edge set E ⊆ V×V, where (i, j) ∈ E
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if and only if ( j, i) ∈ E. Moreover, we assume that (i, i) < E
for all i ∈ V. The neighbor set of vertex i is denoted as
Ni = { j ∈ V | ( j, i) ∈ E}. A finite-ordered sequence of distinct
edges (i, k1), (k1, k2), · · · , (kl, j) is called a path between two
distinct vertices i and j. If there is a path between every two
vertices, such an undirected graph G = (V,E) is connected.

B. Graphical coordination games
First, we introduce a two-agent coordination game [20].

Agent i in a two-agent coordination game selects a choice
ai in an action set Ωi = {x, y}, where i = 1, 2. When agents
adopt a joint action (a1, a2), their payoffs u(a1, a2) depicted by
the following payoff matrix with payoff gain α > 0.

Agent 1
x y

Agent 2 x 1 + α, 1 + α 0, 0
y 0, 0 1, 1

A graphical coordination game is played by a set of agents
V = {1, 2, · · · , n} over a connected undirected graph G = (V,E),
in which each agent i plays the two-agent coordination game
with agent j if (i, j) ∈ E. The utility function of agent i is
Ui(ai, a−i) =

∑
j∈Ni

u(ai, a j) for a joint action a = (ai, a−i) ∈ Ω =

Ω1 × Ω2 × · · ·Ωn, where a−i = (a1, · · · , ai−1, ai+1, · · · , an) and
Ωi = {x, y} for all i ∈ V .

A Nash equilibrium is a joint action in which no agent
can increase their utilities unilaterally [21]. Apparently, joint
actions ~x = (x, x, · · · , x) and ~y = (y, y, · · · , y) are both Nash
equilibria of the graphical coordination game. We refer to x as
the preference of agents in V since payoff gain α > 0. Then,
which equilibrium will be evolved to depends on decision-
making rules of agents.

C. Log-linear learning
A distributed stochastic algorithm known as log-linear learn-

ing is employed for making decisions at discrete-time instants
t = 0, 1, 2, · · · in this brief. For arbitrarily determined initial
joint action a(0) ∈ Ω, under log-linear learning, a joint action
at discrete-time t + 1 is chosen in the following way [10]:
• One agent i is selected from V with uniform probability.
• The selected agent i updates its action to z ∈ Ωi proba-

bilistically according to

Pr[ai(t + 1) = z|a(t)] =
exp(β·Ui(z, a−i(t)))

exp(β·Ui(x, a−i(t))) + exp(β·Ui(y, a−i(t)))
,

where β > 0 is a given rationality parameter.
• All other agents maintain their previous actions, i.e. a−i(t+

1) = a−i(t).
Then, one has a joint action a(t + 1) = (ai(t + 1), a−i(t)) at time
t + 1. As shown in [7], for any β > 0, the log-linear learning
process induces an ergodic Markov chain over joint action
space Ω, with a unique stationary distribution πβ. As β→ ∞,
the limiting distribution π = lim

β→∞
πβ exists and is unique.

Definition 1: [15] Under log-linear learning algorithm, a
joint action w ∈ Ω is said to be strictly stochastically stable,
if for any ε > 0, there exist B < ∞ and τ < ∞ such that

Pr[a(t) = w] > 1 − ε

for all β > B, t > τ, where a(t) is the joint action at time t.

D. Potential games

Definition 2: [22] For a game with joint action set Ω, if
there exists a potential function Φ : Ω→ R, such that

Ui(ai, a−i) − Ui(a′i , a−i) = Φ(ai, a−i) − Φ(a′i , a−i) (1)

holds for all i ∈ V, ai, a′i ∈ Ωi and ai , a′i , then such a game
is a potential game.

III. Problem Statement

Consider an MAS with n agents on a connected undirected
graph G = (V,E), in which the interactions among agents
are modelled as a hybrid graphical coordination game G. In
this brief, we investigate consensus of such hybrid graphical
coordination game G which is defined as follows:
• Players : There are two agent-unions A = {1, · · · , nA} and

B = {nA+1, · · · , nA+nB}, where nA, nB > 0 and nA+nB = n.
The set of all players is denoted as V = A ∪ B.

• Strategy : Each agent i in V has initial action ai(0) and
the same action set Ωi = {x, y}. They choose their actions
according to log-linear learning algorithm at time t. Then,
one has joint action a(t) = (ai(t), a−i(t − 1)) ∈ Ω = {x, y}n,
where i is the agent selected to update at time t.

• Payoff : Since there are two types of agents in the system,
there may be three kinds of payoff matrices:

– If both agents i and j ∈ Ni are in set A, their
payoffs uAA(ai, a j) are depicted by the following
payoff matrix with payoff gain α1 > 0.

Agent j
x y

Agent i x 1 + α1, 1 + α1 0, 0
y 0, 0 1, 1

– If both agents i and j ∈ Ni are in set B, their
payoffs uBB(ai, a j) are depicted by the following
payoff matrix with payoff gain α2 > 0.

Agent j
x y

Agent i x 1, 1 0, 0
y 0, 0 1 + α2, 1 + α2

– If agents i is in set A and j ∈ Ni is in set B (or i is in
set B and j ∈ Ni is in set A), their payoffs uAB(ai, a j)
are depicted by the following payoff matrix with
payoff gains α1, α2 > 0.

Agent j
x y

Agent i x 1 + α1/2, 1 + α1/2 0, 0
y 0, 0 1 + α2/2, 1 + α2/2

The total utility of agent i in V is equal to the sum of
the payoffs obtained by playing two-agent coordination
games with its neighbors. Therefore, given a joint action
a = (ai, a−i),the total utility of agent i is

Ui(a) =


∑

j∈Ni∩A
uAA(ai, a j) +

∑
j∈Ni∩B

uAB(ai, a j), i ∈ A∑
j∈Ni∩B

uBB(ai, a j) +
∑

j∈Ni∩A
uAB(ai, a j), i ∈ B .

Remark 1: Because of mutual influence, when agents i in
set A and j ∈ Ni in set B both select action x, their payoffs
will both be half of the sum of payoffs 1+α1 and 1. Therefore,
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the payoffs are designed as 1 + α1/2 when agents i ∈ A and
j ∈ Ni in set B both select action x. Similarly, the payoffs are
designed as 1 + α2/2 when agents i ∈ A and j ∈ Ni in set B
both select action y.

Remark 2: The problem addressed in this brief extends the
game of battle of sex from two to n agents, which is practical.
For example, a group of men and women with different
preferences would prefer to participate in the same activity
together rather than separately participate in their preferred
activities. However, given that everyone is involved in the
same activity, both groups would prefer to participate in their
preferred activities.

IV. Main Results

Consider a connected undirected graph G = (V,E), in which
interactions among agents in V are modelled as game G
defined in Section III. In this section, we explore criteria for
achieving consensus of game G. The following is the definition
of consensus of game G.

Definition 3: Under log-linear learning algorithm, if strictly
stochastically stable state of hybrid graphical coordination
game G is either ~x or ~y (i.e, all the agents adopt action x
or action y) for any initial joint action a(0), then game G is
said to achieve consensus.

Prior to stating the main results, we propose following
useful lemmas.

Lemma 1: Hybrid graphical coordination game G is a po-
tential game, and its potential function is Φ(a) = 1

2
∑

i∈V
Ui(a).

Proof. Since uAA(ai, a j) = uAA(a j, ai), uAB(ai, a j) = uAB(a j, ai)
and uBB(ai, a j) = uBB(a j, ai), the fact Φ(ai, a−i) − Φ(a′i , a−i) =
1
2 {[Ui(ai, a−i) − Ui(a′i , a−i)] + [Ui(a−i, ai) − Ui(a−i, a′i)]} =

Ui(ai, a−i) − Ui(a′i , a−i) holds for all i ∈ V, ai, a′i ∈ Ωi and
ai , a′i . Then, the proof is completed. �

Lemma 2: [15] Under the log-linear learning algorithm,a
joint action a ∈ Ω is strictly stochastically stable if and only if
it maximize the potential function Φ, i.e., Φ(a) > Φ(a′) holds
for all a, a′ ∈ Ω and a , a′.

Let d(S ,T ) = |{(i, j) ∈ E : i ∈ S , j ∈ T }| for any S ⊆ V and
T ⊆ V. For convenience, we define the following functions
and sets: V1 = d(A, A)−d(T∩A,T∩A)+ 1

2 [d(A, B)−d(T∩A,T∩
B)], V2 = d((V\T )∩B, (V\T )∩B)+ 1

2 d((V\T )∩A, (V\T )∩B),
V3 = d(B, B)−d((V\T )∩B, (V\T )∩B)+ 1

2 [d(A, B)−d((V\T )∩
A, (V\T ) ∩ B)], V4 = d(T ∩ A,T ∩ A) + 1

2 d(T ∩ A,T ∩ B),
T1 = {T ∈ P(V) : V2 > 0,T , V}, T2 = {T ∈ P(V) : V4 >
0,T , ∅}.

The following theorem establishes the necessary and suffi-
cient conditions for consensus of game G.

Theorem 1: For hybrid graphical coordination game G
played over a connected undirected graph G = (V,E):

1) Joint action ~x is strictly stochastically stable if and only
if (α1, α2) ∈ D~x, where D~x =

⋂
T∈T1

{(α1, α2) | 0 < α2 <

V1
V2
α1 +

d(T,V\T )
V2

, α1 > 0}.
2) Joint action ~y is strictly stochastically stable if and only

if (α1, α2) ∈ D~y, where D~y =
⋂

T∈T2

{(α1, α2) | 0 < α1 <

V3
V4
α2 +

d(T,V\T )
V4

, α2 > 0}.

Proof. 1) (Necessity) Denote a joint action a = (~xT , ~yV\T ) , ~x
for ∀T ⊂ V, in which T = {i : ai = x} and V\T = {i : ai = y}.
Since joint action ~x is strictly stochastically stable, it follows
from Lemma 2 that Φ(~x) > Φ(~xT , ~yV\T ) for ∀T ⊂ V.

In virtue of Lemma 1, one has

Φ(~x) − Φ(~xT , ~yV\T ) = d(T,V\T ) + α1V1 − α2V2 > 0, (2)

where V1 = d(A, A)−d(T∩A,T∩A)+ 1
2 [d(A, B)−d(T∩A,T∩B)]

and V2 = d((V\T )∩B, (V\T )∩B)+ 1
2 d((V\T )∩A, (V\T )∩B).

Clearly, V1,V2 ≥ 0. Based on these preliminary observations,
we enumerate the following cases:

Case 1: V1 = 0 and V2 = 0.
Under this circumstance, A ⊂ T , which implies that T , ∅.

Then, it is easy to verify that Φ(~x)−Φ(~xT , ~yV\T ) = d(T,V\T ) >
0 is always true as long as α1, α2 > 0.

Case 2: V1 = 0 and V2 > 0.
Similar to Case 1, one has T , ∅ in this case, which leads

to d(T,V\T ) > 0. Then, (2) becomes Φ(~x) − Φ(~xT , ~yV\T ) =

d(T,V\T ) − α2V2 > 0. Hence, α1 > 0 and 0 < α2 <
d(T,V\T )

V2
.

Case 3: V1 > 0 and V2 = 0.
For this configuration, (2) can be rewritten as Φ(~x) −

Φ(~xT , ~yV\T ) = d(T,V\T ) + α1V1 > 0, which always holds
as long as α1, α2 > 0 since d(T,V\T ) ≥ 0 and V1 > 0.

Case 4: V1 > 0 and V2 > 0.
In this situation, it can be deduced from (2) that 0 < α1 and

0 < α2 <
V1
V2
α1 +

d(T,V\T )
V2

, where d(T,V\T ) ≥ 0.
As a consequence, combining Cases 1-4 gives rise to that

joint action ~x is strictly stochastically stable only if (α1, α2) ∈
D~x, where D~x =

⋂
T∈T1

{(α1, α2) | 0 < α2 <
V1
V2
α1 +

d(T,V\T )
V2

, α1 >

0}. This completes the proof of necessity.
(Sufficiency) When V2 = 0 and V1 ≥ 0, Φ(~x) > Φ(~xT , ~yV\T )

holds for ∀α1, α2 > 0 according to the analysis of Cases 1 and
3. When V2 > 0 and V1 ≥ 0, a simple manipulation yields that
d(T,V\T )+α1V1−α2V2 > 0. Therefore, Φ(~x)−Φ(~xT , ~yV\T ) >
0. By Lemma 2, we can conclude that joint action ~x is strictly
stochastically stable when (α1, α2) ∈ D~x. Then, the proof of
sufficiency is completed.

2) The proof of conclusion 2) is similar to that of 1). For
saving space, we omit it. �

Remark 3: According to Definition 3, Theorem 1 provides
criteria for achieving consensus of game G. Moreover, neces-
sary and sufficient conditions are presented for agents in game
G to converge to the specified consensus actions.

Remark 4: The strictly stochastic stable state of game G
will never be ~x or ~y if G = (V,E) is not connected. Therefore,
every theorem and lemmas in this brief require the topology
of the MAS to be connected.

Remark 5: As shown in the proof of 1) in Theorem 1, Cases
1 and 3 imply that agents in game G can all converge to
action x for any set A and payoff gains α1, α2 > 0 under
specific topologies. Otherwise, if joint action ~x is required to
be strictly stochastically stable, it is necessary to constrain the
payoff gain α2 according to Cases 2 and 4 of Theorem 1. In
other words, it is possible to achieve consensus for game G
either by limiting payoff gains or modifying network topology.

Theorem 1 indicates that whether the strictly stochastic
stable state is required to be ~x or ~y, payoff gains α1, α2
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are mutually conditioned. Then, scenario α1 = α2 = α
is considered in the following lemma. Moreover, we define
sets T3 = {T ∈ P(V) : V2 − V1 > 0,T , V} and
T4 = {T ∈ P(V) : V4 − V3 > 0,T , ∅}.

Lemma 3: For hybrid graphical coordination game G with
α1 = α2 = α > 0 played over a connected undirected graph
G = (V,E):

1) Joint action ~x is strictly stochastically stable if and only
if d(B, B) < d(A, A) and α ∈

⋂
T∈T3

{0 < α < d(T,V\T )
V2−V1

}.

2) Joint action ~y is strictly stochastically stable if and only
if d(A, A) < d(B, B) and α ∈

⋂
T∈T4

{0 < α < d(T,V\T )
V4−V3

}.

Proof. 1) (Necessity) Similar to the proof of Theorem 1, it can
be concluded that

Φ(~x) − Φ(~xT , ~yV\T ) = d(T,V\T ) + α(V1 − V2) > 0 (3)

for any joint action a = (~xT , ~yV\T ) , ~x, in which T ⊂ V and
T = {i : ai = x} and V\T = {i : ai = y}.

When d(T,V\T ) = 0, one has (~xT , ~yV\T ) = ~y since
(~xT , ~yV\T ) , ~x. It follows from (3) that Φ(~x) − Φ(~xT , ~yV\T ) =

α(V1 − V2) = α(d(A, A) − d(B, B)) > 0. Therefore, one has
d(B, B) < d(A, A).

When d(T,V\T ) > 0, we contemplate the following two
cases:

Case 1: V1 ≥ V2.
For this configuration, Φ(~x) − Φ(~xT , ~yV\T ) = d(T,V\T ) +

α(V1 − V2) > 0 always holds. Then, one has α > 0.
Case 2: V1 < V2.
In this case, Φ(~x)−Φ(~xT , ~yV\T ) = d(T,V\T )+α(V1−V2) > 0

provides 0 < α < d(T,V\T )
V2−V1

.
The above analysis yields that joint action ~x is strictly

stochastically stable only if d(B, B) < d(A, A) and α ∈
⋂

T∈T3

{0 <

α < d(T,V\T )
V2−V1

}. This completes the proof of necessity.
(Sufficiency) When V2 − V1 ≤ 0 and d(B, B) < d(A, A),

Φ(~x) > Φ(~xT , ~yV\T ) holds for ∀α > 0. When V2 − V1 > 0
and d(B, B) < d(A, A), a simple manipulation yields that
d(T,V\T )+α(V1−V2) > 0. Therefore, Φ(~x)−Φ(~xT , ~yV\T ) > 0.

In the light of Lemma 2, we can conclude that joint action
~x is strictly stochastically stable as long as d(B, B) < d(A, A)
and α ∈

⋂
T∈T3

{0 < α < d(T,V\T )
V2−V1

}. Then, the proof of sufficiency

is completed.
2) The derivation is analogous to the evidence in 1), which

is omitted here. �
Remark 6: By comparison, the result of lemma 3 is the

intersection of region D~x (or D~y) in Theorem 1 and line α1 =

α2, which is in accordance with our intuition. However, unlike
Theorem 1, Lemma 3 limits the relationship between d(A, A)
and d(B, B). This is due to that when α1 and α2 are equal, the
potential function evaluated at ~x cannot be strictly larger or
smaller than the potential function evaluated at ~y by limiting
payoff gains, requiring topology to be further constrained.

Remark 7: Apparently, V2 − V1 = V4 − V3 and T3 = T4
hold, which mean that

⋂
T∈T3

{0 < α < d(T,V\T )
V2−V1

} =
⋂

T∈T4

{0 <

α < d(T,V\T )
V4−V3

}. In other words, whether ~x or ~y is required to
be strictly stochastically stable, the range of α is the same.
The reason for the different notation here is to ensure that the

logic is complete from a mathematical symbolic standpoint.
As illustrated by Lemma 3, when α1 = α2 = α > 0, preferred
action for more closely connected union is more likely to be
strictly stochastic stable for the entire system.

Theorem 1 and Lemma 3 investigate the effect of payoff

gains on consensus of game G. In the following, we consider
impact of number of agents in different agent-unions (i.e., nA

and nB) on consensus of game G, when payoff gains α1 and
α2 are fixed.

Lemma 4: For hybrid graphical coordination game G with
fixed α1, α2 > 0 played over a ring graph G = (V,E):

1) Joint action ~x is strictly stochastically stable if and only
if nA > max

T∈P(V)\V
{V4 + α2

α1
V2 −

d(T,V\T )
α1
}.

2) Joint action ~y is strictly stochastically stable if and only
if nB > max

T∈P(V)\∅
{V2 + α1

α2
V4 −

d(T,V\T )
α2
}.

Proof. 1) (Necessity) Denote a joint action a = (~xT , ~yV\T ) , ~x
for ∀T ⊂ V, in which T = {i : ai = x}.

On a ring graph, A can be decomposed into p (1 ≤ p ≤ nA)
components Ai, i = 1, ..., p, each of which is directly connected
internally (or a separate part), and any two components are not
directly connected. Then, one has A = A1 ∪ A2 · · · ∪ Ap, 1 ≤
p ≤ nA,

∑p
i=1 |Ai| = nA and Ai∩A j = ∅ for ∀i , j. Likewise, we

decompose B into p components and get B = B1∪B2 · · ·∪Bp,
1 ≤ p ≤ nB,

∑p
i=1 |Bi| = nB and Bi ∩ B j = ∅ for ∀i , j.

A simple manipulation yields that d(A, A) = nA − p,
d(B, B) = nB − p and d(A, B) = 2p. Then, one has V1 =

nA − V4. According to Lemma 2, when joint action ~x is
strictly stochastically stable, Φ(~x)−Φ(~xT , ~yV\T ) = d(T,V\T )+

α1(nA − V4) − α2V2 > 0 holds for ∀T ⊂ V. Therefore,
nA > V4 + α2

α1
V2 −

d(T,V\T )
α1

holds for ∀T ⊂ V.
This completes the proof of necessity.
(Sufficiency) nA > max

T∈P(V)\V
{V4 + α2

α1
V2−

d(T,V\T )
α1
} implies that

Φ(~x) > Φ(~xT , ~yV\T ) holds for ∀T ⊂ V. By Lemma 2, one has
that joint action ~x is strictly stochastically stable. Then, the
proof of sufficiency is completed.

2) The derivation is similar to the proof in 1), which is
omitted here. �

Remark 8: Lemma 4 indicates that the number of agents in
different agent-unions has an impact on consensus of game G.
Consider a scenario that payoff gains α1 and α2 are fixed. If
the strictly stochastically stable of the MAS is required to be
the preferred action of an agent-union, the number of agents
in this union should be sufficiently large.

V. Simulations

In the following, numerical simulations for our theoretical
results are presented.

1 2 3

456

Fig. 1. A graph consists of two agent-unions which are denoted by A =
{1, 2, 3} (in round) and B = {4, 5, 6} (in square), respectively.
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We consider an MAS composed of 6 agents. The graph
G is depicted in Fig. 1, where nodes 1, 2 and 3 belong to
union A (in circle), and nodes 4, 5 and 6 belong to union
B (in square). Model interactions among agents 1, 2, · · · , 6 as
hybrid graphical coordination game G. Then, we set a(0) =

(x, x, y, y, x, x), and intend to verify strictly stochastic stable
state of game G for different payoff gains α1, α2 > 0.

D~x and D~y mentioned in Theorem 1 are depicted in Fig.
2. The purple region corresponds to set D~x, and the yellow
region corresponds to set D~y.

0 1 2 3 4 5 6 7 8 9 10

1

0

1

2

3

4

5

6

7

8

9

10

2

Fig. 2. Diagrams of sets D~x and D~y.

For different gains (α1, α2) = (0.5, 9), (2, 6), (6, 3) and
(9, 0.5), trends of the proportion of action y in stationary
distribution of game G as increasing of rationality β are
respectively shown in the Fig. 3.
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Fig. 3. The proportion of action y in stationary distribution.

(α1, α2) = (0.5, 9) and (2, 6) are both in the yellow region of
Fig. 2, which imply that (0.5, 9) and (2, 6) are in set D~y. Then,
Fig. 3 shows that the proportion of action y converges to 1 in
the stationary distribution of game G under these two pairs of
payoff parameters, which is consistent with 1) of Theorem 1.
(α1, α2) = (6, 3) and (9, 0.5) are in the purple region of Fig.
2, which indicate that (6, 3) and (9, 0.5) are in set D~x. Fig.
3 depicts that in the stationary distribution of game G under
these two pairs of payoff parameters, the proportion of action
y converges to 0, which is in conformity to 2) of Theorem 1.

VI. Conclusion
In this brief, we considered consensus of hybrid graphical

coordination game G, in which agents are divided into two
unions according to various payoff matrices. The log-linear
learning algorithm was employed as the decision-making rule.
By using potential game theory, we established necessary and
sufficient conditions for achieving consensus of the hybrid
graphical coordination game. Furthermore, we investigated
how the number of agents in these two unions affects the
consensus. Future work will concentrate on resilient consensus
of hybrid graphical coordination games with malicious agents.
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