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a b s t r a c t

In this paper, we are interested in how agents interact with each other in multi-agent systems. First, we
model the interactions among agents in multi-agent systems as a multi-player game. The topology of
the interactions among agents is a directed graph. We design cost functions for the game and assume
that each agent in the systems tends to minimize its own cost. Then, the unique Nash equilibrium
solution to the proposed multi-player game is obtained as the next state of the agent. A necessary and
sufficient condition for achieving multi-agent consensus is established using the system transformation
method and graph theory. Furthermore, we extend the result to the problem of containment control
in the presence of leaders. The criterion for solving the containment control is also given in this paper.
Finally, several simulation examples are given to verify the effectiveness of the theoretical results.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

As we know, various classic multi-agent coordination has been
nvestigated, including coverage control [1], flocking [2,3], con-
ensus [4–7], distributed estimation [8], formation control [9,10],
ontainment control [11–13] and so on. Consensus (also known
s synchronization or agreement in different scenarios) problems
re the fundamental ones in coordination control. It means that a
roup of agents agree on a specific number of interest by design-
ng appropriate control inputs. Consensus protocols have been
tudied extensively. Olfati-Saber et al. [14] considered consen-
us problems for the first-order continuous-time(CT) multi-agent
ystems(MASs) under a linear protocol. They established some
ecessary and sufficient conditions for achieving the average
onsensus of MASs. Munz et al. [15] investigated the robustness
f consensus problems for first-order CT MASs under a preset
rotocol with coupling delays and switching topologies. Consen-
us of second-order CT MASs has been studied in [16] under
delayed output feedback control protocol. At the same time,
ttention also has been paid to discrete-time(DT) MASs. Jadbabaie
t al. [17] investigated the consensus of first-order DT MASs.
he protocol they considered for the MASs is expressed by the
verage of the states of agent i and its neighbors. By using graph
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theory and matrix theory, Ren and Beard [18] obtained several
necessary and sufficient conditions for the consensus of first-
order DT MASs under a given protocol. Consensus of second-order
DT MASs has been studied in [19], where the protocol of MASs
uses the local velocity information and the distributed relative
state information.

The aforementioned consensus protocols were primarily stud-
ied under the assumption that there is no group reference state.
However, there may be leaders in a system in practical scenarios.
For instance, the male silkworm moth detects the pheromone re-
leased by the female and enters the bulge across which she spans.
This kind of consensus problems is classified into containment
control. Its main objective is to drive the followers eventually
to enter the convex hull spanned by the leaders via appropriate
distributed protocols. For DT MASs, the distributed containment
control problems were studied in [12] under a switched directed
graph. Li and Ren [20] considered the containment control prob-
lems for DT MASs with general linear dynamics. Based on routh
criterion and z-transformation, the authors in [21] solved the
containment control problem for the DT MASs with time delays.

Game theory can be used to model the strategic interac-
tions of agents. In a game, each agent iteratively decides its
action by minimizing its cost or maximizing its payoff, which
depends the actions of itself and its neighbors. There is also a
rich and still growing study on coordination control of MASs
using game theory approaches. For example, Semsar-Kazerooni
and Khorasanide [22] minimized the team cost function based on
a combination of individual costs and obtained a set of Pareto-
efficient solutions for a cooperative game. Mixing cooperative
control, reinforcement learning and game theory, Vamvoudakis
et al. [23] proposed an online solution formula of a team game
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ased on MASs. Based on the competitive propagation model,
ei and Bullo [24] proposed two classes of games. Moreover,

hey characterized the quality-seeding trade-off and the Nash
quilibrium for the games. In [25], a new attacker–detector game
as been defined to study optimal sensor placement in networked
ontrol systems. Furthermore, Ma et al. [26] designed cost func-
ions for hybrid MASs in light of game-theoretic approaches, and
roved that the hybrid MASs can reach consensus. Ghaderi [27]
howed that the best-response dynamics of MASs in a game can
onverge to consensus in the presence of stubborn agents. Ma
t al. [28] employed a repeated bimatrix game to model the MASs
nd proved that agents belonging to the same unions can achieve
onsensus. Ye et al. [29] proved the MAS exponential convergence
o the Nash equilibrium for games with first- and second-order
layers.
Note that the aforementioned studies of consensus and con-

ainment control problems mainly focused on the analysis of
hether the coordination control goals can be achieved. The case
here the consensus protocols of agents are unknown has also
een considered. In [30–32], the authors considered the consen-
us of MASs under distributed model prediction control schemes.
hey used local predictive controllers to find an optimal control
equence and a consensus point. Combining consensus theory
ith approximate subgradient methods, Johansson et al. [33]
olved the coupled optimization problems in a distributed way
nd studied the consensus of the proposed scheme. How to
esign interactive strategies that can make MASs achieve desired
oordination control goals has gradually attracted attention. In
his paper, we introduce game theory to solve the distributed
onsensus and containment control problems for MASs, respec-
ively. Different from the literatures [30]–[33], we are interested
n solving the coordination control problems for game-based
ASs. We design a multi-player game to describe the interac-

ions among agents. Each agent in the network updates its own
tate according to the given cost function and iteration rules.
egardless of whether there exist leaders, the game designed
as a unique Nash equilibrium solution. Then, some criteria are
btained for solving the consensus and containment control prob-
ems. Difficulties come partially from how to design appropriate
ost functions for agents and the proof of coordination for the
ame-based MASs. The reason is that compare to the coordi-
ation control problems in the existing literatures mentioned
bove, it is more difficult for game-based MASs to understand the
nteraction modes among agents. Additionally, designing games
n accordance with the current states of agents increases the
ifficulty of systems analysis. Compared with the existing works,
he contributions of this paper are summarized as follows.

• We develop a game-based framework for MASs. In addi-
tion, according to the multi-player game, we prove that the
MASs under proposed interaction rules can achieve consen-
sus without leaders and achieve containment control with
leaders.

• We prove that a unique Nash equilibrium exists in our game
model and it is chosen as the next state of agent.

• Based on the designed games, we provide the necessary
and sufficient conditions for the establishment of the multi-
agent coordination.

We organize the rest of this paper as follows. Section 2
resents preliminaries. Game-based interaction model is given
n Section 3. We provide the theoretical analysis of multi-
gent coordination according to the given iteration rules without
eaders and with leaders in Section 4 and Section 5, respectively.
n Section 6, the simulation results are given to show the
ffectiveness of the obtained results. Finally, we draw the main
2

conclusions in Section 7. In Appendix, we state some lemmas and
definitions which can be used in this paper.

2. Preliminaries

In this section, a number of basic concepts and notions are
introduced.

First, we introduce the concepts associated with graphs.
G = (V, E,W) is a weighted directed graph, which is composed
of a vertex set V , an edge set E and a weighted adjacency matrix
W = (wij) ∈ Rn×n. The neighbor set of vertex i is Ni = {vj ∈

V | (vj, vi) ∈ E}. If (vi, vj) ∈ E , we call vi the parent of vj. A
directed graph is called a directed tree if every node in the graph
has only one parent except the root node. A spanning tree is a
directed tree composed of all vertices and some edges in G. One or
more directed trees without common vertices consist a directed
forest. A directed forest is called as a directed spanning forest, if
it contains all the nodes and some edges in G. The degree matrix
D = (dij) ∈ Rn×n is a diagonal matrix with dii =

∑
j∈Ni

wij.
Define the Laplacian matrix of a graph G by L = D − W = (lij) ∈

Rn×n. In is the n × n identity matrix and 1n is the n-dimensional
column vector with all entries equal to one. In = {1, 2, . . . , n} is
an index set. diag{a1, a2, . . . , an} represents the diagonal matrix
with diagonal elements being a1, a2, . . . , an.

If every entry of the matrix A is nonnegative, A is said to be
nonnegative. A nonnegative matrix with row sum 1 is said to be a
(row) stochastic matrix. A stochastic matrix P = [pij]n×n is called
indecomposable and aperiodic (SIA) if limk→∞ Pk

= 1nyT , where
y is some column vector. Given a graph GP with n vertices, graph
GP is called the graph associated with P if (i, j) ∈ E ⇔ Pij > 0.

Next we introduce some basic notions of multi-player games
(please refer to [34] for more details). A multi-player game con-
sists of n(> 2) players, a set of strategies available to those players
and an individual cost function for each player. Each player in
the game selects a strategy that minimizes its own cost function,
and makes decision independently. The precise description of a
multi-player game is provided below together with the notations
to be used. Suppose that n players v1, v2, . . . , vn play a game G.
Let us denote the set of all players as V . Player vi has strategies
in Ωi ⊂ R. If each vi ∈ V corresponds to a strategy xi ∈ Ωi,
then (x1, x2, . . . , xn) is an n-tuple of strategies. The cost function
of vi is Ci(x1, x2, . . . , xn). Players make their strategies to seek the
minimum possible costs independently by considering the possi-
ble choices of the other rational players. Then, we introduce the
Nash equilibrium solution to the multi-player game as follows.

Definition 1 ([34]). Consider an n-tuple of strategies (x∗

1, x
∗

2,

. . . , x∗
n) with x∗

i ∈ Ωi, i ∈ In. (x∗

1, x
∗

2, . . . , x
∗
n) is said to be a Nash

equilibrium of the n-player nonzero-sum game if the following
inequalities⎧⎪⎪⎪⎨⎪⎪⎪⎩

Ci(x∗

1, x
∗

2, . . . , x
∗
n) ≤ Ci(x1, x∗

2, . . . , x
∗
n)

Ci(x∗

1, x
∗

2, . . . , x
∗
n) ≤ Ci(x∗

1, x2, . . . , x
∗
n)

...

Ci(x∗

1, x
∗

2, . . . , x
∗
n) ≤ Ci(x∗

1, x
∗

2, . . . , xn)

(1)

are satisfied for all xi ∈ Ωi, i ∈ In.

3. Game-based interaction

Consider an MAS with n agents v1, v2, . . . , vn, where each
agent has state xi(t) ∈ R at time t . The initial condition of agent
vi, i ∈ In is xi(0). In this section, we model the interaction among

them as a multi-player game, represented by G(V, Ωi, Ci).
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The definition of game G(V, Ωi, Ci) is given as follows:

• Players : The set of all players can be denoted as V =

{v1, v2, . . . , vn}.
• Strategy : Each player vi ∈ V chooses its strategy in Ωi ⊂

R. Players interact with their neighbors and choose their
strategies to minimize their costs Ci(x1(t + 1), . . . , xi(t +

1), . . . , xn(t +1)) at time t +1. For simplicity, let Ci(t +1) ≜
Ci(x1(t+1), . . . , xi(t+1), . . . , xn(t+1)). Suppose that all play-
ers choose strategies independently and simultaneously. If
a player chooses strategy xi(t + 1) ∈ Ωi, it means that this
player will decide xi(t + 1) as its state at time t + 1.

• Cost : The cost of each player is determined by the cost
in changing its own state and the disagreement cost with
neighbor players. For player vi ∈ V , the cost of changing its
own state is (xi(t + 1) − xi(t))2, and the disagreement cost
with neighbor players is (xi(t + 1) −

1
di

∑
j∈Ni

wijxj(t + 1))2.
Therefore, the cost function of player vi ∈ V is

Ci(t+1) = αi(xi(t+1)−xi(t))2+βi(xi(t+1)−
1
di

∑
j∈Ni

wijxj(t+1))2,

(2)

when di =
∑

j∈Ni
wij > 0, αi + βi = 1, 0 < αi < 1, and

Ci(t + 1) = (xi(t + 1) − xi(t))2, (3)

when di = 0.

In the game G(V, Ωi, Ci), every player vi ∈ V decides its
strategy to minimize its cost, which uses information from its
neighbors and itself. Note that each player’s best strategy depends
on the decisions of the other players. Hence, no player can reduce
its cost by unilaterally changing itself action at Nash equilibrium.

Remark 1. αi and βi are the weights of the costs in changing
states and the disagreement costs among the players, respec-
tively. The higher the weight is, the higher the importance of the
corresponding term is.

Throughout this paper, we make the following assumption:

Assumption 1. We assume that every state in the strategy set is
reachable for all the players. Moreover, if the player selects state
xi(t + 1) at time t + 1, it will reach the state xi(t + 1) before time
t + 2.

Assumption 2. All agents are rational, i.e., they consistently make
decisions to minimize their costs without making mistakes and
update their states independently. Besides, every agent believes
that all of its neighbors are rational.

Remark 2. We assume that all the players are rational and
selfish. They want fewer states changes and closer to their neigh-
bors. It is practicable in many realistic scenarios. Take tariffs
for example, each country intends to not only stick to its own
tariff but also reach consensus with the others, which requires
a balance between its own interest and the differences with the
others. Moreover, in social networks, people want to both insist
on their own opinions and ultimately reach an agreement with
others. Therefore, each player must make a compromise to reach
consensus between maintaining its own state unchanged and
closing the gap with other players.

4. Game-based consensus of MASs

Consider a directed network of agents with digraph G =

(V, E,W). Assume that d =
∑

w > 0 for all agents
i j∈Ni ij

3

in the MAS. We model the interaction among these agents as
a game G(V, Ωi, Ci) which follows the definition in Section 3.
The cost function of agent vi ∈ V is given in (2). Let x(t) =

[x1(t), x2(t), . . . , xn(t)]T , we have the following results.

4.1. Existence and characterization of Nash equilibrium

Theorem 1. Game G(V, Ωi, Ci) has a unique Nash equilibrium
solution (x∗

1(t + 1), . . . , x∗

i (t + 1), . . . , x∗
n(t + 1)) with x∗(t +

1) = B−1Ax(t) holds, where A = diag{α1, α2, . . . , αn}, B = In −

diag{
β1
d1

,
β2
d2

, . . . ,
βn
dn

}W .

roof. For agent i ∈ In, if x∗

j (t + 1), j ∈ In, j ̸= i are fixed, it is
obvious that Ci(x∗

1(t+1), . . . , xi(t+1), . . . , x∗
n(t+1)) is a quadratic

unction of xi(t+1). Therefore, Ci(x∗

1(t+1), . . . , xi(t+1), . . . , x∗
n(t+

1)) has only one global minimum x∗

i (t + 1), which satisfies⎧⎨⎩
∂Ci(t+1)
∂xi(t+1) |(x

∗
1(t+1),...,x∗i (t+1),...,x∗n(t+1)) = 0,

∂2Ci(t+1)
∂2xi(t+1)

|(x∗1(t+1),...,x∗i (t+1),...,x∗n(t+1)) > 0.
(4)

ombining with (2) and (4), we know that (x∗

1(t + 1), . . . , x∗

i (t +

), . . . , x∗
n(t + 1)) satisfies

i(x∗

1(t + 1), . . . , x∗

i (t + 1), . . . , x∗

n(t + 1))
≤ Ci(x∗

1(t + 1), . . . , xi(t + 1), . . . , x∗

n(t + 1))

ith the following formula holds:

∗

i (t + 1) −
βi

di

∑
j∈Ni

wijx∗

j (t + 1) = α1xi(t).

According to Definition 1, (x∗

1(t+1), . . . , x∗

i (t+1), . . . , x∗
n(t+1))

is the Nash equilibrium solution if and only if⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x∗

1(t + 1) −
β1
d1

∑
j∈N1

w1jx∗

j (t + 1) = α1x1(t),

x∗

2(t + 1) −
β2
d2

∑
j∈N2

w2jx∗

j (t + 1) = α2x2(t),

...

x∗
n(t + 1) −

βn
dn

∑
j∈Nn

wnjx∗

j (t + 1) = αnxn(t).

(5)

The matrix-form of (5) is Bx∗(t + 1) = Ax(t).
Let B = In−diag{

β1
d1

,
β2
d2

, . . . ,
βn
dn

}W = (bij) ∈ Rn×n. It is obvious
that

n∑
j=1,j̸=i

|bij| =

n∑
j=1,j̸=i

| −
βi

di
wij| =

βi

di

∑
j∈Ni

wij = βi < 1 = |bii|, i ∈ In.

his implies that B is SDD. By Lemma 1 in the Appendix, it is easy
o know that det B ̸= 0. Therefore, we have x∗(t + 1) = B−1Ax(t).

As a consequence, the game G(V, Ωi, Ci) has the unique Nash
equilibrium solution (x∗

1(t + 1), . . . , x∗

i (t + 1), . . . , x∗
n(t + 1)) with

∗(t + 1) = B−1Ax(t) holds. □

.2. Consensus analysis

The agents play the game G(V, Ωi, Ci) which is mentioned
n the above subsection. Moreover, they choose the Nash equi-
ibrium solution as their states at time t + 1. Through these
nteraction rules among agents, the algorithm of the MAS is
ormulated as

(t + 1) = B−1Ax(t). (6)
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emark 3. The cost (2) is based on the current states of the
eighboring players without any time delay. When the time delay
≤ τ ≤ τmax, τ ∈ N+ exists, we can modify the cost as

i(t + 1) = αi(xi(t + 1) − xi(t))2 + βi(xi(t + 1)

−
1
di

∑
j∈Ni

wijxj(t + 1 − τ ))2, i, j ∈ In, (7)

where τmax denotes an upper bound of τ .
Similar to the analysis above, we have

xi(t + 1) = αixi(t) +
βi

di

∑
j∈Ni

wijxj(t + 1 − τ ), i ∈ In, (8)

where αi +
βi
di

∑
j∈Ni

wij = 1.
When τ = 1 in (7), system (8) is a typical DT MAS which

achieves consensus asymptotically if and only if the associated
interaction graph G has a spanning tree [18]. When 1 < τ ≤ τmax
n (7), system (8) is a DT MAS with time delays.

In this subsection, we consider the consensus problem for MAS
6). Some criteria are obtained to solve the consensus problem.

efinition 2. If for any initial states, limt→∞ ∥xi(t) − xj(t)∥ = 0
holds for all i, j ∈ In. The consensus of MAS (6) is achieved.

Theorem 2. Consider a directed network of agents with the com-
munication topology G. MAS (6) reaches consensus if and only if the
topology G has a directed spanning tree. Furthermore, the consensus
state is vT x(0), where (B−1A)Tv = v, 1T

nv = 1.

Proof. (Sufficiency) First we will prove that B−1A is a stochastic
matrix. It is easy to obtain

B1n =

⎛⎜⎜⎜⎜⎝
1 −

β1
d1

w12 · · · −
β1
d1

w1n

−
β2
d2

w21 1 · · · −
β2
d2

w2n

...
...

...

−
βn
dn

wn1 −
βn
dn

wn2 · · · 1

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎝

1
1
...

1

⎞⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −
β1
d1

∑
j∈N1

w1j

1 −
β2
d2

∑
j∈N2

w2j

...

1 −
βn
dn

∑
j∈Nn

wnj

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎝
1 − β1
1 − β2

...

1 − βn

⎞⎟⎟⎠

and A1n = diag{α1, α2, . . . , αn}1n = [α1, α2, . . . , αn]
T

= [1 −

1, 1 − β2, . . . , 1 − βn]
T . According to Theorem 1, we have

−1A1n = 1n. (9)

Recall that B = In − QW , where Q = diag{
β1
d1

,
β2
d2

, . . . ,
βn
dn

}.
ssume λ1, λ2, . . . , λn are all eigenvalues of QW = (cij) ∈
n×n. Then resort to Lemma 2 in the Appendix, we have λi ∈
n
i=1 Gi, i ∈ In, where

i = {z | |z − cii| ≤

n∑
j=1,j̸=i

|cij|}

= {z | |z − 0| ≤

n∑
j=1,j̸=i

|
βi

di
wij|}

= {z | |z| ≤ |βi| < 1},

hich means |λi| < 1. Therefore,

−1
= (In −QW)−1

=

∞∑
(QW)n = In +QW+ (QW)2 +· · · . (10)
n=0

4

Obviously, every entry of matrix QW is nonnegative. Thus,
from (10), it can be found that B−1 is nonnegative and its diagonal
elements are positive. With the fact that αi > 0 and (9), we know
that B−1A = (eij) ∈ Rn×n is a (row) stochastic matrix with positive
diagonal elements.

From (10) and αi ̸= 0, i ∈ In, we know that wij ̸= 0, i, j ∈

In ⇒ eij ̸= 0, i, j ∈ In. Therefore, if there is a directed edge in G
from vj to vi, then there is also a directed edge in GB−1A from vj
to vi. As a consequence, GB−1A has a spanning tree when G has a
directed spanning tree.

Thus, by Lemma 3 in the Appendix, B−1A is an SIA matrix,
i.e. ∃ v such that

lim
m→∞

(B−1A)m = 1nv
T , (11)

where (B−1A)Tv = v, 1T
nv = 1.

Then, limt→∞ x(t) = limt→∞(B−1A)tx(0) = 1nv
T x(0) holds,

which means that limt→∞ ∥xi(t) − xj(t)∥ = 0, i, j ∈ In. This
completes the proof of sufficiency.

(Necessity) Suppose that graph G does not have a directed
spanning tree. It follows from Lemma 4 in the Appendix and βi

di
>

0 that the graph GQW+(QW)2+(QW)3+··· does not have a directed
spanning tree. Then, it can be derived that GB−1A does not have
a directed spanning tree with the fact (10) and αi > 0, which
means that (11) does not hold. Consequently, MAS (6) cannot
reach consensus. This completes the proof of necessity. □

Remark 4. B−1A is a stochastic matrix reveals that each player
needs to seek a balance between its own interest and the differ-
ences with the others.

Remark 5. Because B−1 is nonnegative and 0 < αi < 1, i ∈ In, it
is evident that the higher weight αi is, the greater the influence
of vi on its neighbors is.

5. Game-based containment control of MASs

In this section, the game-based containment control problem
is investigated. When di = 0, it means the player vi has no
eighbors. We call such player as a leader with the cost function
3). Meanwhile, followers are the players with di > 0, whose cost
functions are defined in (2).

Consider an MAS with communication topology G′
=

V, E,W ′). Assume that there are m(m < n) followers and n − m
eaders in the MAS. The set of followers is {v1, v2, . . . , vm} and
he set of leaders is {vm+1, vm+2, . . . , vn}. Let F = {1, 2, . . . ,m}

nd R = {m + 1,m + 2, . . . , n}. We model the interaction
mong agents of the MAS by a multi-player game G′(V, Ωi, Ci).
he definition of game G′(V, Ωi, Ci) is similar to that in Section 3.
he cost functions of leaders and followers are given in (2) and
3), respectively.

.1. Existence and characterization of Nash equilibrium

Every player in the game G′(V, Ωi, Ci) decides xi(t + 1) to
inimize its cost Ci(t+1). From the definition of Nash equilibrium
olution, every agent of the MAS will choose the Nash equilibrium
olution as its next time state when a unique Nash equilibrium
xists.
Let x(t) = [x1(t), x2(t), . . . , xn(t)]T , xF (t) = [x1(t), x2(t), . . . , xm(

nd xR(t) = [xm+1(t), xm+2(t), . . . , xn(t)]T .

heorem 3. Game G′(V, Ωi, Ci) has a unique Nash equilibrium
olution (x∗

1(t + 1), . . . , x∗

i (t + 1), . . . , x∗
n(t + 1)) with x∗(t + 1) =

¯−1Āx(t) holds, where

¯ =

(
Ā11 0m×(n−m)

)
, B̄ =

(
B̄11 B̄12

)
,
0(n−m)×m In−m 0(n−m)×m In−m



L. Zhou, Y. Zheng, Q. Zhao et al. Systems & Control Letters 169 (2022) 105376

w

B

P
G
1

w
p

t
e
x

5

p

s
t

D
v
s

T
m

w

w

G

ith Ā11 = diag{α1, α2, . . . , αm},

¯11 =

⎛⎜⎜⎜⎜⎝
1 −

β1
d1

w′

12 · · · −
β1
d1

w′

1m

−
β2
d2

w′

21 1 · · · −
β2
d2

w′

2m
...

...
...

−
βm
dm

w′

m1 −
βm
dm

w′

m2 · · · 1

⎞⎟⎟⎟⎟⎠ ,

B̄12 =

⎛⎜⎜⎜⎜⎝
−

β1
d1

w′

1(m+1) −
β1
d1

w′

1(m+2) · · · −
β1
d1

w′

1n

−
β2
d2

w′

2(m+1) −
β2
d2

w′

2(m+2) · · · −
β2
d2

w′

2n
...

...
...

−
βm
dm

w′

m(m+1) −
βm
dm

w′

m(m+2) · · · −
βm
dm

w′
mn

⎞⎟⎟⎟⎟⎠ .

roof. Similar to the analysis in Theorem 1, we can get that game
′ has a unique Nash equilibrium solution (x∗

1(t + 1), . . . , x∗

i (t +

), . . . , x∗
n(t + 1)) if and only if⎧⎨⎩ x∗

i (t + 1) −
βi
di

∑
j∈Ni

w′

ijx
∗

j (t + 1) = αixi(t), i ∈ F ,

x∗

i (t + 1) = xi(t), i ∈ R.
(12)

The matrix-form of (12) is(
B̄11 B̄12

0(n−m)×m In−m

)(
x∗

F (t + 1)
x∗

R(t + 1)

)
=

(
Ā11 0m×(n−m)

0(n−m)×m In−m

)(
xF (t)
xR(t)

)
,

i.e., B̄x∗(t + 1) = Āx(t). Let B̄ = (b̄ij) ∈ Rn×n, it is easy to obtain

N∑
j=1,j̸=i

|b̄ij| =

⎧⎪⎨⎪⎩
N∑

j=1,j̸=i

| −
βi

di
w′

ij| =
βi

di

∑
j∈Ni

w′

ij = βi < 1 = |b̄ii|, i ∈ F ,

0 < 1 = |b̄ii|, i ∈ R,

hich implies that B̄ is SDD. According to Lemma 1 in the Ap-
endix, it can be derived that det B̄ ̸= 0.
Therefore, we have x∗(t + 1) = B̄−1Āx(t). We can draw

he conclusion that the game G′(V, Ωi, Ci) has the unique Nash
quilibrium solution (x∗

1(t + 1), . . . , x∗

i (t + 1), . . . , x∗
n(t + 1)) with

∗(t + 1) = B̄−1Āx(t) holds. □

.2. Containment control analysis

The interaction among agents of the MAS is modeled by multi-
layer game G′(V, Ωi, Ci). Moreover, the agents choose the Nash

equilibrium solution as their states x(t + 1) at time t + 1. By
repeating this process, the algorithm of the MAS can be described
by

x(t + 1) = B̄−1Āx(t). (13)

Then, we show the necessary and sufficient conditions of
olving the containment control problem for MAS(13) in the next
heorem.

efinition 3. In any initial states, if the states of all followers con-
erge asymptotically to the convex hull spanned by the leaders’
tates, the containment control problem of MAS (13) is solved.

heorem 4. Consider a directed network of agents with the com-
unication topology G′. MAS (13) can solve the containment control

problem if and only if the topology G′ has a directed spanning forest
and all root nodes are leaders. Moreover, the final position of the
followers is −(Im − B̄−1

11 Ā11)−1B̄−1
11 B̄12xR(0), where xR(0) is the initial

value of the leader set.
 λ

5

Proof. (Sufficiency) Let B̄ = (b̄ij) ∈ Rn×n. It is obvious that
m∑

j=1,j̸=i

|b̄ij| ≤

n∑
j=1,j̸=i

|b̄ij| =

n∑
j=1,j̸=i

| −
βi

di
w′

ij|

=
βi

di

∑
j∈Ni

w′

ij = βi < 1 = |b̄ii|, i ∈ F ,

which means that B̄11 is SDD. Then, we have det B̄11 ̸= 0. It
follows from Lemma 6 in the Appendix that

B̄−1
=

(
(B̄11 − B̄12B̄−1

22 B̄21)−1
−B̄−1

11 B̄12F2
−F2B̄21B̄−1

11 F2

)

=

(
B̄−1
11 −B̄−1

11 B̄12
0(n−m)×m In−m

)
, (14)

here F2 = (B̄22 − B̄21B̄−1
11 B̄12)−1

= In−m.
From (13) and (14), we can obtain that(
xF (t + 1)
xR(t + 1)

)
=

(
B̄−1
11 −B̄−1

11 B̄12
0(n−m)×m In−m

)
×

(
Ā11 0m×(n−m)

0(n−m)×m In−m

)(
xF (t)
xR(t)

)
=

(
B̄−1
11 A11 −B̄−1

11 B̄12
0(n−m)×m In−m

)(
xF (t)
xR(t)

)
... (15)

=

⎛⎜⎝ (B̄−1
11 Ā11)t+1

−

t∑
n=0

(B̄−1
11 Ā11)nB̄−1

11 B̄12

0(n−m)×m In−m

⎞⎟⎠
×

(
xF (0)
xR(0)

)
.

Thus,

lim
t→∞

x(t + 1) =

⎛⎜⎝ lim
t→∞

(B̄−1
11 Ā11)t+1

−

∞∑
n=0

(B̄−1
11 Ā11)nB̄−1

11 B̄12

0(n−m)×m In−m

⎞⎟⎠
×

(
xF (0)
xR(0)

)
. (16)

We next show that |λ(B̄−1
11 Ā11)| < 1.

First, we have

Ā−1
11 B̄11 =

⎛⎜⎜⎜⎜⎝
α−1
1 −

β1
α1d1

w′

12 · · · −
β1

α1d1
w′

1m

−
β2

α2d2
w′

21 α−1
2 · · · −

β2
α2d2

w′

2m
...

...
...

−
βm

αmdm
w′

m1 −
βm

αmdm
w′

m2 · · · α−1
m

⎞⎟⎟⎟⎟⎠ .

Assume λ1, λ2, . . . , λm are all eigenvalues of Ā−1
11 B̄11. Then accord-

ing to Lemma 2 in the Appendix, we have λi ∈
⋃m

i=1 Gi, i ∈ F ,
here

i = {z | |z − α−1
i | ≤

m∑
j=1,j̸=i

| −
βi

αidi
w′

ij|},

= {z | |z − α−1
i | ≤

βi

αidi

m∑
j=1,j̸=i

w′

ij ≤
βi

αidi

n∑
j=1,j̸=i

w′

ij ≤
βi

αi
}.

By the fact that 0 < αi < 1 and α−1
i −

βi
αi

= 1, we have
(Ā−1B̄ ) ≥ 1.
11 11
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H

F
c
|

T
[

Second, it is obvious that I − Ā−1
11 B̄11 ≜ H1H2, where H1 =

diag{−
β1

α1d1
, −

β2
α2d2

, . . . ,−
βm

αmdm
},

2 =

⎛⎜⎜⎝
d1 −w′

12 · · · −w′

1m
−w′

21 d2 · · · −w′

2m
...

...
...

−w′

m1 −w′

m2 · · · dm

⎞⎟⎟⎠ .

rom Lemma 5 in the Appendix, we know that |H2| ̸= 0. Ac-
ording to −

βi
αidi

̸= 0, i ∈ F , we can obtain that |I − Ā−1
11 B̄11| =

H1| · |H2| ̸= 0, which means λ(Ā−1
11 B̄11) ̸= 1.

Following the analysis above, we can conclude that λ(Ā−1
11 B̄11)

> 1. Then, we have |λ(B̄−1
11 Ā11)| < 1. Therefore, limt→∞(B̄−1

11 Ā11)t+1

= 0,
∑

∞

n=0(B̄
−1
11 Ā11)n = (I − Ā−1

11 B̄11)−1, which implies that

lim
t→∞

x(t + 1) =

(
0m×m −(I − Ā−1

11 B̄11)−1B̄−1
11 B̄12

0(n−m)×m In−m

)(
xF (0)
xR(0)

)
=

(
−(I − Ā−1

11 B̄11)−1B̄−1
11 B̄12xR(0)

xR(0)

)
.

Since

(B̄11 − Ā11)1m + B̄121n−m

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −
β1
d1

m∑
j=2

w′

1j − α1

...

1 −
βi
di

m∑
j=1,j̸=i

w′

ij − αi

...

1 −
βm
dm

m−1∑
j=1

w′

mj − αm

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−
β1
d1

n∑
j=m+1

w′

1j

...

−
βi
di

n∑
j=m+1

w′

ij

...

−
βm
dm

n∑
j=m+1

w′

mj

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= (1 −

βi

di

n∑
j=1,j̸=i

w′

ij − αi)m×1

= (1 − βi − αi)m×1

= 0m×1. (17)

i.e., (B̄11 − Ā11)1m = −B̄121n−m. Multiplying both sides by B̄−1
11 ,

we have (Im − B̄−1
11 Ā11)1m = −B̄−1

11 B̄121n−m. Then, it is easy to be
obtained that −(Im − B̄−1

11 Ā11)−1B̄−1
11 B̄121n = 1n.

From Definition 4 in the Appendix, we know that the states
of all followers converge to the convex hull spanned by those of
leaders. This completes the proof of sufficiency.

(Necessity) If the network G′ does not have a directed spanning
forest, there exists at least one follower whose neighbors do
not belong to the leader set. If the states of these followers
are outside the convex hull spanned by those of leaders, then
they would not enter the convex hull at any time. Therefore,
the containment control will not be achieved. This completes the
proof of necessity. □

6. Simulations

In order to show the validity of the mathematical results
in Sections 4 and 5, some simulations will be provided in this
section.

Example 1. Consider an MAS with six agents. The interaction
topology G is shown in Fig. 1. It can be noted that G has a directed
spanning tree. We model the interactions among the agents as
a game G(V, Ω , C ) which follows the definition in Section 3.
i i

6

Fig. 1. A digraph G.

Fig. 2. State trajectories of all the agents with the digraph G.

Fig. 3. A digraph G′ .

he cost functions of the agents are given in (2). Let x(0) =

10, 5, −15, 20, 35, 30]T , α = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6]T and
β = [0.9, 0.8, 0.7, 0.6, 0.5, 0.4]T . The state trajectories of all the
agents are shown in Fig. 2, which is consistent with Theorem 2.

Example 2. Consider an MAS with three leaders and three
followers, 1, 3, 6 denote leaders and 2, 4, 5 denote follow-
ers. The interaction topology G′ is shown in Fig. 3. Obviously,
G′ contains a directed spanning forest. We model the interac-
tions among agents by a multi-player game G′(V, Ωi, Ci). The
definition of game G′(V, Ωi, Ci) is similar to that in Section 3.
The cost functions of leaders and followers are given in (2)
and (3), respectively. Let x(0) = [10, 24, 5, 19, −9, 0]T , y(0) =

[10, 30, 0, −9, −3, 10]T , α = [1, 0.6, 1, 0.5, 0.7, 1]T and β =
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Fig. 4. State trajectories of all the agents with the digraph G′ .

0, 0.4, 0, 0.5, 0.3, 0]T . From Fig. 4, one can see that the trajecto-
ies of states of followers enter the convex hull spanned by those
f leaders, which is consistent with Theorem 4.

. Conclusion

In this paper, we have modeled the interactions among agents
f MASs as a multi-player game. The cost function of each agent
n the game has been defined. Followers and leaders have been
escribed by different forms of cost functions. We have studied
he coordination control of two kinds of MASs. The first kind
f MAS has no leaders. The second one is composed of leaders
nd followers. We have drawn a conclusion that agents need to
nteract with each other and find a balance between maintaining
ts own state unchanged and closing the gap with other players to
chieve coordination. Besides, some criteria have been obtained
or realizing coordination control of two kinds of MASs. The
uture work will focus on the case when there are errors between
he next states of agents and the Nash equilibrium solution. In
ddition, we will also consider the coordination control based on
ames with other forms of cost functions.
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ppendix

emma 1 ([35]). B = (bij) ∈ Rn×n is said to be strictly diagonally
dominant (SDD) if |bii| >

∑n
j=1,j̸=i |bij|, i ∈ In. The SDD matrix is

invertible, i.e. detB ̸= 0.
7

Lemma 2 (Gersghorin Circle Theorem [18]). Let C = (cij) ∈ Rn×n and
1, λ2, . . . , λn be all eigenvalues of C. We have λi ∈

⋃n
i=1 Gi, i ∈ In,

here Gi = {z | |z − cii| ≤
∑N

j=1,j̸=i |cij|}.

emma 3 ([36]). Let A = [aij]n×n be a stochastic matrix with positive
iagonal elements. If the graph GA associated with the matrix A has
spanning tree, then A is SIA, that is, ∃ v, s.t. limm→∞ Am

= 1nv
T .

ere, v is a nonnegative vector and ATv = v and 1T
nv = 1.

emma 4 ([37]). Let A be weighted adjacency matrix of a graph G.
hen aK (i, j), the ij entry in the matrix AK , denotes the weight of
aths of length K from vj to vi.

efinition 4 ([38]). A set P ⊂ Rn is convex if (1−η)x+ηy ∈ P for
ny x, y ∈ P and any η ∈ [0, 1]. The convex hull co{x1, . . . , xn} =∑n

i=1 αixi | αi ∈ R, αi ≥ 0,
∑n

i=1 αi = 1} is the minimal convex
et which contains all points in X = {x1, . . . , xn}.

emma 5 ([39]). Let L represent the Laplacian matrix of the corre-
ponding graph G. Assume that there are m(m < n) followers and
−m leaders in the network. The set of followers is {v1, v2, . . . , vm}

nd the set of leaders is {vm+1, vm+2, . . . , vn}. Let F = {1, 2, . . . ,m}

nd R = {m + 1,m + 2, . . . , n}. Then, L can be partitioned as(
LFF LFR

0(n−m)×m 0(n−m)×(n−m)

)
, (18)

here LFF ∈ Rm×m and LFR ∈ Rm×(n−m). Then, LFF is invertible if and
nly if the directed graph G has a directed spanning forest.

emma 6 ([40]). Let A ∈ Rn×n be partitioned as

=

(
A11 A12
A21 A22

)
(19)

ith Aii ∈ Rni×ni , i = 1, 2 and n1 + n2 = n. The correspondingly
partitioned presentation of A−1 is

A−1
=

(
(A11 − A12A−1

22 A21)−1 A−1
11 A12(A21A−1

11 A12 − A22)−1

(A21A−1
11 A12 − A22)−1A21A−1

11 (A22 − A21A−1
11 A12)−1

)
,

(20)

here all the relevant inverses exist.
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