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1. Introduction

As an important branch of artificial intelligence, distributed
multi-agent systems (MASs) have attracted extensive attention
in light of their autonomy, scalability and coordination. As the
most fundamental and important problem, consensus of MASs
has evoked great enthusiasm of researchers. In the past few
decades, there have been countless studies on consensus. The
research on the consensus problem can be traced back to [1].
Jadbabaie et al. [2] use the graph theory to analyze the consensus
for the first time. So far, the consensus problem of MASs also
takes communication delays [3], quantization [4], event triggering
control [5], hybrid dynamics [6], saturation [7] etc. into account.

The deep integration of information and physical systems in
networked control systems brings a lot of advantages, but also
makes the systems more susceptible to malicious attacks. False
information injected by attackers might cause physical faults and
even lead to the collapse of the whole system. However, it is
challenging to identify the malicious agents in distributed MASs.
Therefore, resilient consensus gains more and more attention,
which aims to design distributed algorithms to guarantee the
consensus of normal agents in the network with malicious agents.
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To eliminate or mitigate the effects of malicious agents, ignoring
the suspicious values is a most adopted idea. The largest and
smallest f neighbors’ values were removed for approximate re-
silient consensus in a complete graph with at most f malicious
agents [8]. This algorithm inspired a family of algorithms, called
the Mean-Subsequence Reduced (MSR) algorithms [9]. To ex-
tend the work in [8] to partially connected networks, a modified
MSR algorithm, named W-MSR algorithm, was presented [10].
Moreover, the notion of network robustness was introduced to
characterize the necessary network topology. To solve resilient
consensus of second-order MASs, an adapted form of W-MSR
algorithm, called DP-MSR algorithm, was proposed [11,12]. The
results in [ 10] was extended to systems with locally bounded [11]
and globally bounded [12] malicious agents, respectively. Yan
et al. [13] proposed the resilient impulsive algorithm for second-
order MASs. Sufficient topological conditions were derived by
using the property of Sarymsakov matrices. Saldana et al. [14] in-
troduced SW-MSR algorithm for MASs with time-varying graphs.
Adopting the SW-MSR algorithm, resilient leader-follower con-
sensus was solved [15]. To relax the constraints on the topology,
the trusted agents were utilized in SW-MSR [16]. Mustafa and
Modares [17] proposed an adaptive resilient algorithm to mitigate
attacks on sensors and actuators. Zhao et al. [ 18] developed a dis-
tributed attack isolation algorithm for MASs with general higher
order dynamics. In addition to the above works, some researchers
also considered the resilient consensus under different contexts,
such as event-trigged communication [19,20], quantization [21],
time-delays [22], switched MASs [23], heterogeneous MASs [24],
etc.
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Due to the changes of environments or cooperative tasks, the
agents may not agree on the same value. Thus, a lot of works
devoted to group consensus from various perspectives [25-35].
By using double-tree-form transformation, some sufficient con-
ditions were presented for first-order MASs to reach group con-
sensus under switching topology [25]. A novel protocol for group
consensus was designed for heterogeneous MASs [26]. Based on
the state prediction scheme, An et al. [27] investigated group con-
sensus for MASs with communication delays. Ren et al. [30] ob-
tained sufficient condition to solve H,, group consensus. Altafini
[32] introduced the concept of bipartite consensus, which can
be seen as a special group consensus. MASs working in an open
and harsh environment are vulnerable to attack. Due to malicious
attacks, some agents may become non-cooperative. For example,
if a multi-army vehicle is attacked on the battlefield, it may be-
come uncontrolled. This vehicle can be seen as a malicious agent.
Recently, some researchers have paid attention to resilient group
consensus. Oksuz and Akar [33] studied resilient group consensus
of first-order discrete-time MASs, where the network topology is
structured into multiple layers. Sufficient topological conditions
were presented under the proposed MSR-like algorithms. Shang
investigated resilient group consensus problem for first-order
hybrid [34] and switched [35] MASs, respectively.

Considering that many real-world systems, e.g., harmonic os-
cillators [36] and vehicles are modeled by second-order dynamics,
we study the resilient group consensus problem for second-order
MASs under the synchronous and asynchronous settings, respec-
tively. The presence of malicious agents, communication delays,
asynchronous clock and control make the convergence analysis
of the MASs very challenging. With the merits of fast transient
and smaller control effort, impulsive control scheme has been
widely used in (group) consensus of MASs [37-41]. In light of
W-MSR algorithm, resilient impulsive algorithms are proposed to
mitigate the effects of malicious agents. The main contributions
of this paper are as follows: (1) Compared with the related work
in [33-35], where the first-order MASs are studied, this paper
considers MASs with second-order agents and communication
delays, which can describe more complicated applications. (2) The
resilient impulsive algorithms for consensus in [13] is modified
for resilient group consensus, which cover consensus as a special
case. Compared with the work in [13], this paper also considers
the communication delays and asynchronous setting, where each
agent has its own clock. (3) Under the proposed algorithm, some
sufficient conditions related to the network topology are estab-
lished for solving resilient group consensus with communication
delays.

This paper is organized as follows. Problem setup is given in
Section 2. Section 3 is devoted to resilient group consensus under
the synchronous setting. Section 4 focuses on resilient group
consensus under the asynchronous setting. Section 5 gives the
simulation examples. Section 6 is the conclusion.

Notation: Let R be the set of real numbers. N and N* are
used to denote the sets of non-negative integers and positive
integers, respectively. co{xy, X2, ..., X} represents the set {x|x =
S MiXi, Yoo i =1, > 0,i=1,...,n}. Zy and Z; denote
the sets {0, 1,2,...,d} and {1, 2, ..., d}, respectively.

2. Problem setup
2.1. Graph theory

Given a digraph G = (V,E) with the node set V = Z],
and edge set E C V x V. For node i, the set of neighbors is
denoted as N; = {j € V : (j,i) € E}. The adjacency matrix
A = [ajjlnxn is defined as a; > 0 if (j,i) € E, and otherwise
a; = 0 with Zj":] aj < 1. The path from node i; to i, is a
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sequence {iy, iz, ..., 1} with (ij,i11) € V,j € I;_l. The graph
has a spanning tree if there exists a node, called root, from which
there is a path to every other node in the graph. A graph G; =
(V4, Eq) is said to be the subgraph of G = (V,E) if V; C V and
E; C E contains directed edges within V. The adjacency matrix
Aq associated with G, inherits the adjacency matrix A of G.

Definition 1 (Primary Layer Subgraphs [29]). Consider a digraph
G = (V, E). There exist I; disjoint subsets V; ,, SV, m e I,T such
that each V; , is the largest possible subset that has a spanning
tree for its subgraph Gy, and for all i € Vq, and j ¢ Vy p, it has
(j, 1) ¢ E. The subgraph Gy, is called the primary layer subgraph
of G.

For graph G = (V, E) with I; primary layer subgraphs, V is
used to denote set of node which are not in the primary layer
subgraphs, that is V = V\ " _, Vy .

Definition 2 (Secondary Layer Subgraphs [29]). Consider a digraph
G = (V,E). There exist I, disjoint subsets V,,, € V, m € I,er
such that each V; ;,; has a spanning tree for its subgraph G, ;, and
there exists exactly a node i € V,,,, which is the root of the
spanning tree of G, n, satisfying that there exist at least two nodes
p and q outside V5, in two different subgraphs (either primary
or secondary layer) such that (p, i) € E and (q, i) € E and for all
je Vom\iand r € V\V,, it has (r,j) ¢ E. The subgraph G, is
called the secondary layer subgraph of G.

Definition 3 ([10]). Given a digraph G = (V,E) and r € N, if for
any pair of nonempty and disjoint subsets V;, V, C V, at least
one of them V;, i € {1, 2} has a node j such that |N;\ V;| > r, then
we say that G is r-robust.

2.2. System model

Consider a MAS consist of n agents with communication graph
G = (V,E). The agents in V are partitioned into two disjoint sets
Vy and Vy, with V. = Vy U Vy, where Vy and V), denote the
set of normal and malicious agents, respectively. The dynamics
of agents is described by:

xi(t) = vi(t), vi(t) = ui(t),
:xi(t) : arbitary,

ie Vn

. (1)
ieVy

where x;(t), vi(t) € R are the position and velocity of agent i,
respectively, and u;(t) € R is the predefined control input.

Definition 4. The MAS (1) with communication graph G =
(V,E) is said to reach resilient group consensus if the following
conditions are satisfied:

e Group Agreement: There exist m disjoint nonempty subsets
Vs, s € 7, satisfying | i, Vs = V such that for any initial states,
it has lim¢_, o, x;(t) = ¢, where ¢; € Ris a constantand i € V;NVy.

e Validity: There exists an interval Hs such that x;(t) € H; for
allie VsNVy.

3. Resilient group consensus under the synchronous setting

Assume that there exists [; primary layers subgraphs G, =
(Vi1,E11), - Gy, = (Vay,, Eqy) and I, secondary layers sub-
graphs Gy = (Vo,1,E2.1), ..., Go i, = (Va1,, E21,) in graph G =
(V,E). Let NJ™ = Ny(\Vsm, S € I, m € Ils+ be the set of agent
i’s neighbors within subgraph G .. In each subgraph G ,, assume
that there are n;, normal agents and at most f;, malicious
agents in N;""™.
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3.1. Synchronous resilient impulsive algorithm

In this section, it is assumed that each agent can update and
send its state values at identical sampling instants. {t;} 72, is the
sequence of sampling time and satisfiesthat 0 =ty < t; <--- <
ty < tgr1 < --- and limg_, o ty = oo. In consideration of com-
munication delays, at time t;, the information received by agent
i from j is x;(ty — 7;i(tx)), where t;(t;) is the communication delay
in the edge (j, i). Since there are malicious agents, in light of the
W-MSR algorithm, the following synchronous resilient impulsive
algorithm is designed for solving resilient group consensus:

Step 1: At t = f;, each normal agent i, i € V; ,; sorts the most
recently received neighbors’ state values x;(t, — 7;i(tx)), j € N; in
non-increasing order.

Step 2: If agent i is the root of G, p, it performs a two-round
removal procedure. In the first round, agent i removes f; , largest
values in Nf"" that are higher than x;(ty). If there are less than
fsm values that are higher than x(t) in N, then remove all of
them. The similar process is adopted for the values that are lower
than x;(ty). In the second round, let ®;(t;) represent the set of
remaining values in Nf '™ after the first-round of removal. Remove
all remaining values that are higher than the largest value or
lower than the smallest value in the set {@;(ty) U x;(t)}.

Otherwise, agent i remove f; ,, largest values in N; that are
higher than x;(ty). If there are less than f,, values higher than
xi(ty), remove all the values. The similar process is applied to the
values that are lower than x;(ty).

Step 3: Let R;(ty) denote the set of agents removed in the above
procedure at t,. The input u;(t) is given by:

w(t)= (ki D @yt — (1)) — xi(t)

JEN;\R;(ty)

—ka(xi(t) — xi(te—1)) | 8(t — &) (2)

where ki, k; > 0 are the control gains, §(-) represents the Dirac
function. hy = tx — ty_; is the sampling interval. We assume
h < h, < h. Since each agent only measures and sends its
information at the discrete instance t, the neighbor’s position
state value x;(t, — 7;(tx)) received by agent i can be rewritten as
Xj(tk—d,-j(k))- where d;j(k) € N. Assume the communication delays

are bounded, that is 0 < dj(k) < d. Let d = max{1, d).

Remark 1. In stepl and step 2, normal agent i will sort and
remove the extreme values received from neighbors, which can
be realized by using the standard procedures such as Quicksort
with a time complexity of O(n?). In step 3, the impulsive input
u;(t) using the remaining values is applied on agent i. In impulsive
control scheme, only sampled data are utilized, but different from
the traditional sample-and-hold case in [11,12], there is no re-
quirement on the zero-order holder and u;(t) is only implemented
at t, by impulsive actuator, which will cause the velocity state of
second-order agent to jump at .

3.2. Convergence analysis

From (1) and (2), the closed-loop dynamics of agent i can be
written as:

xi(t) = vi(t), v;(t) =0, t € (ty, tigl,
Av; (t) = ki Z ai(x;(te — Ti(t)) — Xi(tx)) (3)
JEN;\R;(ty)
— ka(xi(tx) — xi(te—1)),
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where Avi(te) = vi(t;) — vi(ty), vi(ty") = lim, _, .+ vi(t). Thus, it has

Xi(tir1) = Xi(t) + hi (), (4)
and
vilty) = vite) + kq Z a(Xj(te—d;ick)) — Xi(ti))
JEN;\Ri(ty)
— ka(xi(t) — Xi(te—1))
=k D a(x(teg00) — xi(t) )
JEN;\R;(ty)

+ G = R )ox) = (1)
k

Substituting (5) into (4) gives:

h
Xi(tip1) =(1 + = — kohgpr — kahiyr Z aij )xi(ty)
hy, A
JEN;\R;(ty)
+ heaky Y agi(team) (6)
JEN;\R;(ty)
h
+ (kahyq — %)Xi(fk—l)
k

Theorem 1. Suppose ; < k, < 2 —ky, then the second-order MAS
(1) under the synchronous resilient impulsive algorithm can reach
resilient group consensus if each subgraph Ggp, s € Iz+ ,me I,j is
(2fs,m + 1)-robust.

Proof. For k > 0, define x, (&) = minjevsymnvNJeIa Xj(tr—z )

is,m(tk) = manEVSVmHVN,reIa xj(tk—r) and Hs.m(tk) = [Ks,m(tk),
X5 m(ti)]. With the assumption § < ky < % — kyq, the coefficients
of system (6) are non-negative and less than 1. Let y denote
the smallest value of all non-zero coefficients. Thus, for i € Vy,
Xi(te1) € cofxi(te), Xi(te—1), Xj(tk—dy(0), J € Ni\Ri(ti)}-

If normal agent i € V,, () Vi is the root, it has Xj(fk—d,-j(k)) €
Hy m(t).j € Nf’m\Ri(tk), since i's any malicious neighbors in Gy p,
with values outside the interval Ha n(tx) have been ignored in
the first round of removal. It follows that the values in ®;(t;) are
in the interval H; ,;(tx). Then, we have xj(tk_dij(k)) € Hym(tk),j €
N;\Ri(ty) because of the second round of removal. Therefore, we
obtain that xj(tx+1) € Ha m(t). If i ¢ Vo5 ori € V, 5 is not the root,
it has N; = Nis,m. Thus, it has Xj(tk—d,-j(k)) € H; m(tk),j € Ni\Ri(ty)
since the f; , largest and smallest values at time t; have been
removed. It follows that x;(tx+1) € Hsm(t). Therefore, it can be
concluded that Xs m(tk+1) < Xs.m(tk), X (Ek1) > Xg 1 (8), and each
normal agent x;(tx) € Hs m(to), k > 0.

Since monotone functions X ,(tx) and x . (t;) are bounded,
the limits of these two functions exist. We define that X;, =
limys 100 Xs m(tk) < X = My 00 X 1 (£k). Next, we will prove
that the resilient group consensus by proving that Xj,m =X

By contradiction, suppose that x; ., > x¥, . Choose ¢, > 0 and
y(a+1)”s.m €

. N —_—
€ > 0 to satisfy that x7,, + €0 < X;,, — €0 and € < 1@
Define the sequence {¢/} via ;41 = ye,—(1—y)e, 1 € Zgi 1), -1

Obviously, €41 < € for all L. Moreover, €, ), ,, = ¥ smey —

(1 — yW@+imsmye > 0. Take k. such that X, m(tx) < X;,, + € and
X m(te) > x5, — € for k > ke.

Define ¢(tke+ls e)=1{ € Vim ﬂVN : Xj(t[<€+1) > ?:m — ¢} and
d(teeri€) = € Vsm (W @ Xi(tee11) < X5, + €). It is obvious
that the sets @(ty 41, €)[ ) P(tk.+1, €1) = . If the disjoint sets
D(ty, 41, €1) and @(t, 41, €/) are nonempty, considering a normal
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agent j & ®@(ty, 41, €), that is x;(tx, 41) < x — ¢, it has
Xi(te+141) < (1 = ¥ Xsm(tie ) + ¥ (X — 61)
<(A=y)Xn+e)+yvE,—e) (7)

= Xs,m — €141,

that is j ¢ @(tk.+1+1, €1+1) Similarly, we can show that if j ¢
O (tr+1, €1), then j & o(t, 1111, €141)

By the (2f; ;n + 1)-robustness of the subgraph G; ;,, there exists
an agent in @(ty 4, €) or @(tx 41, €), which has at least 2f; , + 1
neighbors outside of its own set. Suppose the normal agent j,
j € @(tk.4i, ) has this property. Due to at most f;, agents
in st’m are malicious, there are at least f; , + 1 normal agents
in N'™ are outside @(ty 41, €). By the argument above, these
normal agents will not be in @(tx, ti+m, €4m) for 0 < m < d.
According to resilient impulsive algorithm, at least one of these
normal neighbors’ values at current or previous time steps, upper
bounded by X; , — €, 3, will be used by agent j at time t;, 414 d.
Hence, we have

(1_y)(5m+€)+y(5m 6[+a)
- Xs,m — €14d+1s
that is j ¢ (b, a.1- €a.1)- Similarly, if agent j € ¢(ty 41, €1)
has at least f; m + 1 normal neighbors in Vs, outside ¢(ty, 41, €),

it hasj & ¢ty pirarts €irdt ) .
Follow the step above, since there are ng,, normal agents in
Gs.m, there exists a finite-time T;, < (d + 1)(ng,m — 1) such

Xt 4igdg1) <

(8)

that D(tk 47,y €1m) = O OF Ptk 415 €1,.m) = 9. Assume
that @(ty 11, . €r,,,) = 9. According to the analysis above, it
has (G 1ymngm—1)40 €(d+1)(nsm—1)+z) = 0,1 € g It fol-

lows that Xs m(fy @ 1nn) = Xsm — €asingn < X;.m- However,
Xs.m(y, 4@t 1)ng m) > X,  due to the nonincreasing function xs,m(tk)
with a limit X .. It is a contradiction. Thus, we have X{ , = x} .
The proof is complete O

4. Resilient group consensus under the asynchronous setting

In the synchronous algorithm in Section 3, all agents update
their states at the same discrete times, which requires clock
synchronization. As we known, clock synchronization requires a
lot of communication and computing resources. Thus, this section
will consider the resilient group consensus in an asynchronous
setting.

4.1. Asynchronous resilient impulsive algorithm

We assume each agent has its own time clock. For agent i,
I = {tk} lr=; denotes the sequence of sampling times and
satisfies 0 = th <t <t < s < th < ti,, < - and
limg_, o £, = oo. At samplmg time t;, normal agent i measures
and sends its state x;(t;) to neighbors, and updates its velocity
using the information available. Let £/(t) = max{k|k € N, t, < t}
and téf(r) denote the latest sampling time of agent j at time t. The
asynchronous resilient impulsive algorithm is as follows:

Step 1: Att = t,i, normal agent i, i € Vi, sorts the most
recently received neighbors’ state values x](t’ ) j € N;in

non-increasing order.

Step 2: Same with the step 2 in synchronous algorithm.

Step 3: Let R,'(t,i) denote the set of agents removed in the above
procedure at t,i. The input u;(t) is given by:

w(t)= ki > et} ) = x(t)) — ka(xi(th) — xi(tf_,)

_ &tl)
JENAR(t])

hgi(f )
Xi(tgr1) = 1+% kzhi
&
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x 8(t — th). (9)
The sampling intervals hi = t, —t. |,k € N, is assumed to
satisfy that 0 < h < h’ < h where h and h are real numbers.

4.2. Convergence analysis

Substituting (9) into (1), one has:

A hi )
Xty ) = 1+ h+l kohiy — kil Z ai | xi(t)
k JEN RK(t])
kil D0 a(t) (10)
JENi\Ri(t}.)

hi ‘
+ | kahiy — = ) xi(th_s).
hk

For the convenience of analysis, define the set {t;} |72, = {t,’; |ie
Vn, k € N}, which satisfies that t; < tyq. ' .
Define X;(t;) = x,(t it )) Assume t; = f, tsy, = t,,, and

ts_, = t,’;q, where [ and I, are the functions of s. Then, it has

{Xi(t]iﬂ = Xi(ts—t,) = Xi(t—py+1) = - - - = Xi(ts—1), (1)
xi(t,) = Xi(ts) = Xi(tsp1) = - - - = Xi(bsqp;—1)-
According to (11), rewrite (10) as
hi,
~ El([sﬂ )
Xiltss) = (14— — = kzh;‘(t ) kih S‘(ts+r Z i
Ei(ts4ry)-1 JEN;\Ri(ts)
x Xi(ts)
hi,
i - i '(tsyry)
! X L I S
kil D @)+ | kehy = L
JEN;\Rj(ts) [5+‘1) 1
X ;(i(ts—lz)
hi,
_ §i(ts41,) i
= | 1+ —ehy ) — kil g,(w > g
§l(ts41;)-1 JEN}\Ri(ts)
X Xi(tsyr—1)
hi,
i - i §'tsyry)
i v i 1
+ k1hsi(ts+ll) Z al]X](ts) + kzhé'([erll) h,
JENi\R;(ts) §'(ts41y)—1
X Xi(ts_1).
(12)

Fori € Vi, let Ei(s, m) be the upper bound for the number of
elements in the set {t; : ; € [t, t;,,)}. Since h < hj < h, any
normal agent j, j € Vs m,j # i, updates its own state information
at most |h/h| times in time interval (t,i, t,’;H). Since there are at
most n , —1 possible j, we have d(s, m) = ( Lh/h] +1) (N, m—1)+1.
Let d = max{d(s,m):s € T, , m € I,"}.

Let tyy;, = ty41. Based on (12), for ty4q € IT;, it has

i
) £ (tk+1)
(tk41)—1

k]h

> aij

JEN\R;(tr—1;+1)

+ k1hl i) Z iiXi(te—t; 1)

JENi\Ri(tr—1;+1)

El(fk+]) Xf(tl<)
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hi.
i &' (tkt1) I~
+ (kzht‘?i(tkﬂ) K ) Xi( e ll)
€ty 1)1
£1(tgg1)

hl
= 1+h1

£ty 1)1

l .
k]h §(tk+1) Z di

JENi\Ri(ti—d;(k))

i
g D

JENi\Ri(tr—dj(k))

hi.
i Eltrey1) ~
+ (kzhgf(tkﬂ) - h,kH) Xi(tk—dy(l)—1)s

£'(tkg1)—1

i
— kel
Xi(ty) (13)

aiiXi(tk—di(k))

where 0 < d;(k) < d — 1. Otherwise,
Xi(tr1) = Xi(ty). (14)

For normal agent i € Vi, there exists p € N such that
x(tl) = X(tp). Since {t}} |2, is a subsequence of {tx} [2°,, then
limy_ 0 Xi(tx) = ¢, implies that limy_ X(t) = c;. Hence, the
normal agents with dynamics in (13) and (14) can reach resilient
group consensus if the normal agents with dynamics (10) reach
resilient group consensus.
Theorem 2. Suppose ;

< ky < % — ky, then the second-order

MAS (1) under the asynchronous resilient impulsive algorithm with
input (9) can reach resilient group consensus if each subgraph G m,
s€T,, meTx is(2fim+ 1)-robust.

Proof. For k > 0, define x, . (tx) = minjevs,mmvN,reza Xi(tk—r),
is,m(tk) = maxjevsymﬁVN,rEIa Rj(tk—r) and Hs,m(tk) = [Ks,m(tkl
X5 m(ti)]. With the assumption } < ky < %—Iq, the coefficients of
(13) are non-negative and less than 1. Let y denote the smallest
value of all non-zero coefficients. Thus, for i € Vy, if ty. 1 € IT;,
Xi(teg1) € cofXi(te), Xi(ty— di(k)—1)> Xi(tr—aiiy)s J € Ni\Ri(tr—ayiy)}-

Similar to the analysis in Theorem 1, it has X;(tx.1) e Hg m(tr)
at ty.; € [T Note that at tiq ¢ [T, Xi(tkr1) = Xi(t) €
H; m(ty). Therefore, it can be concluded that X ;(tk+1) < Xs.m(tk),
X m(tkr1) = g (6), and each normal agent Xi(ty) € Hgm(to),
k>o0.

Since monotone functions X, ,(t;) and x, ..(f;) are bounded,
the limits of these two functions exist. We define that X; , =
limy—s 100 Xs,m(t) < X5y o= limps, 400 gs’m(tk). Next, we will prove
that the resilient group consensus by proving that E;m =X

By contradiction, suppose that i’s"’m > X7 .. Choose ¢y > 0 and

ZHnsm
_ y 2t meg
€pand € < P T

the sequence {¢;} viae; 1 = ye—(1—y)e, l € Ling —1- Obviously,
€1 < € for all L Moreover, e,g, = ysmeg—(1—y*sm)e > 0.
Take k. such that x; ,,(tx) < ?;‘m + € and x () > x5, — € for
k > k..

Define @(ty, 41, €1) = {j € Ve [\ Vn : )?J(tke) > X, n — €} and
O(tk+1,€) = (i € Vim ﬂVN Xj(te.+1) < x5, + €}. It is obvious
that the sets @(ty, 1, €) () P(te.+1, €) = (ZJ If the disjoint sets
D(ty. 41, €1) and @(ty, 41, €/) are nonempty, considering a normal
agent j & ®(ty, 41, ), that is X;(te, 1) < X;,, — €, for ti_yi11 € [,
according to (13), it has '

;(j(tk€+l+1) < (1= y)xsm(tk.41) + V(X;m —€)
SA=Y)Ep+e)+ryE,—a) (15)
= E:m — €[41.

€ > 0 to satisfy that x}, +eo < X; , Define

ISA Transactions xXx (XXxX) XxX

If te 4101 € l—ljv it has X;(tk +1+1) = Xj(tketi+1) < R:m — €. From
€141 < €, it has Xj(ty, yi41) < i;k,m — €1+1. Thus, it can be concluded
that if j & @(tx. 41, ), then j & D(tk 4141, €1+1)- Similarly, we can
show that if j & ¢(tk, 41, €), then j & ¢(t 1111, €111)-

By the (2f; ;n + 1)-robustness of the subgraph G; ,, there exists
an agent in € @(ty,, €) or ¢(ty, , €0), which has at least 2f; ,, + 1
neighbors outside of its own set. Suppose the normal agent j,
J € ®(tk,, €0) has this property. Due to at most f; , agents in N
are malicious, there are at least f; , + 1 normal agents in N
are outside @(ty,, €y). Define the set Hy = {ti41, tky2, - - tk+d}
Assume there are r times in H,_,; when agent i updates its
velocity state. Since there are at most d elements in the set {tj :
tj € [ty ti 1)} ithasr > 1. Let t, i), denote the updating time

of agent j, where 1 < p’1 < d. Since there are at least f; , + 1
normal agents in N are outside ®(fy,,€g), by the argument

above, these normal agents will not be in @(ty, ym, €m) for 0 <
m<d+ p’1 — 1. According to (13), at least one of these normal
neighbors’ position values at the current or previous time steps,
upper bounded by X;“_m — ea+p,-]71, will be used by agent j at time

t,<g+a+p,'l. Hence, one has

v : — Evial Evial J— _ .
Xj(t’(g+a+}7]1) =< (] J/)(Xs,rn + 6) + y(xs’m 6d+p1171) (]6)
=X5’m _6a+pi1’
that l.S jé db(tks PR € N ) ) By tt?e argum.ent above, it follows
that j ¢ @(t, 4,3, €23)- Similarly, if agent j € ¢(t,, €0) has at
east f;m + 1 normal neighbors in Vg, outside ¢(ty,, €p), it has

J ¢ ¢ty 1235 €23)- ) .
Follow the step above, since there are ng,, normal agents in
Gs.m, there exists a finite-time Ts,, < 2d(ns, — 1) such that

Dbk Ty s €Tsm) = O O Gtk 41s s €T,,,) = ©. Assume that
D (b 4Ty s €T,m) = 9. According to the analysis above, it has
¢(tke+2d(nsm 1)+ 62d(nsm 1)+l) = @ Il € Izd It follows that

Xs (e, 4 2dng ) = Xem

n due to the nonincreasing function X, xs m(tk) with a limit X
lt 1s a contradiction. Thus, we have x = X{ - The proof 1s
complete. O o

— €9ng < Xo.;m- HoWever, Xs m(ty, +2dnsm) >

Next, we will consider the asynchronous sampling with com-
munication delays. For normal agent i at each time step t,, the
most recently received neighbor j'state value should be

(téj(t) " (k)) where dij(k) € N is the communication delay.

Assume the communication delays are bounded, that is 0 <
dij(k) < d. Hence, the input u(tk) in step 3 of asynchronous
impulsive algorithm is designed as:

u(t) = | ki o a5t g0 — %0

_ (k)
JENi\Ri(t;)
—ka(xi(t) = Xi(ti_1)) | 8( = £)- (17)
where 0 < d;(k) < d.
Substituting (17) into (1), one has:

Py Meiq
X,'(tk+1) =11+ -

Hi — kol q — kihy 4 Z aj | xi(t)
k

JEN\Ri(th)
i (]
+ kb, Z‘ G50 g500) (18)
JENI\Ri(t})

) h
+ (kzh;ﬁ»l - ;f) Xi(ty_y).
k
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Fig. 1. A network with 3 subgroups.

Assume t; = t}, toy, =t and b tyts) = t,ifdij(k). Thus, we have

hi.
- E'(tsy1y) i i
xi(ts+l1) =11+ = it B kzh;i(tsﬂl) — k1h1§i(ts+11) Z ajj
Ei(ts 1)1 JENi\Ri(ts)
X Xi(ts1,-1)
i -
+ klhgi(tsﬂl) Z @iXi(Ls—1(s5))
JENi\R;(ts)
hi,
: El(tsy1y) ~
i _ 1 .
+ kzhgi(ts+’]) hi ] xl(ts—l)»
£ty )1
(19)

where 0 < [;(s) < dd.
Let Xi(tk+1) = Xi(ts41,). According to (19), for tyyq € IT;, we
have

-~

h,
5 §'(tk+1) i
Xi(ter1) = (1 + % — ksh,

) £i(t11)
§!(trq1)—1

i s
_klhfi(tk+1) Z ay | %i(t)
JENI\R(tk—ayi) (20)

+k1héi(fk+1) Z %5 k—dy )
JENi\Ri(tk—d;(k))

hi,
i El(tkr1) ~
+ (kzhlsi(tm) - hl"“) Xi(te—d;(k)—1),
& (tk41)—1
where 0 < dji(k) < (d+1)d—1and 0 < d;(k) < d — 1. Otherwise,
Xi(ti1) = Xi(te).

2

Theorem 3. Suppose % <k < § - k1, then the second-order

MAS (1) under the asynchronous resilient impulsive algorithm with
input (17) can reach resilient group consensus if each subgraph G p,
se Iy, me1 is (2fim+ 1)-robust.

Proof. Let d = (d + 1)d — 1. For k > 0, define x,,(t;) =
minjevs,mﬂVN,reIa )?j(tkfr ) Xsm(ty) = maxjevsymﬂVN,reIa 52j(tkfr) and
Hs m(te) = [, 1, (tk), Xs,m(tx)]. The following proof is similar to that
of Theorem 2. Hence, it is omitted to save space. O
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position state X

* malicious node

-2.54 == group1

== group 2

—5.0 1 ] — = group3
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Time(s)

Fig. 2. State trajectories of agents under the impulsive algorithm (21).
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Fig. 3. State trajectories of agents under synchronous resilient impulsive
algorithm.

5. Simulation example

Example 1. Consider a directed graph in Fig. 1, where agent 6
and 12 are malicious agents. xg(t) = 100sin(0.1t) and x15(t) =
80sin(0.3t). Gy.1, Gy are primary layer subgraphs and G, is
secondary layer subgraph. The subgraph G;; with fi; = 0
contains a spanning tree. The subgraphs G ; and G, ; with f; 5, =
f2.1 = 1 are 3-robust. The nodes’s initial state values are chosen as
x(0) = [53, 25,91, 33, —30, 55, 25, 10, —45, 12, —81, —54, 18,
—92] and v(0) = [1,4,2,3,4,2,-3,1,4,-2,3, —1, 3, —2]. The
communication delays are assumed as t = [2,4,1,1,3,5,4,2,
3,5, 1, 2, 3, 1]. For simplification, we take h;y = 5. Choose k; =
0.05, k; = 0.34 to satisfy the condition } < k; <

ky. Fig. 2 presents the state trajectories of agents in the ad-
versarial environment under the following traditional impulsive
algorithm:

=N

ui(t)y = ks Z aii(xi(te — i(te)) — xi(te)) — ka(Xi(t) — Xi(tx—1))

JjeN;
x 8(t — ty), (21)

where sorting and removal process are not required compared
with the proposed resilient algorithm. As seen in Fig. 2, the
normal agents cannot reach group consensus. As a comparison,
the state trajectories of agents under the synchronous resilient
impulsive algorithm are shown in Fig. 3. We can see that normal
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Fig. 4. State trajectories of agents under asynchronous resilient impulsive
algorithm.

agents reach group consensus with 3 different equilibrium states
as expected.

Example 2. Consider the MAS under the asynchronous resilient
impulsive algorithm. Assume the sampling time t,i = 3k for
i€ (1,48 11}, t, = 4k fori € {2,5,9,13} and t, = 5k for
i € {3,7,10, 14}, k € N*. Keep all other parameters the same
as those in Example 1. Fig. 4 shows that the group consensus
is achieved with 3 different equilibrium states, which verify the
correctness of Theorem 3.

6. Conclusions

This paper investigated the resilient group consensus prob-
lem for second-order agents with communication delays. Syn-
chronous resilient impulsive algorithm was proposed for normal
agents with bounded communication delays to achieve group
consensus. It has been shown that the proposed algorithm guar-
antee group consensus if the subgraph in each primary and sec-
ondary layer is (2f;n + 1)-robust. Meanwhile, asynchronous re-
silient impulsive algorithm was also proposed and the same
conclusion can be drawn for resilient group consensus. In order to
decrease the communication load of agents, we will concentrate
on resilient group consensus of MASs with communication delays
under event-triggered impulsive algorithm, where the impulse
occurs only when an event is triggered instead of time lapses.
It is of interest to apply the proposed algorithm to practice.
Future works will also pay attention to finite-time resilient group
consensus because of practical requirements.
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