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Abstract—This paper proposes a new aggregative game (AG)
model with feedback delays. The strategies of players are selected
from given strategy sets and subject to global nonlinear inequality
constraints. Both cost functions and constrained functions of
players are time-varying, which reflects the changing nature of
environments. At each time, each player only has access to its
strategy set information, and the information of its current cost
function and current constrained function is unknown. Due to
feedback delays, the feedback information of corresponding cost
functions and constrained functions is not revealed to players
immediately after the selection of strategies. It would take a
period of time for players to observe their feedback information.
To address such an AG problem, a distributed learning algorithm
is proposed with the local information from their neighbors and
the delayed feedback information from environments, and it is
applicable to time-varying weighted digraphs. We find that the
two metrics of the algorithm grow sub-linearly with respect to
the learning time. A simulation example is given to illustrate the
performance of the proposed algorithm.

Index Terms—Aggregative games, dynamic environments,
feedback delays, generalized Nash equilibrium.

I. INTRODUCTION

Game theory has been receiving increasing attention in the
control community [1]–[4], mostly inspired by its various
applications in multi-agent systems, such as smart grids and
electric vehicles [5]–[8]. Generalized Nash equilibrium (GNE)
seeking problems is one of the main problems in game theory
[9]–[11]. With the development of the Cournot model, some
literature focuses on AG problems where the cost functions
of players depend on their strategies and the aggregation of
the strategies of all players [12]–[17]. For example, to defend
attacks, targets are surrounded by several robots whose cost
functions depend on their own positions and the center of the
positions of all robots. In games on networks, players only
obtain the information from their neighbors [12], [13], [18],
[19].

This work was supported by the National Natural Science Foundation
of China (NSFC, Grant Nos. 62273145, 61903140, 62103169, 62250056).
Corresponding author: Feng Xiao.

Pin Liu and Feng Xiao are with the State Key Laboratory of Alternate
Electrical Power System with Renewable Energy Sources and the School
of Control and Computer Engineering, Beijing 102206, China (e-mails:
pin liu@yeah.net; fengxiao@ncepu.edu.cn).

Kaihong Lu is with the College of Electrical Engineering and Automation,
Shandong University of Science and Technology, Qingdao 266590, China (e-
mail: khong lu@163.com).

Bo Wei is with the School of Control and Computer Engineering,
North China Electric Power University, Beijing 102206, China (e-mail:
bowei@ncepu.edu.cn).

Yuanshi Zheng is with Shaanxi Key Laboratory of Space Solar Power
Station System, School of Mechano-electronic Engineering, Xidian University,
Xi’an 710071, China (e-mail:zhengyuanshi2005@163.com).

The main feature of the aforementioned work is that the cost
functions of all players are time-invariant. However, environ-
ments are changing and uncertain. In such dynamic environ-
ments, cost functions are time-varying and are only available
to players after the selection of strategies. The algorithms for
seeking GNE of such games are called online or learning
algorithms [20]. In [21], online algorithms were proposed to
seek the GNE of noncooperative games in the presence of local
strategy set constraints and time-invariant coupled constraints.
Due to dynamic environments, coupled constraints are also
time-varying and revealed to players after the selection of
strategies. For example, in smart grids, the total energy supply
is hard to be predicted due to the uncertainty of renewable
energy such as solar and wind power [22]. In this work,
we assume that players select their strategies from prescribed
compact sets. The compactness of prescribed strategy sets is
not a strong assumption for game problems [19], [21]. Lots of
strategy constraints in practical applications, e.g., constrained
rendezvous of unmanned aerial vehicles within a prescribed
safety area and limited power generation of generators, can
be formulated as compact strategy set constraints.

In the literature, see [21] and [23], online algorithms for
noncooperative games in dynamic environments were pro-
posed in the scenarios where the information of cost functions
and constrained functions is revealed to players immediately
after the selection of strategies. However, due to the computing
overhead or inherent lag of observing the information, there
exist feedback delays from the choice of a strategy to the
observation of the corresponding feedback information from
environments [24]. For example, in advertisement placement
problems, there exist lags between the placement of an ad-
vertisement and its conversion. In game problems, feedback
delays would affect the sub-linearity of metrics which are
utilized to illustrate the performance of algorithms. The main
difficulty in analyzing feedback delays is to quantify the
impact of feedback delays.

In this paper, AG problems in dynamic environments are
investigated. Different from [21] and [23] where noncoopera-
tive game problems in dynamic environments were addressed,
we focus on AG problems. In addition, our studied model has
some new features, such as feedback delays and time-varying
digraphs. The main contributions are summarized as follows.
1) This work investigates AG problems in dynamic environ-

ments where both cost functions and constrained functions
are time-varying. We propose a new learning algorithm in
a distributed setting and apply it to a time-varying digraph.

2) Since, for each player, it takes a period of time from
the selection of its strategies to the observation of the
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corresponding feedback information from environments,
feedback delays are investigated. The effects of feedback
delays on the sub-linearity of metrics are quantified. In
addition, the upper bounds of feedback delays are analyzed
to guarantee the sub-linearity of metrics.

3) Time-varying learning rates effectively guarantee the pro-
posed algorithms with non-zero learning rates. Existing
works on feedback delay problems only focus on fixed
learning rates with the learning time as the denominator
[25]. When the learning time approaches to infinite, fixed
learning rates would approach to zero.

The rest of this paper is organized as follows. In Section
II, AG problems are formulated. In Section III, a distributed
learning algorithm is proposed. Then, a simulation example is
given in Section IV. Section V concludes this paper.

Notations. R(R+) denotes the set of (positive) real numbers.
col(x1, · · · , xN ) denotes [xT

1 , · · · , xT
N ]T , where x1, · · · , xN

are vectors. O(x) is a function that is linear with respect to x.
[z]+ denotes the projection of z ∈ R onto R+. PΩ(x) denotes
the projection of a vector x ∈ Rn onto set Ω ⊂ Rn.

II. PROBLEM FORMULATION

We first introduce some basic concepts of graph theory
[26]. Consider a time-varying digraph Gt = (V, Et,At) with
N nodes. In consensus problems or distributed optimization
problems, nodes represent agents [27]–[29]. In game problems,
nodes represent players [12], [30]. V = {1, ..., N} denotes the
node set. Et denotes the edge set. If (j, i) ∈ Et, then node
j is an in-neighbor of node i at t, which means that node
i can receive the information from node j. atij denotes the
weight that node i allocates to the edge (j, i) ∈ Et at t. Matrix
At = (atij)N×N denotes the adjacency matrix with atij > 0 if
(j, i) ∈ Et, and atij = 0, otherwise. If there exists a directed
path between any pair of nodes, then the digraph is strongly
connected.

A. AG with and without feedback delays

Consider the AG problem consisting of N players in the
time-varying digraph Gt. Each node in digraph Gt represents
a player. For i ∈ V , denote the strategy of player i by
xi ∈ Ωi, where Ωi ⊂ Rni is the strategy set of player
i, ni denotes the strategy dimension of player i. x−i =
col(x1, · · · , xi−1, xi+1, · · · , xN ). x = (xi, x−i) ∈ Ω ⊂ Rn,
where Ω =

∏
i∈V Ωi is the strategy set of all players and

n =
∑N

i=1 ni. In dynamic environments, at each time t, the
private cost function Ji,t(xi, x−i) : Rni × Rn−ni → R and
the private constrained function gi,t(xi) : Rni → R of player
i is unknown in advance and is only gradually revealed after
that player i selects its strategy xi,t from Ωi at t. Denote such
an AG problem as GN (Gt, Ji,t, gi,t).

In GN (Gt, Ji,t, gi,t), the cost function of player i depends
on its strategy xi and the aggregation of the strategies of all
players. For i ∈ V , the specific cost function is given by
Ji,t(xi, x−i) = hi,t(xi, s(x)), where the aggregation of the
strategies of all players is given by s(x) = 1

N

∑N
j=1 φj(xj)

and φi(xi) : Rni → Rm is the continuous nonlinear mapping
of player i. The time-varying global inequality constraint

is specified by gt(x) =
∑N

j=1 gj,t(xj) ≤ 0. In game
GN (Gt, Ji,t, gi,t), player i aims to minimize its own cost
function at each time, i.e.,

min
xi

Ji,t(xi, x−i),

s.t. xi ∈ Ωi,

N∑
j=1

gj,t(xj) ≤ 0.
(1)

Consider a practical example of the resource sharing in
a network with N prosumers (players) [31]. Denote xi as
the volume of trade of prosumer i, where i ∈ {1, · · · , N}.
If xi > 0, player i is a producer and injects resources
into the network. If xi < 0, player i is a consumer and
buys resources from the network. Each player aims to solve
the problem (1). The cost function of player i is given by
Ji,t(xi, x−i) = pi,t(xi)− qt(

∑N
i=1 xi)xi, where pi,t(·) is the

generation cost function of producer i or the disutility of
consumer i. qt(·) is the market price function. Due to dynamic
environments, e.g., market policy adjustment, the price or the
generation cost are time-varying, which implies that Ji,t is
time-varying. For player i, the volume of trade is chosen
from a prescribed set Ωi = [xi, x̄i]. The injection into the
network or the buy from the network results in the fluctuation
of the network. To guarantee the stability of network, network
constraint

∑N
i=1 gi,t(xi) = Bx − bt ≤ 0 is needed, where

bt ∈ R, x = col(x1, · · · , xN ) and B is a matrix. The controller
of each prosumer adjusts it volume of trade to balance the
network. As long as the injection or buy can be balanced in a
long run, we say that the algorithm performs well.

Denote xi,t as the strategy of player i at time t. In
GN (Gt, Ji,t, gi,t) without feedback delays, player i observes
the feedback information of Ji,t and gi,t immediately after the
selection of xi,t. Then, the observed information is utilized
to obtain the next strategy xi,t+1. However, in practical
applications, the observation of the feedback information of
Ji,t and gi,t from environments may be delayed. In this paper,
the AG problem with feedback delays is investigated. Consider
the feedback delay τ satisfying τ < T , where T is the learning
time. At the time t, player i updates its strategy xi,t. After
player i selects its strategy xi,t+τ at t+ τ , the information of
Ji,t and gi,t is first observed and utilized to update strategies
after t+ τ .

B. Assumptions for the AG model

For digraph Gt, the following assumption is given.
Assumption 1 ( [32, Assumption 1]): The time-varying

weighted digraph Gt = (V, Et,At) satisfies that
1) If (j, i) ∈ Et, then the weight atij > a, where a ∈ (0, 1);
2) At is doubly stochastic, i.e.,

∑N
i=1 a

t
ij = 1 for all j ∈ V

and
∑N

j=1 a
t
ij = 1 for all i ∈ V;

3) There exists a constant Q > 0 such that the digraph
(V,

⋃
l=0,··· ,Q−1 Et+l) is strongly connected for all t ≥ 1.

Denote χ = Ω ∩ χg , where χg = {x ∈ Rn|gt(x) < 0}. For
i ∈ V , the mapping Hi,t is defined by

Hi,t(xi, zi) =

(
∇xi

hi,t(·, s) +
1

N
∇shi,t(xi, ·)∇φi

)
|s=zi ,
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where ∇φi is the gradient of φi. Denote gradient vector Ft(x)
as Ft(x) = col(H1,t(x1, s(x)), · · · , HN,t(xN , s(x))). For any
i ∈ V and t > 0, some assumptions on strategy sets, cost
functions and constrained functions are given as follows [12],
[19], [21].

Assumption 2:
1) Ωi is non-empty, convex and compact. χ is non-empty;
2) Ji,t(xi, x−i) is continuously differentiable with respect to

x, Lipschtiz with respect to xi and convex with respect to
xi for every x−i;

3) gi,t(xi) is continuously differentiable and convex with
respect to xi;

4) φi(xi) is Lipschitz with respect to xi.
Assumption 3:

1) Ft(x) is strongly monotone, i.e., there exists µF > 0 such
that (x−y)T (Ft(x)−Ft(y)) ≥ µF ∥x−y∥2 for all x, y ∈ Ω;

2) Hi,t(xi, y) is Lipschitz with respect to y, i.e., there exists
a constant µH > 0 such that ∥Hi,t(xi, y)−Hi,t(xi, y

′)∥ ≤
µH∥y − y′∥, for all xi ∈ Ωi, y, y′ ∈ Rm.

In Assumption 2, condition 1) guarantees that there exists
Cx > 0 such that ∥xi∥ ≤ Cx for all xi ∈ Ωi and i ∈ V .
Condition 2) in Assumption 2 guarantees that there exist Lg >
0 and lg > 0 such that |gi,t(xi)| ≤ Lg and ∥∇xi

gi,t(xi)∥ ≤ lg
for all xi ∈ Ωi. Since φi(xi) is Lipschitz, there exists µφ > 0
such that ∥φi(xi)−φi(x

′
i)∥ ≤ µφ∥xi−x′

i∥. Under Assumption
2, there exists µJ > 0 such that ∥Ji(xi, x−i)−Ji(x

′
i, x−i)∥ ≤

µJ∥xi − x′
i∥.

In this paper, we focus on the variational generalized Nash
equilibrium (v-GNE) [33, Definition 3.10]. The v-GNE is a
subclass of general Nash equilibrium and characterizes the
same penalty to fulfill the coupling constraints for each player.
By [34, Theorem 2.3.3], Assumptions 2 and 3 guarantee the
existence and uniqueness of the v-GNE. x∗

i,t is the v-GNE if
and only if there exists a bounded Lagrange multiplier y∗t ≤
Cy , where Cy > 0, such that the following KKT conditions
are satisfied [12], [21], [33].

x∗
i,t =PΩi

(
x∗
i,t − αtHi,t

(
x∗
i,t, s(x

∗
t )
)
− α2

t∇gi,t
(
x∗
i,t

)
y∗t

)
,

y∗t =

[
y∗t +

N∑
i=1

gi,t(x
∗
i,t)

]
+

, i ∈ V.

(2)

C. Two regrets

In GN (Gt, Ji,t, gi,t), since Ji,t and gi,t are revealed to player
i only after the selection of xi,t, it is impossible to obtain
x∗
i,t at each time t. Also, the inequality constraints cannot be

satisfied at each time. Therefore, specific metrics, dynamic
regrets and violations of constraints, are needed to define the
performance of learning algorithms. Since player i aims to
choose x∗

i,t at each time t, the sequence {x∗
i,t}i∈V,t≥1 over

the learning time T is utilized as the benchmark sequence.
The first metric RT

i , say the dynamic regret [21], with respect
to the benchmark is given by

RT
i =

T∑
t=1

(
Ji,t(xi,t, x

∗
−i,t)− Ji,t(x

∗
i,t, x

∗
−i,t)

)
. (3)

Due to the unknown Ji,t before choosing xi,t, the difference
between Ji,t(xi,t, x

∗
−i,t) and Ji,t(x

∗
i,t, x

∗
−i,t) exists, and thus

RT
i grows as t. In addition, another metric is needed to capture

the violation of global inequality constraints. The second
metric RT

g , say the violation of constraints, is given by

RT
g =

[ T∑
t=1

N∑
i=1

gi,t(xi,t)

]
+

. (4)

Time-varying global inequality constraints only need to be sat-
isfied in a long run instead of at each time t. It is expected that
the above-mentioned accumulations RT

i and RT
g are sub-linear

with respect to the learning time T , i.e., limT→∞ RT
i /T → 0

and limT→∞ RT
g /T → 0.

III. MAIN RESULTS

In this section, a distributed learning algorithm is proposed.
We illustrate that metrics RT

i and RT
g are sub-linear with

respect to the learning time T for every i ∈ V .
Due to the feedback delay τ , player i cannot obtain the

feedback information of Ji,t and gi,t for t ∈ [1, · · · , τ + 1].
Thus, for the first τ + 1, strategies should be set in advance.
After the selection of xi,τ+1 at the time τ + 1, the feedback
information begins to be observed. For t ≥ τ + 1, player
i utilizes the information of Ji,t−τ and gi,t−τ to update the
strategies xi,t+1 based on the distributed algorithm. Motivated
by [25], for every i ∈ V , we set xi,1 = xi,2 = · · · = xi,τ+1 ∈
Ωi and yi,1 = yi,2 = · · · = yi,τ+1 = 0. In addition, we need to
initialize that ηi,t = φi(xi,t) for the first τ +1. For t ≥ τ +1,
the learning algorithm is given by

xi,t+1 =(1− αt−τ )xi,t + αt−τPΩi

(
xi,t

− αt−τHi,t−τ

(
xi,t−τ , η̃i,t−τ

)
− α2

t−τ∇gi,t−τ

(
xi,t−τ

)
ỹi,t

)
,

ηi,t+1 =η̃i,t + φi

(
xi,t+1)− φi(xi,t

)
,

yi,t+1 =

[
ỹi,t + αt−τ

(
gi,t−τ

(
xi,t−τ

)
− αt−τ ỹi,t

)]
+

,

η̃i,t =

N∑
j=1

atijηj,t, ỹi,t =

N∑
j=1

atijyj,t,

(5)

where αt−τ = 1
(t−τ)lα

is the learning rate. ηi,t is the estimate
of s(xt). yi,t is the estimate of Lagrange multiplier. Hi,t−τ ,
∇gi,t−τ and gi,t−τ are delayed feedback information from
environments. The updates of xi,t and yi,t are motivated
by the primal-dual method. A penalty term −α2

t−τ ỹi,t is
employed so that the upper bound of yi,t can be obtained.
The update of ηi,t indicates that each player estimates the
global information s(xt) only by using the information from
itself and its neighbors. Note that the delayed information of
cost functions and constrained functions from environments is
employed to update xi,t, ηi,t and yi,t.

Remark 1: The algorithm (5) is different from the one
given in [21]. ηi,t is employed to estimate the aggregation
of strategies of all players in AGs. Constrained functions gi,t
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and ∇gi,t are time-varying. Moreover, the delayed information
of Ji,t and gi,t is utilized in our algorithm.

Remark 2: Feedback delays were investigated in optimiza-
tion problems [25]. Different from [25], we consider feedback
delays in a distributed scenario. The information from envi-
ronments is delayed for all players. In our algorithm (5), the
learning rate αt is time-varying. Even when T → ∞, αt ̸= 0
for all t < T .

It follows from Assumption 2 that there exists k1 > 0
such that k1 = supxt∈Ω

∥∥Hi,t

(
xi,t, η̃i,t

)∥∥. In the following,
the main result on the sub-linearity of RT

i and RT
g is given,

which reflects the performance of learning algorithm (5).
Theorem 1: Suppose that Assumptions 1, 2 and 3 hold for

the AG model GN (Gt, Ji,t, gi,t) described in (1). If the learning
rate is given by αt =

1
tlα

, where 0 < lα < 1
2 , then, for every

i ∈ V and T ≥ 1, the upper bounds of the dynamic regrets in
(3) and the violation of constraints in (4) are given by

RT
i ≤O(T

1
2+lα(

√
ΘT + 1) + (

√
τ + 1)T 1− lα

2 ) +

√
k(τ)T

µJ
,

RT
g ≤O(T

1
2+lα(

√
ΘT + 1) + (

√
τ + 1)T 1− lα

2 )

+
√
2NµF k(τ)T ,

where ΘT =
∑N

i=1

∑T
t=1 ∥x∗

i,t+1 − x∗
i,t∥ denotes the vari-

ation of the Nash equilibrium. k(τ) =
(
2Nτ + 2N +

N2γθ
1−θ

) 2CxCηµ
H

µF +
2NCx(2k1+Lglg)τ

2

µF .
Proof : The proof can be found in Appendix B.

Theorem 1 quantifies the effects of feedback delays and the
variation of generalized Nash equilibria on the sub-linearity of
RT

i and RT
g . Large τ , such as τ = T − 1, cannot guarantee

the sub-linearity of RT
i and RT

g . If τ is sub-linear with respect

to T lα , i.e., limT→∞
τ

T lα
= 0, then limT→∞

T 1− lα
2

√
τ+1

T = 0

and limT→∞
T

1
2
√

k(τ)

T = 0. The upper bounds of RT
i and RT

g

are also related to ΘT , which implies that a drastic fluctuation
of the v-GNE sequence {x∗

t }Tt=0 may affect the sub-linearity
of RT

i and RT
g . If ΘT is sub-linear with respect to T 1−2lα , i.e.,

limT→∞
ΘT

T 1−2lα
= 0, then limT→∞

T
1
2
+lα

√
ΘT+1

T = 0. Since
lα < 1

2 , the sub-linearity of τ and ΘT with respect to T lα

and T 1−2lα guarantees that the proposed learning algorithm
performs well. Note that the upper bounds of RT

i and RT
g with

τ = 0 coincide with the conclusion of Corollary 1 in [21].
In the case of static regrets, ΘT = 0 and the benchmark is
given by x∗

i = argminxi∈Ωi

∑T
t=1 Ji,t(xi, x

∗
−i). Static regrets

are another metrics reflecting the performance of learning
algorithms.

Remark 3: The result of Theorem 1 is valid in the case
where feedback delays are different for players, i.e., τ is
replaced by τi, i ∈ V . Then, the upper bounds of RT

i and
RT

g are related to maxi∈V{τi}. In this paper, we just consider
a common feedback delay τ .

IV. A SIMULATION EXAMPLE

In this section, we consider an example to illustrate the
performance of the proposed distributed learning algorithm.
Rt

i/t and Rt
g/t are plotted.
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Fig. 1. 4 switching communi-
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Fig. 3. Trajectories of Rt
i/t and Rt

g/t, i ∈ V .

Consider a time-varying network with five players labeled
by index set V = {1, 2, 3, 4, 5}. For i ∈ V , the time-varying
cost functions are given by

Ji,t(xi,t, x−i,t) = (xi,t)
2 − 0.5i sin(

t

6
)xi,t + 0.5s(xt)

2,

where s(xt) = 1
5

∑5
j=1 xj,t. The time-varying global con-

strained functions are given by gt(xt) =
∑5

i=1 xi,t −∑5
i=1 li,t ≤ 0, where l1,t = l2,t = l3,t = l4,t = 0.1 sin( t6 )

and l5,t = 0. Ωi = {−5 ≤ xi,t ≤ 5}, i ∈ V . At GNE,
x∗
i,t = mi sin(

t
6 ), where m1 = 0.18, m2 = 0.43, m3 = 0.68,

m4 = 0.93 and m5 = 1.18.
The communication graph is considered with Q = 4,

where the switching graphs are given in Fig. 1. atij = 0.5
if (j, i) ∈ Et; and atij = 0 otherwise. To satisfy Assumption
1, the diagonal entries are set as atii = 1−

∑5
j=1 a

t
ij , i ∈ V .

Set τ = 1 s, T = 300 s and lα = 1
5 . Initial values are given

by x1,t = η1,t = −1, x2,t = η2,t = −3, x3,t = η3,t = −2,
x4,t = η4,t = −5 and x5,t = η5,t = −1 for the first τ + 1 s.
Fig. 2 shows the trajectories of xi. Fig. 3 shows the trajectories
of time-average regrets Rt

i/t and the time-average violation
Rt

g/t, i ∈ V . From Fig. 3, we observe that both Rt
i/t and

Rt
g/t can converge to zero for Q = 4 and τ = 1 s, which can

corroborate the theoretical result of Theorem 1.

V. CONCLUSIONS

In this paper, the GNE seeking of AG problems was
investigated in dynamic environments. A distributed learning
algorithm was proposed with the local information and the
delayed feedback information. The effects of both feedback
delays and the variation of the Nash equilibrium on the sub-
linearity of metrics have been quantified. An example has been
utilized to illustrate the performance of the proposed learning
algorithm.
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VI. APPENDIX

A. Some prelimiary lemmas
To prove the main result of the sub-linearity of regrets, i.e.,

Theorem 1, we first list several lemmas related to the proposed
learning algorithm (5).

Lemma 1 ( [32, Lemma 1]): Suppose that Assumption 1
holds for the AG model GN (Gt, Ji,t, gi,t) described in (1).
Consider sequences {ηi,t}i∈V,t≥1 and {xi,t}i∈V,t≥1 generated
by algorithm (5). Then, s(xt) = η̄t = 1

N

∑N
i=1 ηi,t =

1
N

∑N
i=1 φi(xi,t).

It follows from Assumption 2 that ∥ηi,t∥, ∥η̄t∥ and ∥η̃i,t∥
are bounded. It follows from Lemma 3 in [32] that there
exists Cη > 0 such that ∥ηi,t∥ ≤ Cη for all t > 0

and i ∈ V . Denote η̄t = 1
N

∑N
i=1 ηi,t. Then we have

Hi,t(xi,t, η̄i,t) = Hi,t(xi,t, s(xt)). A result on the sequences
updated by weighted averaging and a perturbed term is given
as follows.

Lemma 2 ([35, Theorem 4.2]): Suppose that Assumption 1
holds for the AG model GN (Gt, Ji,t, gi,t) described in (1).
Denote z̃i,t =

∑N
j=1 a

t
ijzj,t and z̄t = 1

N

∑N
j=1 zj,t. The

update of sequence {zi,t}i∈V,t≥1 is given by

zi,t+1 = z̃i,t + ϵi,t, t ≥ τ + 1,

where ϵi,t is the perturbation at time t. Then,

∥zi,t+1 − z̄t+1∥ ≤ Nγθt−τ max
j

∥zj,τ+1∥

+ γ

T∑
l=τ+2

θt+1−l

N∑
j=1

∥ϵj,1∥+
1

N

N∑
j=1

∥ϵj,t+1∥+ ∥ϵi,t+1∥,

where a and Q are given in Assumption 1, γ =

(
1− a

2N2

)−2

and θ =

(
1− a

2N2

) 1
Q

.

From the learning algorithm (5) for every i ∈ V , the upper
bounds of yi,t and ỹi,t are obtained as follows.

Lemma 3: Suppose that Assumptions 1 and 2 hold for
the AG model GN (Gt, Ji,t, gi,t) described in (1). Consider
sequence {yi,t}i∈V,t≥1 generated by algorithm (5). Then,
yi,t ≤ Lg

αt−τ
and ỹi,t ≤ Lg

αt−τ
for every i ∈ V and t ≥ τ + 1.

Proof : Since yi,τ+1 = 0, yi,τ+1 ≤ Lg

α1
holds. Consider that

yi,t ≤ Lg

αt−τ
for t ≥ τ + 1. Then,

yi,t+1 =

[
ỹi,t + αt−τ

(
gi,t−τ

(
xi,t−τ

)
− αt−τ ỹi,t

)]
+

≤
[
(1− α2

t−τ )
Lg

αt−τ
+ αt−τLg

]
+

≤ Lg

αt−τ
≤ Lg

αt+1−τ
. (6)

By induction, it follows from yi,τ+1 ≤ Lg

α1
and (6) that yi,t ≤

Lg

αt−τ
for t ≥ τ + 1. We have that ỹi,t+1 =

∑N
j=1 a

t
ijyj,t+1 ≤

Lg

αt−τ

∑N
j=1 a

t
ij ≤

Lg

αt−τ
, where the last inequality is based on

Assumption 1. Then, we can conclude Lemma 3. ■
In the following lemma, we obtain the upper bound related

to the gap between the strategy xi,t and its delayed strategy
xi,t−τ , i ∈ V and t ≥ τ + 1.

Lemma 4: Suppose that Assumption 2 holds for the AG
model GN (Gt, Ji,t, gi,t) described in (1). Consider sequence
{xi,t}i∈V,t≥1 generated by algorithm (5). Then, for every i ∈
V and t ≥ τ + 1,

∑N
i=1 ∥xi,t − xi,t−τ∥ ≤ 2NCxτ, τ + 1 ≤ t ≤ 2τ,∑N
i=1 ∥xi,t − xi,t−τ∥ ≤ 2NCxταt−2τ , 2τ + 1 ≤ t.

Proof : From the distributed learning algorithm (5) and As-
sumption 2, for t ≥ τ + 1, we have that

∥xi,t+1 − xi,t∥

≤
∥∥∥∥αt−τPΩi

(
xi,t − αt−τHi,t−τ

(
xi,t−τ , η̃i,t−τ

)
− α2

t−τ∇gi,t−τ

(
xi,t−τ

)
ỹi,t

)
− αt−τxi,t

∥∥∥∥
≤2Cxαt−τ . (7)

It follows from (7) and the non-expansiveness of projection
operators that, for t = 2τ + 1, · · · , τ + T ,

N∑
i=1

∥xi,t − xi,t−τ∥

≤
N∑
i=1

τ−1∑
j=0

∥xi,t−τ+j+1 − xi,t−τ+j∥

≤
N∑
i=1

t−τ−1∑
j=t−2τ

2Cxαj ≤ 2NCxταt−2τ .

For t = τ + 2, · · · , 2τ , since xi,1 = xi,2 = · · · = xi,τ+1, we
have that

∑N
i=1 ∥xi,t − xi,t−τ∥ ≤ 2NCxτ . For t = τ + 1,

∥xi,τ+1 − xi,1∥ = 0 implies that the above inequality holds.
Therefore, we conclude Lemma 4. ■

The upper bound related to the gap between the strategies
and strategies at GNE is given as follows.

Lemma 5: Suppose that Assumptions 1, 2 and 3 hold for
the AG model GN (Gt, Ji,t, gi,t) described in (1). Consider
sequences {xi,t}i∈V,t≥1 and {yi,t}i∈V,t≥1 generated by al-
gorithm (5). Then,

T∑
t=1

∥xt − x∗
t ∥2

≤ O(T 2lαΘT + T 2lα + T 1−lα + τT 1−lα) + k(τ)

−
T∑

t=1

N∑
i=1

αt

µF
gi,t

(
xi,t

)
ỹi,t+τ . (8)

Proof : The Jensen’s inequality implies that φ(
∑

i pizi) ≤∑
i piφ(zi), where pi ≥ 0,

∑
i pi = 1 and φ is convex. Then,

for t ≥ τ+1, it follows from the distributed learning algorithm

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2023.3237781

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on February 06,2023 at 03:53:17 UTC from IEEE Xplore.  Restrictions apply. 



6

(2) and (5) that
N∑
i=1

∥xi,t+1 − x∗
i,t−τ∥2

=

N∑
i=1

∥∥∥∥(1− αt−τ )
(
xi,t − x∗

i,t−τ

)
+ αt−τPΩi

(
xi,t

− αt−τHi,t−τ

(
xi,t−τ , η̃i,t−τ

)
− α2

t−τ∇gi,t−τ

(
xi,t−τ

)
ỹi,t

)
− αt−τPΩi

(
x∗
i,t−τ

− αt−τHi,t−τ

(
x∗
i,t−τ , s(x

∗
t−τ )

)
− α2

t−τ∇gi,t−τ

(
x∗
i,t−τ

)
y∗t−τ

)∥∥∥∥2
= ∥∆1∥2 + α3

t−τ∥∆2∥+ α5
t−τ∥∆3∥2 − 2α2

t−τ∆
T
1 ∆2

− 2α3
t−τ∆

T
1 ∆3 + 2α4

t−τ∆
T
2 ∆3 (9)

where ∆1 = xi,t − x∗
i,t−τ , ∆2 = Hi,t−τ

(
xi,t−τ , η̃i,t−τ

)
−

Hi,t−τ

(
x∗
i,t−τ , s(x

∗
t−τ )

)
and ∆3 = ∇gi,t−τ

(
xi,t−τ

)
ỹi,t −

∇gi,t−τ

(
x∗
i,t−τ

)
y∗t−τ .

It follows from Assumption 2 and Lemma 1 that ∥ηi,t∥
is bounded and Hi,t is continuous. Therefore, for t ≥ τ +

1,
∑N

i=1 ∥∆2∥2 ≤ 4k21N . It follows from Assumption 2 and
Lemma 3 that, for t ≥ 2τ + 1,

α2
t−τ

N∑
i=1

∥∆3∥2 ≤α2
t−τ

N∑
i=1

2l2g

(
L2
g

α2
t−τ

+ C2
y

)
≤2Nl2g(L

2
g + C2

y), (10)

where αt−τ < 1 is employed in the last inequality. Since
ỹi,t−τ = 0 for t = τ + 1, · · · , 2τ , (10) holds. It follows
from Assumption 2 and Lemma 3 that αt−τ

∑N
i=1 ∆

T
2 ∆3 ≤

2Nk1lg(Lg + Cy). Under Assumptions 2, 3 and Lemmas 1
and 4, for t ≥ 2τ + 1, we have that

N∑
i=1

∆T
1 ∆2

=

N∑
i=1

(
xi,t−τ − x∗

i,t−τ

)T(
Hi,t−τ

(
xi,t−τ , η̄t−τ

)
−Hi,t−τ

(
x∗
i,t−τ , s(x

∗
t−τ )

)
+Hi,t−τ

(
xi,t−τ , η̃i,t−τ

)
−Hi,t−τ

(
xi,t−τ , η̄t−τ )

))
+

N∑
i=1

(
xi,t − xi,t−τ

)T
×
(
Hi,t−τ

(
xi,t−τ , η̃i,t−τ

)
−Hi,t−τ

(
x∗
i,t−τ , s(x

∗
t−τ )

))
≥ µF ∥xt−τ − x∗

t−τ∥2 − 2Cxµ
H

N∑
i=1

∥η̃i,t−τ − η̄t−τ∥

− 4NCxk1ταt−2τ . (11)

Similarly, for t = τ + 1, · · · , 2τ , we have that
N∑
i=1

∆T
1 ∆2 ≥µF ∥xt−τ − x∗

t−τ∥2 − 4NCxk1τ

− 2Cxµ
H

N∑
i=1

∥η̃i,t−τ − η̄t−τ∥. (12)

From (5), yi ≥ 0 and ỹi,t ≥ 0 for every i ∈ V and t ≥ 1. From
(2), x∗

i,t−τ satisfies that
∑N

i=1 gi,t−τ

(
x∗
i,t−τ

)
≤ 0. Therefore,∑N

i=1 gi,t−τ

(
x∗
i,t−τ

)
ȳt ≤ 0. Moreover, for t ≥ 2τ + 1, it

follows from Assumption 2, Lemmas 3 and 4 that

αt−τ

N∑
i=1

∆T
1 ∆3

= αt−τ

N∑
i=1

(
xi,t−τ − x∗

i,t−τ

)T∇gi,t−τ

(
xi,t−τ

)
ỹi,t

+ αt−τ

N∑
i=1

(
xi,t − xi,t−τ

)T∇gi,t−τ

(
xi,t−τ

)
ỹi,t

− αt−τ

N∑
i=1

(
xi,t − x∗

i,t−τ

)T∇gi,t−τ

(
x∗
i,t−τ

)
y∗t−τ

≥ αt−τ

N∑
i=1

gi,t−τ

(
xi,t−τ

)
ỹi,t − Lgαt−τ

N∑
i=1

∥ỹi,t − ȳt∥

− 2NCxLglgταt−2τ − 2NCxlgCyαt−τ , (13)

where the last inequality follows from
(
xi,t−τ − x∗

i,t−τ

)T ×
∇gi,t−τ

(
xi,t−τ

)
≥ gi,t−τ

(
xi,t−τ

)
− gi,t−τ

(
x∗
i,t−τ

)
. Similarly

for t = τ + 1, · · · , 2τ , we have that

αt−τ

N∑
i=1

∆T
1 ∆3

≥ αt−τ

N∑
i=1

gi,t−τ

(
xi,t−τ

)
ỹi,t − Lgαt−τ

N∑
i=1

∥ỹi,t − ȳt∥

− 2NCxLglgτ − 2NCxlgCyαt−τ . (14)

Based on inequalities (10), (11), (12), (13) and (14), summing
(9) over t = τ + 1, · · · , τ + T , we have that

τ+T∑
t=τ+1

∥xt−τ − x∗
t−τ∥2

≤
τ+T∑

t=τ+1

N∑
i=1

1

2µFα2
t−τ

(
∥xi,t − x∗

i,t−τ∥2 − ∥xi,t+1 − x∗
i,t−τ∥2

)
+

2Cxµ
H

µF

τ+T∑
t=τ+1

N∑
i=1

∥η̃i,t−τ − η̄t−τ∥

+

τ+T∑
t=τ+1

(
k2
2µF

αt−τ +
Ψτ

µF

)
+

Lg

µF

τ+T∑
t=τ+1

N∑
i=1

∥ỹi,t − ȳt∥

−
τ+T∑

t=τ+1

N∑
i=1

αt−τ

µF
gi,t−τ

(
xi,t−τ

)
ỹi,t, (15)

where k2 = 4k21N + 2Nl2g(L
2
g + C2

y) + 4Nk1lg(Lg + Cy) +
4NCxlgCy and

Ψ =

{
2NCx(2k1 + Lglg)αt−2τ , τ + 1 ≤ t ≤ 2τ,
2NCx(2k1 + Lglg), 2τ + 1 ≤ t.

(16)
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The first term on the right side of (15) is bounded by

τ+T∑
t=τ+1

N∑
i=1

1

2µFα2
t−τ

(
∥xi,t − x∗

i,t−τ∥2 − ∥xi,t+1 − x∗
i,t−τ∥2

)
≤ 4Cx

2µFα2
T−τ

N∑
i=1

τ+T∑
t=τ+1

∥x∗
i,t+1−τ − x∗

i,t−τ∥+
2NC2

x

µFα2
T

= O(T 2lαΘT + T 2lα). (17)

Based on the definition of αt, we have that
T−τ−1∑
t=1

αt ≤
1

1− lα
+

∫ T

t=1

t−lα =
T 1−lα

1− lα
= O(T 1−lα).

(18)

Then,
∑τ+T

t=τ+1
k2

2µF αt−τ = O(T 1−lα). To bound the second
term on the right side of (15), Lemma 2 is utilized. We
represent the iteration of ηi,t in (5) as ηi,t+1 = η̃i,t + ϵηi,t,
where ϵηi,t = φi(xi,t+1) − φi(xi,t). It follows from (7) and
Assumption 2, for t ≥ τ + 1, we have that

∥ϵηi,t∥ =∥φi(xi,t+1)− φi(xi,t)∥ ≤ 2µφCxαt−τ . (19)

It follows from Lemma 2 that
T−1∑

t=τ+1

∥ηi,t+1 − η̄t+1∥

≤
(
2γµφCxNθ

1− θ
+ 4µφCx

) T−τ−1∑
t=1

αt

+
Nγθ

1− θ
max

j
∥ηj,τ+1∥. (20)

Hence, it follows from Assumption 1, (18), (19) and (20) that

2Cxµ
H

µF

τ+T∑
t=τ+1

N∑
i=1

∥η̃i,t−τ − η̄t−τ∥

≤ 2Cxµ
H

µF

( 2τ∑
t=τ+1

N∑
i=1

∥ηi,t−τ − η̄t−τ∥

+

N∑
i=1

∥ηi,τ+1 − η̄τ+1∥+
T∑

t=τ+2

N∑
i=1

∥ηi,t − η̄t∥
)

≤
(
2Nτ + 2N +

N2γθ

1− θ

)
2CxCηµ

H

µF
+O(T 1−lα). (21)

In addition, we present the iterate yi in (5) as follows.

yi,t+1 = ỹi,t + ϵyi,t,

where ϵyi,t =

[
ỹi,t + αt−τ

(
gi,t−τ

(
xi,t−τ

)
− αt−τ ỹi,t

)]
+

−

ỹi,t. It follows from Assumption 2 and Lemma 3 that ∥ϵyi,t∥ ≤
2Lgαt−τ . Therefore, it follows from Lemma 2 that

Lg

µF

τ+T∑
t=τ+1

N∑
i=1

∥ỹi,t − ȳt∥

≤ Lg

µF

(
2γLgN

2θ

1− θ
+ 4LgN

) T∑
t=1

αt = O(T 1−lα). (22)

It follows from the definition of Ψ in (16) that

1

µF

τ+T∑
t=τ+1

Ψτ =
1

µF

( 2τ∑
t=τ+1

2NCx(2k1 + Lglg)τ

+

τ+T∑
t=2τ+1

2NCx(2k1 + Lglg)ταt−2τ

)
=
2NCx(2k1 + Lglg)τ

2

µF
+O(τT 1−lα). (23)

It follows from (15), (17), (21), (22) and (23) that
τ+T∑

t=τ+1

∥xt−τ − x∗
t−τ∥2

≤ O(T 2lαΘT + T 2lα + T 1−lα + τT 1−lα) + k(τ)

−
τ+T∑

t=τ+1

N∑
i=1

αt−τ

µF
gi,t−τ

(
xi,t−τ

)
ỹi,t.

Then, we obtain the result in Lemma 5. ■
To obtain the upper bounds of RT

i and RT
g , the following

relation is needed.
Lemma 6: Suppose that Assumption 2 holds. For y > 0,

− αt

T∑
t=1

N∑
i=1

(ỹi,t+τ − y)T gi,t
(
xi,t

)
≤ N

2

(
1 +

T∑
t=1

α2
t

)
y2 +O(T 1−2lα). (24)

Proof : It follows from the learning algorithm (5) that
N∑
i=1

∥yi,t+1 − y∥2

≤
N∑
i=1

∥yi,t − y∥2 + 4NL2
gα

2
t−τ +Nα2

t−τ∥y∥2

+ 2αt−τ

N∑
i=1

(ỹi,t − y)T gi,t−τ

(
xi,t−τ

)
. (25)

Summing (25) over t = τ + 1, · · · , τ + T , we have that

− αt−τ

τ+T∑
t=τ+1

N∑
i=1

(ỹi,t−τ − y)T gi,t−τ

(
xi,t−τ

)
≤ 1

2

τ+T∑
t=τ+1

N∑
i=1

(
∥yi,t − y∥2 − ∥yi,t+1 − y∥2

)
+

τ+T∑
t=τ+1

(
2NL2

gα
2
t−τ +

N

2
α2
t−τ∥y∥2

)
. (26)

Since yi,t = 0 for all t ≤ τ + 1, we have that
N∑
i=1

τ+T∑
t=τ+1

(
∥yi,t − y∥2 − ∥yi,t+1 − y∥2

)
≤

N∑
i=1

(
∥yi,τ+1 − y∥2 − ∥yi,τ+T+1 − y∥2

)
≤ Ny2. (27)

It follows from the definition of αt that
∑τ+T

t=τ+1 α
2
t−τ ≤

1
1−2lα

+
∫ T

t=1
t−2lα = T 1−2lα

1−2lα
= O(T 1−2lα). Then, combing

(26) and (27), we obtain the result in Lemma 6. ■
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B. Proof of Theorem 1

Adding the inequalities (8) and (24), we have that
T∑

t=1

∥xt − x∗
t ∥2 +

1

µF

T∑
t=1

αt

N∑
i=1

gi,t
(
xi,t

)
y

≤ O(T 2lαΘT + T 2lα + T 1−lα + τT 1−lα) + k(τ)

+
N

2µF

(
1 +

T∑
t=1

α2
t

)
y2. (28)

It follows from Assumption 2 that RT
i ≤ µJ

∑T
t=1 ∥xi,t −

x∗
i,t∥ ≤ µJ

√
T
∑T

t=1 ∥xt − x∗
t ∥2. Set y = 0. Based on (28),

we obtain the upper bound of RT
i .

Set y =

[∑T
t=1 αt

∑N
i=1 gi,t

(
xi,t

)]
+

N(1+
∑T

t=1 α2
t )

. Then, we have that

1

µF

T∑
t=1

αt

N∑
i=1

gi,t
(
xi,t

)
y −

N(1 +
∑T

t=1 α
2
t )

2µF
∥y∥2

=

[∑T
t=1 αt

∑N
i=1 gi,t

(
xi,t

)
y
]2
+

2NµF (1 +
∑T

t=1 α
2
t )

≥
α2
T (RT

g )
2

2NµF (1 +
∑T

t=1 α
2
t )
. (29)

Then, it follows from (28) and (29) that

(RT
g )

2 ≤
2NµF (1 +

∑T
t=1 α

2
t )

α2
T

(
O(T 2lαΘT + T 2lα

+ T 1−lα + τT 1−lα) + k(τ)
)
.

Then, we obtain the upper bound of RT
g . ■
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