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a b s t r a c t

This paper studies the resilient group consensus of continuous-time second-order multi-agent systems
(MASs) with malicious agents. Adopting the idea that each normal agent ignores the most extreme
values from neighbors, synchronous resilient impulsive algorithm based on sampled data is proposed
for normal agents with bounded communication delays to achieve group consensus. Meanwhile,
asynchronous resilient impulsive algorithm is also proposed for MASs where each agent has its own
time clock. Sufficient topological conditions are obtained for solving resilient group consensus under
synchronous and asynchronous settings, respectively. Numerical examples are provided to illustrate
the effectiveness of the theoretical results.
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1. Introduction

As an important branch of artificial intelligence, distributed
ulti-agent systems (MASs) have attracted extensive attention

n light of their autonomy, scalability and coordination. As the
ost fundamental and important problem, consensus of MASs
as evoked great enthusiasm of researchers. In the past few
ecades, there have been countless studies on consensus. The
esearch on the consensus problem can be traced back to [1].
adbabaie et al. [2] use the graph theory to analyze the consensus
or the first time. So far, the consensus problem of MASs also
akes communication delays [3], quantization [4], event triggering
ontrol [5], hybrid dynamics [6], saturation [7] etc. into account.
The deep integration of information and physical systems in

etworked control systems brings a lot of advantages, but also
akes the systems more susceptible to malicious attacks. False

nformation injected by attackers might cause physical faults and
ven lead to the collapse of the whole system. However, it is
hallenging to identify the malicious agents in distributed MASs.
herefore, resilient consensus gains more and more attention,
hich aims to design distributed algorithms to guarantee the
onsensus of normal agents in the network with malicious agents.
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To eliminate or mitigate the effects of malicious agents, ignoring
the suspicious values is a most adopted idea. The largest and
smallest f neighbors’ values were removed for approximate re-
silient consensus in a complete graph with at most f malicious
agents [8]. This algorithm inspired a family of algorithms, called
the Mean-Subsequence Reduced (MSR) algorithms [9]. To ex-
tend the work in [8] to partially connected networks, a modified
MSR algorithm, named W-MSR algorithm, was presented [10].
Moreover, the notion of network robustness was introduced to
characterize the necessary network topology. To solve resilient
consensus of second-order MASs, an adapted form of W-MSR
algorithm, called DP-MSR algorithm, was proposed [11,12]. The
results in [10] was extended to systems with locally bounded [11]
and globally bounded [12] malicious agents, respectively. Yan
et al. [13] proposed the resilient impulsive algorithm for second-
order MASs. Sufficient topological conditions were derived by
using the property of Sarymsakov matrices. Saldana et al. [14] in-
troduced SW-MSR algorithm for MASs with time-varying graphs.
Adopting the SW-MSR algorithm, resilient leader-follower con-
sensus was solved [15]. To relax the constraints on the topology,
the trusted agents were utilized in SW-MSR [16]. Mustafa and
Modares [17] proposed an adaptive resilient algorithm to mitigate
attacks on sensors and actuators. Zhao et al. [18] developed a dis-
tributed attack isolation algorithm for MASs with general higher
order dynamics. In addition to the above works, some researchers
also considered the resilient consensus under different contexts,
such as event-trigged communication [19,20], quantization [21],
time-delays [22], switched MASs [23], heterogeneous MASs [24],
etc.
silient impulsive control for group consensus of second-ordermulti-agent systems
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Due to the changes of environments or cooperative tasks, the
agents may not agree on the same value. Thus, a lot of works
devoted to group consensus from various perspectives [25–35].
By using double-tree-form transformation, some sufficient con-
ditions were presented for first-order MASs to reach group con-
sensus under switching topology [25]. A novel protocol for group
consensus was designed for heterogeneous MASs [26]. Based on
the state prediction scheme, An et al. [27] investigated group con-
sensus for MASs with communication delays. Ren et al. [30] ob-
tained sufficient condition to solve H∞ group consensus. Altafini
[32] introduced the concept of bipartite consensus, which can
be seen as a special group consensus. MASs working in an open
and harsh environment are vulnerable to attack. Due to malicious
attacks, some agents may become non-cooperative. For example,
if a multi-army vehicle is attacked on the battlefield, it may be-
come uncontrolled. This vehicle can be seen as a malicious agent.
Recently, some researchers have paid attention to resilient group
consensus. Oksuz and Akar [33] studied resilient group consensus
of first-order discrete-time MASs, where the network topology is
structured into multiple layers. Sufficient topological conditions
were presented under the proposed MSR-like algorithms. Shang
investigated resilient group consensus problem for first-order
hybrid [34] and switched [35] MASs, respectively.

Considering that many real-world systems, e.g., harmonic os-
cillators [36] and vehicles are modeled by second-order dynamics,
we study the resilient group consensus problem for second-order
MASs under the synchronous and asynchronous settings, respec-
tively. The presence of malicious agents, communication delays,
asynchronous clock and control make the convergence analysis
of the MASs very challenging. With the merits of fast transient
and smaller control effort, impulsive control scheme has been
widely used in (group) consensus of MASs [37–41]. In light of
W-MSR algorithm, resilient impulsive algorithms are proposed to
mitigate the effects of malicious agents. The main contributions
of this paper are as follows: (1) Compared with the related work
in [33–35], where the first-order MASs are studied, this paper
considers MASs with second-order agents and communication
delays, which can describe more complicated applications. (2) The
resilient impulsive algorithms for consensus in [13] is modified
for resilient group consensus, which cover consensus as a special
case. Compared with the work in [13], this paper also considers
the communication delays and asynchronous setting, where each
agent has its own clock. (3) Under the proposed algorithm, some
sufficient conditions related to the network topology are estab-
lished for solving resilient group consensus with communication
delays.

This paper is organized as follows. Problem setup is given in
Section 2. Section 3 is devoted to resilient group consensus under
the synchronous setting. Section 4 focuses on resilient group
consensus under the asynchronous setting. Section 5 gives the
simulation examples. Section 6 is the conclusion.

Notation: Let R be the set of real numbers. N and N+ are
used to denote the sets of non-negative integers and positive
integers, respectively. co{x1, x2, . . . , xn} represents the set {x|x =∑n

i=1 µixi,
∑n

i=1 µi = 1, µi > 0, i = 1, . . . , n}. Id and I+

d denote
the sets {0, 1, 2, . . . , d} and {1, 2, . . . , d}, respectively.

2. Problem setup

2.1. Graph theory

Given a digraph G = (V , E) with the node set V = I+
n ,

and edge set E ⊂ V × V . For node i, the set of neighbors is
denoted as Ni = {j ∈ V : (j, i) ∈ E}. The adjacency matrix
A = [aij]n×n is defined as aij > 0 if (j, i) ∈ E, and otherwise

= 0 with
∑n a ≤ 1. The path from node i to i is a
ij j=1 ij 1 p

2

sequence {i1, i2, . . . , ip} with (ij, ij+1) ∈ V , j ∈ I+

p−1. The graph
has a spanning tree if there exists a node, called root, from which
there is a path to every other node in the graph. A graph G1 =

V1, E1) is said to be the subgraph of G = (V , E) if V1 ⊆ V and
1 ⊆ E contains directed edges within V1. The adjacency matrix
1 associated with G1 inherits the adjacency matrix A of G.

efinition 1 (Primary Layer Subgraphs [29]). Consider a digraph
= (V , E). There exist l1 disjoint subsets V1,m ⊆ V , m ∈ I+

l1
such

that each V1,m is the largest possible subset that has a spanning
tree for its subgraph G1,m and for all i ∈ V1,m and j /∈ V1,m, it has
(j, i) /∈ E. The subgraph G1,m is called the primary layer subgraph
of G.

For graph G = (V , E) with l1 primary layer subgraphs, V̄ is
used to denote set of node which are not in the primary layer
subgraphs, that is V̄ = V\

⋃l1
m=1 V1,m.

Definition 2 (Secondary Layer Subgraphs [29]). Consider a digraph
G = (V , E). There exist l2 disjoint subsets V2,m ⊆ V̄ , m ∈ I+

l2
such that each V2,m has a spanning tree for its subgraph G2,m and
there exists exactly a node i ∈ V2,m, which is the root of the
spanning tree of G2,m, satisfying that there exist at least two nodes
p and q outside V2,m in two different subgraphs (either primary
or secondary layer) such that (p, i) ∈ E and (q, i) ∈ E and for all
j ∈ V2,m\i and r ∈ V\V2,m it has (r, j) /∈ E. The subgraph G2,m is
called the secondary layer subgraph of G.

Definition 3 ([10]). Given a digraph G = (V , E) and r ∈ N, if for
any pair of nonempty and disjoint subsets V1, V2 ⊆ V , at least
one of them Vi, i ∈ {1, 2} has a node j such that |Nj\ Vi| ≥ r , then
we say that G is r-robust.

2.2. System model

Consider a MAS consist of n agents with communication graph
G = (V , E). The agents in V are partitioned into two disjoint sets
VN and VM , with V = VN ∪ VM , where VN and VM denote the
set of normal and malicious agents, respectively. The dynamics
of agents is described by:{
ẋi(t) = vi(t), v̇i(t) = ui(t), i ∈ VN

xi(t) : arbitary, i ∈ VM
(1)

where xi(t), vi(t) ∈ R are the position and velocity of agent i,
respectively, and ui(t) ∈ R is the predefined control input.

Definition 4. The MAS (1) with communication graph G =

(V , E) is said to reach resilient group consensus if the following
conditions are satisfied:

• Group Agreement: There exist m disjoint nonempty subsets
Vs, s ∈ I+

m satisfying
⋃m

s=1 Vs = V such that for any initial states,
it has limt→∞ xi(t) = cs, where cs ∈ R is a constant and i ∈ Vs∩VN .

• Validity: There exists an interval Hs such that xi(t) ∈ Hs for
all i ∈ Vs ∩ VN .

3. Resilient group consensus under the synchronous setting

Assume that there exists l1 primary layers subgraphs G1,1 =

(V1,1, E1,1), . . ., G1,l1 = (V1,l1 , E1,l1 ) and l2 secondary layers sub-
graphs G2,1 = (V2,1, E2,1), . . . ,G2,l2 = (V2,l2 , E2,l2 ) in graph G =

(V , E). Let N s,m
i = Ni

⋂
Vs,m, s ∈ I+

2 , m ∈ I+

ls be the set of agent
i’s neighbors within subgraph Gs,m. In each subgraph Gs,m, assume
that there are ns,m normal agents and at most fs,m malicious
agents in N s,m.
i
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.1. Synchronous resilient impulsive algorithm

In this section, it is assumed that each agent can update and
end its state values at identical sampling instants. {tk} |

∞

k=0 is the
equence of sampling time and satisfies that 0 = t0 < t1 < · · · <

k < tk+1 < · · · and limk→∞ tk = ∞. In consideration of com-
unication delays, at time tk, the information received by agent
from j is xj(tk − τij(tk)), where τij(tk) is the communication delay

in the edge (j, i). Since there are malicious agents, in light of the
W-MSR algorithm, the following synchronous resilient impulsive
algorithm is designed for solving resilient group consensus:

Step 1: At t = tk, each normal agent i, i ∈ Vs,m sorts the most
ecently received neighbors’ state values xj(tk − τij(tk)), j ∈ Ni in
on-increasing order.
Step 2: If agent i is the root of G2,m, it performs a two-round

emoval procedure. In the first round, agent i removes fs,m largest
alues in N s,m

i that are higher than xi(tk). If there are less than
s,m values that are higher than xi(tk) in N s,m

i , then remove all of
them. The similar process is adopted for the values that are lower
than xi(tk). In the second round, let Θi(tk) represent the set of
remaining values in N s,m

i after the first-round of removal. Remove
all remaining values that are higher than the largest value or
lower than the smallest value in the set {Θi(tk) ∪ xi(tk)}.

Otherwise, agent i remove fs,m largest values in Ni that are
higher than xi(tk). If there are less than fs,m values higher than
xi(tk), remove all the values. The similar process is applied to the
values that are lower than xi(tk).

Step 3: Let Ri(tk) denote the set of agents removed in the above
procedure at tk. The input ui(t) is given by:

ui(t) =

⎛⎝k1
∑

j∈Ni\Ri(tk)

aij(xj(tk − τij(tk)) − xi(tk))

−k2(xi(tk) − xi(tk−1))

⎞⎠ δ(t − tk) (2)

where k1, k2 > 0 are the control gains, δ(·) represents the Dirac
function. hk = tk − tk−1 is the sampling interval. We assume
h ≤ hk ≤ h̄. Since each agent only measures and sends its
nformation at the discrete instance tk, the neighbor’s position
tate value xj(tk − τij(tk)) received by agent i can be rewritten as
xj(tk−dij(k)), where dij(k) ∈ N. Assume the communication delays
are bounded, that is 0 ≤ dij(k) ≤ d. Let d̄ = max{1, d}.

emark 1. In step1 and step 2, normal agent i will sort and
emove the extreme values received from neighbors, which can
e realized by using the standard procedures such as Quicksort
ith a time complexity of O(n2). In step 3, the impulsive input
i(t) using the remaining values is applied on agent i. In impulsive
ontrol scheme, only sampled data are utilized, but different from
he traditional sample-and-hold case in [11,12], there is no re-
uirement on the zero-order holder and ui(t) is only implemented
t tk by impulsive actuator, which will cause the velocity state of
econd-order agent to jump at tk.

.2. Convergence analysis

From (1) and (2), the closed-loop dynamics of agent i can be
ritten as:⎧⎪⎪⎨⎪⎪⎩
ẋi(t) = vi(t), v̇i(t) = 0, t ∈ (tk, tk+1],

∆vi (tk) = k1
∑

j∈Ni\Ri(tk)

aij(xj(tk − τij(tk)) − xi(tk)) (3)
− k2(xi(tk) − xi(tk−1)),
3

where ∆vi(tk) = vi(t+k )−vi(tk), vi(t+k ) = limt→t+k
vi(t). Thus, it has

xi(tk+1) = xi(tk) + hk+1vi(t+k ), (4)

and

vi(t+k ) = vi(tk) + k1
∑

j∈Ni\Ri(tk)

aij(xj(tk−dij(k)) − xi(tk))

− k2(xi(tk) − xi(tk−1))

= k1
∑

j∈Ni\Ri(tk)

aij(xj(tk−dij(k)) − xi(tk))

+ (
1
hk

− k2)(xi(tk) − xi(tk−1)).

(5)

Substituting (5) into (4) gives:

xi(tk+1) =(1 +
hk+1

hk
− k2hk+1 − k1hk+1

∑
j∈Ni\Ri(tk)

aij)xi(tk)

+ hk+1k1
∑

j∈Ni\Ri(tk)

aijxj(tk−dij(k))

+ (k2hk+1 −
hk+1

hk
)xi(tk−1)

(6)

Theorem 1. Suppose 1
h < k2 < 2

h̄
−k1, then the second-order MAS

1) under the synchronous resilient impulsive algorithm can reach
esilient group consensus if each subgraph Gs,m, s ∈ I+

2 , m ∈ I+

ls is
(2fs,m + 1)-robust.

Proof. For k ≥ 0, define xs,m(tk) = minj∈Vs,m∩VN ,τ∈Id̄
xj(tk−τ ),

xs,m(tk) = maxj∈Vs,m∩VN ,τ∈Id̄
xj(tk−τ ) and Hs,m(tk) = [xs,m(tk),

xs,m(tk)]. With the assumption 1
h < k2 < 2

h̄
− k1, the coefficients

f system (6) are non-negative and less than 1. Let γ denote
he smallest value of all non-zero coefficients. Thus, for i ∈ VN ,
i(tk+1) ∈ co{xi(tk), xi(tk−1), xj(tk−dij(k)), j ∈ Ni\Ri(tk)}.
If normal agent i ∈ V2,m

⋂
VN is the root, it has xj(tk−dij(k)) ∈

H2,m(tk), j ∈ N2,m
i \Ri(tk), since i’s any malicious neighbors in G2,m

with values outside the interval H2,m(tk) have been ignored in
the first round of removal. It follows that the values in Θi(tk) are
in the interval H2,m(tk). Then, we have xj(tk−dij(k)) ∈ H2,m(tk), j ∈

Ni\Ri(tk) because of the second round of removal. Therefore, we
obtain that xi(tk+1) ∈ H2,m(tk). If i /∈ V2,s or i ∈ V2,s is not the root,
it has Ni = N s,m

i . Thus, it has xj(tk−dij(k)) ∈ Hs,m(tk), j ∈ Ni\Ri(tk)
since the fs,m largest and smallest values at time tk have been
removed. It follows that xi(tk+1) ∈ Hs,m(tk). Therefore, it can be
concluded that xs,m(tk+1) ≤ xs,m(tk), xs,m(tk+1) ≥ xs,m(tk), and each
normal agent xi(tk) ∈ Hs,m(t0), k ≥ 0.

Since monotone functions xs,m(tk) and xs,m(tk) are bounded,
the limits of these two functions exist. We define that x∗

s,m :=

limk→+∞ xs,m(tk) ≤ x∗

s,m := limk→+∞ xs,m(tk). Next, we will prove
that the resilient group consensus by proving that x∗

s,m = x∗

s,m.
By contradiction, suppose that x∗

s,m > x∗

s,m. Choose ϵ0 > 0 and

ϵ > 0 to satisfy that x∗

s,m + ϵ0 < x∗

s,m − ϵ0 and ϵ <
γ (d̄+1)ns,m ϵ0

1−γ (d̄+1)ns,m
.

Define the sequence {ϵl} via ϵl+1 = γ ϵl − (1−γ )ϵ, l ∈ I(d̄+1)ns,m−1.
Obviously, ϵl+1 ≤ ϵl for all l. Moreover, ϵ(d̄+1)ns,m = γ (d̄+1)ns,mϵ0 −

(1 − γ (d̄+1)ns,m )ϵ > 0. Take kϵ such that xs,m(tk) < x∗

s,m + ϵ and
s,m(tk) > x∗

s,m − ϵ for k ≥ kϵ .
Define Φ(tkϵ+l, ϵl) = {j ∈ Vs,m

⋂
VN : xj(tkϵ+l) > x∗

s,m − ϵl} and
φ(tkϵ+l, ϵl) = {j ∈ Vs,m

⋂
VN : xj(tkϵ+l) < x∗

s,m + ϵl}. It is obvious
that the sets Φ(tkϵ+l, ϵl)

⋂
φ(tkϵ+l, ϵl) = ∅. If the disjoint sets

Φ(t , ϵ ) and φ(t , ϵ ) are nonempty, considering a normal
kϵ+l l kϵ+l l
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gent j ̸∈ Φ(tkϵ+l, ϵl), that is xj(tkϵ+l) ≤ x∗

s,m − ϵl, it has

j(tkϵ+l+1) ≤ (1 − γ )xs,m(tkϵ+l) + γ (x∗

s,m − ϵl)
≤ (1 − γ )(x∗

s,m + ϵ) + γ (x∗

s,m − ϵl)
= x∗

s,m − ϵl+1,

(7)

that is j /∈ Φ(tkϵ+l+1, ϵl+1). Similarly, we can show that if j ̸∈

(tkϵ+l, ϵl), then j ̸∈ φ(tkϵ+l+1, ϵl+1).
By the (2fs,m +1)-robustness of the subgraph Gs,m, there exists

n agent in Φ(tkϵ+l, ϵl) or φ(tkϵ+l, ϵl), which has at least 2fs,m + 1
neighbors outside of its own set. Suppose the normal agent j,

∈ Φ(tkϵ+l, ϵl) has this property. Due to at most fs,m agents
n N s,m

j are malicious, there are at least fs,m + 1 normal agents
n N s,m

j are outside Φ(tkϵ+l, ϵl). By the argument above, these
ormal agents will not be in Φ(tkϵ+l+m, ϵl+m) for 0 ≤ m ≤ d̄.
ccording to resilient impulsive algorithm, at least one of these
ormal neighbors’ values at current or previous time steps, upper
ounded by x∗

s,m − ϵl+d̄, will be used by agent j at time tkϵ + l+ d̄.
ence, we have

j(tkϵ+l+d̄+1) ≤ (1 − γ )(x∗

s,m + ϵ) + γ (x∗

s,m − ϵl+d̄)
= x∗

s,m − ϵl+d̄+1,
(8)

that is j /∈ Φ(tkϵ+l+d̄+1, ϵl+d̄+1). Similarly, if agent j ∈ φ(tkϵ+l, ϵl)
has at least fs,m + 1 normal neighbors in Vs,m outside φ(tkϵ+l, ϵl),
it has j /∈ φ(tkϵ+l+d̄+1, ϵl+d̄+1).

Follow the step above, since there are ns,m normal agents in
Gs,m, there exists a finite-time Ts,m ≤ (d̄ + 1)(ns,m − 1) such
that Φ(tkϵ+Ts,m , ϵTs,m ) = ∅ or φ(tkϵ+Ts,m , ϵTs,m ) = ∅. Assume
that Φ(tkϵ+Ts,m , ϵTs,m ) = ∅. According to the analysis above, it
has Φ(tkϵ+(d̄+1)(ns,m−1)+l, ϵ(d̄+1)(ns,m−1)+l) = ∅, l ∈ Id̄+1. It fol-
lows that xs,m(tkϵ+(d̄+1)ns,m ) ≤ x∗

s,m − ϵ(d̄+1)ns,m < x∗

s,m. However,
xs,m(tkϵ+(d̄+1)ns,m ) ≥ x∗

s,m due to the nonincreasing function xs,m(tk)
with a limit x∗

s,m. It is a contradiction. Thus, we have x∗

s,m = x∗

s,m.
he proof is complete. □

. Resilient group consensus under the asynchronous setting

In the synchronous algorithm in Section 3, all agents update
heir states at the same discrete times, which requires clock
ynchronization. As we known, clock synchronization requires a
ot of communication and computing resources. Thus, this section
ill consider the resilient group consensus in an asynchronous
etting.

.1. Asynchronous resilient impulsive algorithm

We assume each agent has its own time clock. For agent i,
i = {t ik} |

∞

k=1 denotes the sequence of sampling times and
atisfies 0 = t i0 < t i1 < t i2 < · · · < t ik < t ik+1 < · · · and
limk→∞ t ik = ∞. At sampling time t ik, normal agent i measures
and sends its state xi(t ik) to neighbors, and updates its velocity
using the information available. Let ξ j(t) = max{k|k ∈ N, t jk ≤ t}
nd t j

ξ j(t)
denote the latest sampling time of agent j at time t . The

asynchronous resilient impulsive algorithm is as follows:
Step 1: At t = t ik, normal agent i, i ∈ Vs,m sorts the most

recently received neighbors’ state values xj(t
j
ξ j(t ik)

), j ∈ Ni in
non-increasing order.

Step 2: Same with the step 2 in synchronous algorithm.
Step 3: Let Ri(t ik) denote the set of agents removed in the above

procedure at t ik. The input ui(t) is given by:

ui(t) =

⎛⎜⎝k1
∑

i

aij(xj(t
j
ξ j(t ik)

) − xi(t ik)) − k2(xi(t ik) − xi(t ik−1))

⎞⎟⎠

j∈Ni\Ri(tk)

4

× δ(t − t ik). (9)

The sampling intervals hi
k = t ik − t ik−1, k ∈ N+, is assumed to

satisfy that 0 < h ≤ hi
k ≤ h̄, where h and h̄ are real numbers.

4.2. Convergence analysis

Substituting (9) into (1), one has:

xi(t ik+1) =

⎛⎜⎝1 +
hi
k+1

hi
k

− k2hi
k+1 − k1hi

k+1

∑
j∈Ni\Ri(t ik)

aij

⎞⎟⎠ xi(t ik)

+ k1hi
k+1

∑
j∈Ni\Ri(t ik)

aijxj(t
j
ξ j(t ik)

)

+

(
k2hi

k+1 −
hi
k+1

hi
k

)
xi(t ik−1).

(10)

For the convenience of analysis, define the set {tk} |
∞

k=0 = {t ik | i ∈

VN , k ∈ N}, which satisfies that tk < tk+1.
Define x̃i(tk) = xi(t iξ i(tk)). Assume ts = t ik, ts+l1 = t ik+1 and

ts−l2 = t ik−1, where l1 and l2 are the functions of s. Then, it has{
xi(t ik−1) = x̃i(ts−l2 ) = x̃i(ts−l2+1) = · · · = x̃i(ts−1),

xi(t ik) = x̃i(ts) = x̃i(ts+1) = · · · = x̃i(ts+l1−1).
(11)

According to (11), rewrite (10) as:

˜i(ts+l1 ) =

⎛⎝1 +

hi
ξ i(ts+l1 )

hi
ξ i(ts+l1 )−1

− k2hi
ξ i(ts+l1 )

− k1hi
ξ i(ts+l1 )

∑
j∈Ni\Ri(ts)

aij

⎞⎠
× x̃i(ts)

+ k1hi
ξ i(ts+l1 )

∑
j∈Ni\Ri(ts)

aijx̃j(ts) +

⎛⎝k2hi
ξ i(ts+l1 )

−

hi
ξ i(ts+l1 )

hi
ξ i(ts+l1 )−1

⎞⎠
× x̃i(ts−l2 )

=

⎛⎝1 +

hi
ξ i(ts+l1 )

hi
ξ i(ts+l1 )−1

− k2hi
ξ i(ts+l1 )

− k1hi
ξ i(ts+l1 )

∑
j∈Ni\Ri(ts)

aij

⎞⎠
× x̃i(ts+l1−1)

+ k1hi
ξ i(ts+l1 )

∑
j∈Ni\Ri(ts)

aijx̃j(ts) +

⎛⎝k2hi
ξ i(ts+l1 )

−

hi
ξ i(ts+l1 )

hi
ξ i(ts+l1 )−1

⎞⎠
× x̃i(ts−1).

(12)

For i ∈ Vs,m, let d̃(s,m) be the upper bound for the number of
lements in the set {tj : tj ∈ [t ik, t

i
k+1)}. Since h ≤ hi

k ≤ h̄, any
normal agent j, j ∈ Vs,m, j ̸= i, updates its own state information
at most ⌊h̄/h⌋ times in time interval (t ik, t

i
k+1). Since there are at

most ns,m−1 possible j, we have d̃(s,m) = (⌊h̄/h⌋+1)(ns,m−1)+1.
Let d̄ = max{d̃(s,m) : s ∈ I+

2 ,m ∈ I+

ls }.
Let ts+l1 = tk+1. Based on (12), for tk+1 ∈ Πi, it has

x̃i(tk+1) =

(
1 +

hi
ξ i(tk+1)

hi
ξ i(tk+1)−1

− k2hi
ξ i(tk+1)

−k1hi
ξ i(tk+1)

∑
j∈Ni\Ri(tk−l1+1)

aij

⎞⎠ x̃i(tk)

+ k1hi
ξ i(tk+1)

∑
aijx̃j(tk−l1+1)
j∈Ni\Ri(tk−l1+1)
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+

(
k2hi

ξ i(tk+1)
−

hi
ξ i(tk+1)

hi
ξ i(tk+1)−1

)
x̃i(tk−l1 )

=

(
1 +

hi
ξ i(tk+1)

hi
ξ i(tk+1)−1

− k2hi
ξ i(tk+1)

−k1hi
ξ i(tk+1)

∑
j∈Ni\Ri(tk−di(k))

aij

⎞⎠ x̃i(tk)

+ k1hi
ξ i(tk+1)

∑
j∈Ni\Ri(tk−di(k))

aijx̃j(tk−di(k))

+

(
k2hi

ξ i(tk+1)
−

hi
ξ i(tk+1)

hi
ξ i(tk+1)−1

)
x̃i(tk−di(k)−1),

(13)

where 0 ≤ di(k) ≤ d̄ − 1. Otherwise,

x̃i(tk+1) = x̃i(tk). (14)

For normal agent i ∈ Vs,m, there exists p ∈ N such that
xi(t ik) = x̃i(tp). Since {t ik} |

∞

k=1 is a subsequence of {tk} |
∞

k=0, then
limk→∞ x̃i(tk) = cs implies that limk→∞ xi(t ik) = cs. Hence, the
normal agents with dynamics in (13) and (14) can reach resilient
group consensus if the normal agents with dynamics (10) reach
resilient group consensus.

Theorem 2. Suppose 1
h < k2 < 2

h̄
− k1, then the second-order

AS (1) under the asynchronous resilient impulsive algorithm with
nput (9) can reach resilient group consensus if each subgraph Gs,m,
s ∈ I+

2 , m ∈ I+

ls is (2fs,m + 1)-robust.

Proof. For k ≥ 0, define xs,m(tk) = minj∈Vs,m∩VN ,τ∈Id̄
x̃j(tk−τ ),

xs,m(tk) = maxj∈Vs,m∩VN ,τ∈Id̄
x̃j(tk−τ ) and Hs,m(tk) = [xs,m(tk),

xs,m(tk)]. With the assumption 1
h < k2 < 2

h̄
−k1, the coefficients of

13) are non-negative and less than 1. Let γ denote the smallest
alue of all non-zero coefficients. Thus, for i ∈ VN , if tk+1 ∈ Πi,

x̃i(tk+1) ∈ co{x̃i(tk), x̃i(tk−di(k)−1), x̃j(tk−di(k)), j ∈ Ni\Ri(tk−di(k))}.
Similar to the analysis in Theorem 1, it has x̃i(tk+1) ∈ Hs,m(tk)

at tk+1 ∈ Πi. Note that at tk+1 /∈ Πi, x̃i(tk+1) = x̃i(tk) ∈

Hs,m(tk). Therefore, it can be concluded that xs,m(tk+1) ≤ xs,m(tk),
s,m(tk+1) ≥ xs,m(tk), and each normal agent x̃i(tk) ∈ Hs,m(t0),
≥ 0.
Since monotone functions xs,m(tk) and xs,m(tk) are bounded,

the limits of these two functions exist. We define that x∗

s,m :=

limk→+∞ xs,m(tk) ≤ x∗

s,m := limk→+∞ xs,m(tk). Next, we will prove
that the resilient group consensus by proving that x∗

s,m = x∗

s,m.
By contradiction, suppose that x∗

s,m > x∗

s,m. Choose ϵ0 > 0 and

> 0 to satisfy that x∗

s,m+ϵ0 < x∗

s,m−ϵ0 and ϵ <
γ 2d̄ns,m ϵ0

1−γ 2d̄ns,m
. Define

he sequence {ϵl} via ϵl+1 = γ ϵl−(1−γ )ϵ, l ∈ I2d̄ns,m−1. Obviously,
ϵl+1 ≤ ϵl for all l. Moreover, ϵ2d̄ns,m = γ d̄ns,mϵ0−(1−γ 2d̄ns,m )ϵ > 0.
ake kϵ such that xs,m(tk) < x∗

s,m + ϵ and xs,m(tk) > x∗

s,m − ϵ for
≥ kϵ .
Define Φ(tkϵ+l, ϵl) = {j ∈ Vs,m

⋂
VN : x̃j(tkϵ ) > x∗

s,m − ϵl} and
φ(tkϵ+l, ϵl) = {j ∈ Vs,m

⋂
VN : x̃j(tkϵ+l) < x∗

s,m + ϵl}. It is obvious
hat the sets Φ(tkϵ+l, ϵl)

⋂
φ(tkϵ+l, ϵl) = ∅. If the disjoint sets

(tkϵ+l, ϵl) and φ(tkϵ+l, ϵl) are nonempty, considering a normal
gent j ̸∈ Φ(tkϵ+l, ϵl), that is x̃j(tkϵ+l) ≤ x∗

s,m − ϵl, for tkϵ+l+1 ∈
∏

j,
ccording to (13), it has

˜j(tkϵ+l+1) ≤ (1 − γ )xs,m(tkϵ+l) + γ (x∗

s,m − ϵl)
≤ (1 − γ )(x∗

s,m + ϵ) + γ (x∗

s,m − ϵl)
∗

(15)

= xs,m − ϵl+1.

5

If tkϵ+l+1 /∈
∏

j, it has x̃j(tkϵ+l+1) = x̃j(tkϵ+l+1) ≤ x∗

s,m − ϵl. From
ϵl+1 < ϵl, it has x̃j(tkϵ+l+1) ≤ x∗

s,m − ϵl+1. Thus, it can be concluded
that if j ̸∈ Φ(tkϵ+l, ϵl), then j ̸∈ Φ(tkϵ+l+1, ϵl+1). Similarly, we can
how that if j ̸∈ φ(tkϵ+l, ϵl), then j ̸∈ φ(tkϵ+l+1, ϵl+1).
By the (2fs,m +1)-robustness of the subgraph Gs,m, there exists

n agent in ∈ Φ(tkϵ , ϵ0) or φ(tkϵ , ϵ0), which has at least 2fs,m + 1
eighbors outside of its own set. Suppose the normal agent j,
∈ Φ(tkϵ , ϵ0) has this property. Due to at most fs,m agents in N s,m

j
re malicious, there are at least fs,m + 1 normal agents in N s,m

j
re outside Φ(tkϵ , ϵ0). Define the set Hk = {tk+1, tk+2, . . . , tk+d̄}.
ssume there are r times in Hkϵ+d̄ when agent i updates its
elocity state. Since there are at most d̄ elements in the set {tj :

j ∈ [t ik, t
i
k+1)}, it has r ≥ 1. Let tkϵ+d̄+pj1

denote the updating time

f agent j, where 1 ≤ pj1 ≤ d̄. Since there are at least fs,m + 1
ormal agents in N s,m

j are outside Φ(tkϵ , ϵ0), by the argument
above, these normal agents will not be in Φ(tkϵ+m, ϵm) for 0 ≤

≤ d̄ + pj1 − 1. According to (13), at least one of these normal
eighbors’ position values at the current or previous time steps,
pper bounded by x∗

s,m − ϵd̄+pj1−1, will be used by agent j at time
tkε+d̄+pj1

. Hence, one has

x̃j(tkε+d̄+pj1
) ≤ (1 − γ )(x∗

s,m + ϵ) + γ (x∗

s,m − ϵd̄+pj1−1)

= x∗

s,m − ϵd̄+pj1
,

(16)

that is j /∈ Φ(tkε+d̄+pj1
, ϵd̄+pj1

). By the argument above, it follows
that j /∈ Φ(tkϵ+2d̄, ϵ2d̄). Similarly, if agent j ∈ φ(tkϵ , ϵ0) has at
east fs,m + 1 normal neighbors in Vs,m outside φ(tkϵ , ϵ0), it has
j /∈ φ(tkϵ+2d̄, ϵ2d̄).

Follow the step above, since there are ns,m normal agents in
Gs,m, there exists a finite-time Ts,m ≤ 2d̄(ns,m − 1) such that
Φ(tkϵ+Ts,m , ϵTs,m ) = ∅ or φ(tkϵ+Ts,m , ϵTs,m ) = ∅. Assume that
Φ(tkϵ+Ts,m , ϵTs,m ) = ∅. According to the analysis above, it has
Φ(tkϵ+2d̄(ns,m−1)+l, ϵ2d̄(ns,m−1)+l) = ∅, l ∈ I2d̄. It follows that
xs,m(tkϵ+2d̄ns,m ) ≤ x∗

s,m − ϵ2d̄ns,m < x∗

s,m. However, xs,m(tkϵ+2d̄ns,m ) ≥

x∗

s,m due to the nonincreasing function xs,m(tk) with a limit x∗

s,m.
t is a contradiction. Thus, we have x∗

s,m = x∗

s,m. The proof is
complete. □

Next, we will consider the asynchronous sampling with com-
munication delays. For normal agent i at each time step t ik, the
most recently received neighbor j’state value should be
xj(t

j
ξ j(t ik)−dij(k)

), where dij(k) ∈ N is the communication delay.
Assume the communication delays are bounded, that is 0 ≤

dij(k) ≤ d. Hence, the input ui(t ik) in step 3 of asynchronous
impulsive algorithm is designed as:

ui(t ik) =

⎛⎜⎝k1
∑

j∈Ni\Ri(t ik)

aij(xj(t
j
ξ j(t ik)−dij(k)

) − xi(t ik))

−k2(xi(t ik) − xi(t ik−1))

⎞⎟⎠ δ(t − t ik). (17)

where 0 ≤ dij(k) ≤ d.
Substituting (17) into (1), one has:

xi(t ik+1) =

⎛⎜⎝1 +
hi
k+1

hi
k

− k2hi
k+1 − k1hi

k+1

∑
j∈Ni\Ri(t ik)

aij

⎞⎟⎠ xi(t ik)

+ k1hi
k+1

∑
j∈Ni\Ri(t ik)

aijxj(t
j
ξ j(t ik)−dij(k)

)

+

(
k2hi

k+1 −
hi
k+1
i

)
xi(t ik−1).

(18)
hk
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Fig. 1. A network with 3 subgroups.

Assume ts = t ik, ts+l1 = t ik+1 and ts−lij(s) = t ik−dij(k)
. Thus, we have

x̃i(ts+l1 ) =

⎛⎝1 +

hi
ξ i(ts+l1 )

hi
ξ i(ts+l1 )−1

− k2hi
ξ i(ts+l1 )

− k1hi
ξ i(ts+l1 )

∑
j∈Ni\Ri(ts)

aij

⎞⎠
× x̃i(ts+l1−1)

+ k1hi
ξ i(ts+l1 )

∑
j∈Ni\Ri(ts)

aijx̃j(ts−lij(s))

+

⎛⎝k2hi
ξ i(ts+l1 )

−

hi
ξ i(ts+l1 )

hi
ξ i(ts+l1 )−1

⎞⎠ x̃i(ts−1),

(19)

where 0 ≤ lij(s) ≤ dd̄.
Let x̃i(tk+1) = x̃i(ts+l1 ). According to (19), for tk+1 ∈ Πi, we

have

x̃i(tk+1) =

(
1 +

hi
ξ i(tk+1)

hi
ξ i(tk+1)−1

− k2hi
ξ i(tk+1)

−k1hi
ξ i(tk+1)

∑
j∈Ni\Ri(tk−di(k))

aij

⎞⎠ x̃i(tk)

+ k1hi
ξ i(tk+1)

∑
j∈Ni\Ri(tk−di(k))

aijx̃j(tk−dij(k))

+

(
k2hi

ξ i(tk+1)
−

hi
ξ i(tk+1)

hi
ξ i(tk+1)−1

)
x̃i(tk−di(k)−1),

(20)

where 0 ≤ dij(k) ≤ (d+1)d̄−1 and 0 ≤ di(k) ≤ d̄−1. Otherwise,
x̃i(tk+1) = x̃i(tk).

Theorem 3. Suppose 1
h < k2 < 2

h̄
− k1, then the second-order

AS (1) under the asynchronous resilient impulsive algorithm with
nput (17) can reach resilient group consensus if each subgraph Gs,m,
s ∈ I+

2 , m ∈ I+

ls is (2fs,m + 1)-robust.

Proof. Let d̂ = (d + 1)d̄ − 1. For k ≥ 0, define xs,m(tk) =

inj∈Vs,m∩VN ,τ∈Id̂
x̃j(tk−τ ), xs,m(tk) = maxj∈Vs,m∩VN ,τ∈Id̂

x̃j(tk−τ ) and

Hs,m(tk) = [xs,m(tk), xs,m(tk)]. The following proof is similar to that
f Theorem 2. Hence, it is omitted to save space. □
i

6

Fig. 2. State trajectories of agents under the impulsive algorithm (21).

Fig. 3. State trajectories of agents under synchronous resilient impulsive
algorithm.

5. Simulation example

Example 1. Consider a directed graph in Fig. 1, where agent 6
and 12 are malicious agents. x6(t) = 100sin(0.1t) and x12(t) =

80sin(0.3t). G1,1,G1,2 are primary layer subgraphs and G2,1 is
secondary layer subgraph. The subgraph G1,1 with f1,1 = 0
contains a spanning tree. The subgraphs G1,2 and G2,1 with f1,2 =

f2,1 = 1 are 3-robust. The nodes’s initial state values are chosen as
x(0) = [53, 25, 91, 33, −30, 55, 25, 10, −45, 12, −81, −54, 18,
−92] and v(0) = [1, 4, 2, 3, 4, 2, −3, 1, 4, −2, 3, −1, 3, −2]. The
communication delays are assumed as τ = [2, 4, 1, 1, 3, 5, 4, 2,
3, 5, 1, 2, 3, 1]. For simplification, we take hk ≡ 5. Choose k1 =

0.05, k2 = 0.34 to satisfy the condition 1
h < k2 < 2

h̄
−

k1. Fig. 2 presents the state trajectories of agents in the ad-
versarial environment under the following traditional impulsive
algorithm:

ui(t) =

⎛⎝k1
∑
j∈Ni

aij(xj(tk − τij(tk)) − xi(tk)) − k2(xi(tk) − xi(tk−1))

⎞⎠
× δ(t − tk), (21)

here sorting and removal process are not required compared
ith the proposed resilient algorithm. As seen in Fig. 2, the
ormal agents cannot reach group consensus. As a comparison,
he state trajectories of agents under the synchronous resilient
mpulsive algorithm are shown in Fig. 3. We can see that normal
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Fig. 4. State trajectories of agents under asynchronous resilient impulsive
algorithm.

agents reach group consensus with 3 different equilibrium states
as expected.

Example 2. Consider the MAS under the asynchronous resilient
impulsive algorithm. Assume the sampling time t ik = 3k for

∈ {1, 4, 8, 11}, t ik = 4k for i ∈ {2, 5, 9, 13} and t ik = 5k for
i ∈ {3, 7, 10, 14}, k ∈ N+. Keep all other parameters the same
s those in Example 1. Fig. 4 shows that the group consensus
s achieved with 3 different equilibrium states, which verify the
orrectness of Theorem 3.

. Conclusions

This paper investigated the resilient group consensus prob-
em for second-order agents with communication delays. Syn-
hronous resilient impulsive algorithm was proposed for normal
gents with bounded communication delays to achieve group
onsensus. It has been shown that the proposed algorithm guar-
ntee group consensus if the subgraph in each primary and sec-
ndary layer is (2fs,m + 1)-robust. Meanwhile, asynchronous re-
ilient impulsive algorithm was also proposed and the same
onclusion can be drawn for resilient group consensus. In order to
ecrease the communication load of agents, we will concentrate
n resilient group consensus of MASs with communication delays
nder event-triggered impulsive algorithm, where the impulse
ccurs only when an event is triggered instead of time lapses.
t is of interest to apply the proposed algorithm to practice.
uture works will also pay attention to finite-time resilient group
onsensus because of practical requirements.
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