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Cooperative Output Regulation for Linear
Multiagent Systems via Distributed Fixed-Time

Event-Triggered Control
Zheng Zhang , Shiming Chen , and Yuanshi Zheng , Member, IEEE

Abstract— In this article, we consider the cooperative output
regulation for linear multiagent systems (MASs) via the distrib-
uted event-triggered strategy in fixed time. A novel fixed-time
event-triggered control protocol is proposed using a dynamic
compensator method. It is shown that based on the designed
control scheme, the cooperative output regulation problem is
addressed in fixed time and the agents in the communication
network are subject to intermittent communication with their
neighbors. Simultaneously, with the proposed event-triggering
mechanism, Zeno behavior can be ruled out by choosing the
appropriate parameters. Different from the existing strategies,
both the compensator and control law are designed with inter-
mittent communication in fixed time, where the convergence time
is independent of any initial conditions. Moreover, for the case
that the states are not available, the output regulation problem
can further be addressed by the distributed observer-based
output feedback controller with the fixed-time event-triggered
compensator and event-triggered mechanism. Finally, a simu-
lation example is provided to illustrate the effectiveness of the
theoretical results.

Index Terms— Cooperative control, event-triggered protocol,
fixed time, multiagent systems (MASs), output regulation.

I. INTRODUCTION

THE investigation of cooperative control of multiagent sys-
tems (MASs) has become one of the hot spots in recent

years, due to its wide application in modern engineering,
such as mechanical arm operation and satellites alignment.
Research on cooperative control problems usually includes
consensus, formation, and flocking. In addition, cooperative
output regulation has also received many scholars’ universal
attention, which aims to enable agents to track given reference
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input and restrain external disturbances. The cooperative out-
put regulation problems can include some cooperative control
problems, such as leader-following consensus [1]–[3] and
synchronization. Some important results of cooperative output
regulation of MASs have been reported in [4] and [5].

It is worth noting that in the above studies, the interactive
information model of MAS depends on continuous commu-
nication between adjacent agents. However, it is not difficult
to know that continuous communication would bring about
tremendous resource waste. Moreover, each agent usually
has limited onboard computing resources and communication
bandwidth, which further limits the application of MASs in
practical engineering. Due to this, more works have been
focused on intermittent communication control approaches.
One traditional intermittent communication control strategy is
developed based on periodic sampling and may be called time-
triggered sampling, where information exchange occurs when
a sampling period elapses. However, once the sampling period
is small, it will lead to communication resource wastage.
For this reason, the intermittent communication control based
on event-triggered is proposed, where a control task related
to communication executes only when a triggering condition
is met. In this regard, the event-triggered method can save
processing and communication resources and ensure the con-
trol performance of the system.

Recently, event-triggered control strategies have been used
to solve various cooperative control problems. The core goal of
the event-triggered cooperative control problem is to design an
event-based distributed control protocol, including a triggering
function that can exclude Zeno behavior. In the past decade,
much research has been done on the event-triggered con-
sensus problems. For instance, the consensus problems were
investigated for general linear MASs [6]–[8], first-order MASs
[9], second-order MASs [10]–[12], and high-order nonlinear
MASs [13]–[15] via event-triggered control technology. Later,
the synchronization problems for homogeneous linear MASs
were solved with event-triggered control strategy in [16]
and [17]. More recently, the cooperative output regulation
problems have been attracting a lot of attention, and many
researchers are working on the event-triggered mechanisms.
The cooperative output regulation problems have been stud-
ied for linear MASs under fixed and switching topologies
in [18] and [19], respectively. Based on these, the results
were extended to nonlinear MASs in [20]. The cooperative
robust practical output regulation problem was solved with
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event-triggered control strategy based on output information,
and the practical problem allows certain degree error of
tracking.

However, the distributed control protocols with event-
triggered mechanism proposed in the above literature [6]–[20]
only realize the asymptotic stability, where the error vector for
cooperative control in such MASs will converge to the zero
vector with an exponential decay rate, at best. In the analysis
of cooperative control problems, an important performance
index for a proposed cooperative control protocol is the
convergence rate. In many practical engineering applications,
especially for some systems with high control precision, such
as missile or satellite system control and flying control, the
system is required to achieve fast tracking of the target in
the communication process. Then, the finite-time consensus
problem has been promoted to achieve high-speed conver-
gence [21]–[23].

Nevertheless, the convergence time in [21]–[23] depends on
the initial states of the agents, which prohibits their applica-
tions if the initial states are sufficiently large or unavailable
in advance. As a consequence, a new concept of fixed-time
stability was proposed in [24]. It is assumed that the settling
time is uniformly bounded and regardless of the initial con-
ditions. In [25]–[27], the fixed-time consensus problems for
the second- and high-order MASs were addressed. However,
in [25]–[27], continuous communication between adjacent
agents was required. In this case, the fixed-time control prob-
lems were studied based on the event-triggered technology,
which can reduce communication and computing resources.
Event-triggered fixed-time consensus problems for linear and
nonlinear MASs with integrator dynamics were investigated
in [28]–[30]. However, in [29] and [30], the adjacent agents’
states are still needed to be monitored continuously. Then, the
fixed-time consensus of a class of general linear MASs with
the proposed event-triggered control mechanism was studied
in [31]. However, the system dynamics are homogeneous.
In practice, state information of an agent is not easy to
acquire, while only the output information is available. Then,
in [32], combined with the event-triggered control scheme, the
problem about the fixed-time output consensus of high-order
linear MASs has been paid more attention. However, few
results have been reported in the study on the fixed-time output
consensus via event-triggered control.

In addition, as we know, the cooperative output regulation
problems can include some cooperative control problems,
such as leader-following consensus. The cooperative output
regulation problem was considered for heterogeneous linear
MASs by a fully distributed event-triggered control law in
[33]. In [34] and [35], the cooperative output regulation
problem for switched linear MASs was concerned by the
event-triggered scheme, and the event-triggered condition was
developed to exclude the Zeno behavior. Beyond that, works
on the event-triggered cooperative output regulation problems
are still few, especially the fixed time event-triggered cooper-
ative output regulation problem.

Motivated by these observations, the main contributions of
this article are threefold.

First, to address the fixed-time cooperative output regulation
problem, this article proposes a novel distributed fixed-time

event-triggered compensator and fixed-time control protocol to
achieve high-speed convergence in contrast to existing works,
such as [18]–[20], where the error vector for cooperative
output regulation in such MASs will converge to the zero
vector with an exponential decay rate, at best.

Second, compared with the event-triggering mechanisms
in [25]–[27], [29], and [30], the event-triggering mecha-
nism proposed in this article does not require continuous
communication between adjacent agents. We note that the
event-triggering mechanisms, which can avoid continuous
communication, have also been designed to solve consensus
problems [31], [32]. However, these works achieve distributed
asymptotic consensus. Meanwhile, different from [18]–[20]
and [33]–[35], the triggering function (9) in this article
introduced the fixed-time convergent function to govern the
triggering threshold, so as to realize the convergence of the
estimation error within fixed time, and the cooperative output
regulation problem is addressed in fixed time without regard
to any initial conditions.

Third, the event-triggered control scheme proposed in this
article can not only track given reference but also restrain dis-
turbances. In other words, the event-triggered control scheme
is more general than [25]–[32], and it can also be adopted
to solve the leader-following consensus and synchronization
problems.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. Notations

Let RN be the N dimensional Euclidean space. IN repre-
sents the N × N identity matrix. 1N = (1, . . . , 1)T ∈ RN .
The superscript T represents the transpose. diag{·} represents
a diagonal matrix. For any b ∈ R, sig(b)k = sign(b)|b|k for a
positive k. � · � denotes the Euclidean norm.

B. Graph Theory

In this section, the communications among the agents can be
denoted by a directed graph Ḡ. A = [ai j] ∈ RN×N refers to the
adjacency matrix. The Laplacian matrix is L = [li j ] ∈ RN×N ,
and the pinning matrix is B = diag{b1, . . . , bN } with bi >
0, i = 1, . . . , N if the follower i can receive the information
from the leader; otherwise, bi = 0. Moreover, define the matrix
L1 as L1 = L + B.

C. Problem Formulation

In this article, we consider the heterogeneous linear MASs
described by the dynamics⎧⎨⎨

⎨⎩
ẋi = Ai xi + Bi ui + Fiv

ymi = Cmi xi + Dmi ui + Fmiv

ẽi = Ci xi + Di ui + Eiv

(1)

where xi ∈ R
n , ui ∈ R

u , ymi ∈ R
pmi , and ẽi ∈ R

pi

represent the state, control input, measurement output, and
regulated output of agent i , respectively. The constant matrices
Ai , Bi , Fi , Cmi , Dmi , Fmi , Ci , Di , and Ei have compatible
dimensions. v ∈ R

q denotes the exogenous signal representing
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the disturbance to be rejected or the reference input to be
tracked and is generated by the exosystem as follows:

v̇ = S0v (2)

where the constant matrix S0 ∈ R
q×q .

The cooperative output regulation problem to be solved has
been clarified as follows.

Definition 1: Consider the MASs (1) and (2) under a
directed graph Ḡ, and the problem is called to be the linear
cooperative output regulation if we can design a fixed-time
event-triggered distributed controller such that the following
conditions hold.

1) When v is bounded, the trajectory of the closed-loop
system is bounded.

2) For any initial condition, the regulated output ẽi =
0 holds within fixed time T , i = 1, . . . , N .

The following assumptions and useful lemmas are needed
before proceeding.

Assumption 1: The graph Ḡ contains one directed spanning
tree with the leader as its root.

Assumption 2: All eigenvalues of matrix S0 have nonnega-
tive real parts.

Assumption 3: The pairs (Ai , Bi), i = 1, . . . , N , are
stabilizable.

Assumption 4: The pairs (Cmi , Ai ), i = 1, . . . , N , are
detectable.

Assumption 5: The following equations have a solution pair
(Xi ,Ui):

Xi S0 = Ai Xi + BiUi + Fi

0 = Ci Xi + Di Ui + Ei , i = 1, . . . , N. (3)

Lemma 1 [25]: If x1, x2, . . . , xN ≥ 0 , 0 < q < 1, then
(
�N

i=1 xi )
q ≤ �N

i=1 xq
i ≤ N1−q (

�N
i=1 xi)

q .
Lemma 2 [25]: If x1, x2, . . . , xN ≥ 0 , q > 1, then

N1−q (
�N

i=1 xi)
q ≤ �N

i=1 xq
i ≤ (

�N
i=1 xi)

q .
Lemma 3 [24]: For system ẋ = f (x) with f (0) = 0, if there

exists a positive radially unbounded continuous function V (x)
satisfying V̇ (x) ≤ −γ V α − δV β with γ, δ > 0, 0 < α <
1 and β > 1, then the fixed-time stability can be achieved and
the settling time T satisfies T ≤ Tmax := (1/(γ (1 − α))) +
(1/(δ(β − 1))).

Lemma 4 [37]: Given any vector x ∈ Rn , a symmet-
ric positive-definite matrix P ∈ Rn×n , and a symmetric
matrix Q ∈ Rn×n, then λmin(P−1 Q)x T Px ≤ x T Qx ≤
λmax(P−1 Q)x T Px holds.

III. MAIN RESULTS

In this section, a distributed fixed-time event-triggered com-
pensator and the corresponding distributed controller will be
designed to address the output regulation problem for the
MASs (1) and (2).

A distributed fixed-time event-triggered compensator is pre-
sented for each agent

η̇i = S0ηi + μ1Gŵi + μ2Gsig(P(ŵi + ei ))
2α
α+1

+μ3Gsig(P(ŵi + ei))
α+β
α+1 (4)

ŵi =
N�

j=1

ai j
�
η̂i − η̂ j

	+ ai0(η̂i − v) (5)

where ηi ∈ R
q is the compensator state. Coupling gains

μ1, μ2, μ3 > 0. G and P are gain matrices to be designed.
0 < α < (1/3) and β > 1. η̂i denotes the open-loop estimate
of ηi during t ∈ [t i

k, t i
k+1). t i

k is the triggering instant of ηi .
The open-loop estimate of η̂i is designed as
 ˙̂ηi(t) = S0η̂i(t), t ∈ �t i

k, t i
k+1

	
η̂i(t) = ηi(t), t = t i

k .
(6)

Remark 1: It should be pointed out that not each follower
agent can obtain the leader’s information directly, while only
the follower agent who is connected to the leader can acquire
the leader’s information. Therefore, the dynamic compensator
(4) in this article is designed for each agent to track the
exosystem state via intermittent communication. The designed
dynamic compensator (4) in this article is independent of η j ,
but depends on open-loop estimates η̂ j . Therefore, each agent
does not need to be constantly aware of the compensator states
of its neighbors so as to save processing and communication
resources.

Remark 2: In [33]–[35], the dynamic compensators with
event-triggered mechanism were designed to solve the con-
sensus and output regulation problems. However, different
from [33]–[35] where the tracking errors between the designed
compensator states and leaders states converge to zero asymp-
totically, the designed compensator state in this article can
estimate the exosystem state in fixed time, which can be
deduced by the proof of Theorem 1.

ei in (4) is the measurement error and is defined as

ei = η̂i − ηi , t ∈ �t i
k, t i

k+1

	
. (7)

The triggering time instant is given by

t i
k = inf

�
t > t i

k−1

 fηi ≥ 0
�

(8)

where fηi is the triggering function of ηi and is given by

fηi = c1�ei�2 + c2�ei� 4α
α+1 + c3�ei� 2(α+β)

α+1 + ι11�ŵi�2

+ ι9�ŵi� 4α
α+1 + ι13�ŵi� 2(α+β)

α+1 − υθi |φi |2α (9a)

φ̇i = −γi sig(φi )
α − σi sig(φi)

β (9b)

where 0 < α < (1/3), β > 1, γi > 0, σi > 0,
c1 = k1�μ1(L1 ⊗ P2)�2 + (ωk5/2)�L1 ⊗ PS0 + IN ⊗
PS0 − μ1 L1 ⊗ PG�2 + (q N)−1�(L1 + IN )⊗ P�2 +
2(ι3 + 2)(�(L1 + IN )⊗ P�2 + 2�L1 ⊗ P�2), ι3 = (ωk4/2)+
(ωk5/2) + ((ω(μ2

2k6 + μ2
3k7)�IN ⊗ PG�2)/2), c2 =

�(L1 + IN )⊗ P�(4α/(α+1))+(q N)((1−3α)/(α+1))2(4α/(α+1))(ι4 + 2)
�L1 ⊗ P�(4α/(α+1))+(q N)((1−3α)/(α+1))2(2α/(α+1))(ι4 + 2)�((L1+
IN ) ⊗ P)e�(4α/(α+1)), ι4 = k2�μ2 IN ⊗ P2�2 + (ω/2k6),
c3 = (q N)1−((2(α+β))/(α+1))�(L1 + IN )⊗ P�((2(α+β))/(α+1)) +
(q N)((β−1)/(α+1))2((α+β)/(α+1))(ι5 + 2)�(L1 + IN )⊗ P

�((2(α+β))/(α+1)) + (q N)((2(β−1))/(α+1))2((2(α+β))/(α+1))(ι5 + 2)
�L1 ⊗ P�((2(α+β))/(α+1)), ι5 = k3�μ3 IN ⊗ P2�2 + (ω/2k7),
ι9 = (q N)((1−3α)/(α+1))2(4α/(α+1))(ι4 + 2)�P�(4α/(α+1)), ι11 =
4(ι3 + 2)�P�2, and ι13 = (q N)((2(β−1))/(α+1))2((2(α+β))/(α+1))

(ι5 + 2)�P�((2(α+β))/(α+1)), here under the conditions of
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Theorem 1 required to determine the parameters k1, k2,
and k3.

Remark 3: First, compared with [8]–[10] and [20], in this
article, a novel triggering function is proposed. In the trigger-
ing function, the measurement error contains its compensator
state and its open-loop estimate of compensator state at the
latest triggered instant, and the relative estimate contains the
latest broadcast open-loop estimates of compensator states
from its neighbors and its open-loop estimate of compensator
state at the latest triggered instant. Therefore, the communica-
tion between adjacent agents in the proposed event-triggered
mechanism (9) is not continuous but intermittent, which can
reduce the communication loss between agents.

Remark 4: Note that the designed dynamic compensator (4)
in this article is independent of η j but depends upon open-loop
estimates η̂ j . The triggering condition (8) is checked first, and
then, the transmission of compensator state ηi is performed
accordingly. When the triggering condition (8) holds, the
compensator state ηi will be transmitted to its neighbors at
the latest triggered instant. Therefore, interactions between
agents and their neighbors can be implemented by intermittent
communication.

Remark 5: Different from [18]–[20] and [33]–[35], the
triggering function (9) in this article introduced the fixed-time
convergent function φi to govern the triggering threshold, so as
to realize the convergence of the estimation error within fixed
time.

Theorem 1: Consider the MASs described by (1) and
(2), Assumptions 1 and 2 are satisfied. Then, under
the distributed fixed-time event-triggered compensator (4)
and event-triggering mechanism (9), limt→T1 η̃i = 0 can be
achieved in fixed time T1 = ((α + 1)/(ϑmin(1 − α))) +
((α + 1)/(ϑmin3((1−β)/(α+1))(β − 1))) and the Zeno behavior
can be ruled out, if G = −P , where P > 0 satisfies the
following algebraic Riccati equation (ARE):

PS0 + ST
0 P − P2 + I = 0. (10)

Moreover, � = PS0 + ST
0 P − μ1λ

L1
min P2 <

0 with λL1
min = λmin(L1 + LT

1 ) and ι1 = λmax(�) +
(ωk4/2)�L1 ⊗ PS0 − μ1 L1 ⊗ PG�2 + (1/k1) + (1/k2) +
(1/k3) < 0.

Proof: Let η̃i = ηi − v , η̃ = [η̃T
1 , . . . , η̃

T
N ]T , η =

[ηT
1 , . . . , η

T
1 ]T , and v̄ = 1N ⊗ v. Then, we have

η̃ = η − v̄. (11)

Let ŵ = [ŵT
1 , . . . , ŵ

T
N ]T , η̂ = [η̂T

1 , . . . , η̂
T
N ]T , and e =

[eT
1 , . . . , eT

N ]T . Then, η̂ − v̄ = e + η̃. From the definition of
ŵi in (5), the compact of ŵ can be written as

ŵ = �
L1 ⊗ Iq

	
(η̂ − v̄)

= �
L1 ⊗ Iq

	
(e + η̃). (12)

From (4) and (12), we can obtain

η̇ = (IN ⊗ S0)η + μ1(L1 ⊗ G)(e + η̃)

+μ2(IN ⊗ G)sig((L1 ⊗ P)(e + η̃)+ (IN ⊗ P)e)
2α
α+1

+μ3(IN ⊗ G)sig((L1 ⊗ P)(e + η̃)+ (IN ⊗ P)e)
α+β
α+1 .

(13)

By (11) and (13), it follows that:
˙̃η = ((IN ⊗ S0)+ μ1(L1 ⊗ G))η̃ + μ1(L1 ⊗ G)e

+μ2(IN ⊗ G)sig(ψ)
2α
α+1 + μ3(IN ⊗ G)sig(ψ)

α+β
α+1 (14)

where ψ = (L1 ⊗ P)(e + η̃)+ (IN ⊗ P)e.
Construct the following valid Lyapunov function candidate:

V = η̃T (IN ⊗ P)η̃ + ω

2
(sig(ψ))T sig(ψ)

+
N�

i=1

υ

1 + α
sig(φi )

αφi (15)

where constants ω > 0, υ > 0, 0 < α < (1/3), and φi has
been defined in (9).

Let V1 = η̃T (IN ⊗ P)η̃, V2 = (ω/2)(sig(ψ))T sig(ψ),

and V3 = �N
i=1 (υ/(1 + α))sig(φi)

αφi . Then, we have

V̇ = V̇1 + V̇2 + V̇3. First, the derivative of V1 along equations
(14) is defined as

V̇1 = 2η̃T [(IN ⊗ PS0)+ μ1(L1 ⊗ PG)]η̃

+ 2μ1η̃
T (L1 ⊗ PG)e + 2μ2η̃

T (IN ⊗ PG)sig(ψ)
2α
α+1

+ 2μ3η̃
T (IN ⊗ PG)sig(ψ)

α+β
α+1 . (16)

Note that

2η̃T [(IN ⊗ PS0)+ μ1(L1 ⊗ PG)]η̃

= η̃T
��

IN ⊗ �
PS0 + ST

0 P
		− μ1

��
L1 + LT

1

	⊗ P2	�η̃
≤ η̃T

�
IN ⊗

�
PS0 + ST

0 P − μ1λ
L1
min P2

��
η̃ (17)

where Lemma 4 has been used.
Substituting (17) and (10a) into (16) and by Young’s

inequality, one has

V̇1 ≤ λ�max�η̃�2 + �η̃�2

k1
+ k1

��μ1
�
L1 ⊗ P2	��2�e�2

+ �η̃�2

k2
+ k2

��μ2
�
IN ⊗ P2	��2

�
sig(ψ)

2α
α+1

�T
sig(ψ)

2α
α+1

+ �η̃�2

k3
+ k3

��μ3
�
IN ⊗ P2	��2

�
sig(ψ)

α+β
α+1

�T
sig(ψ)

α+β
α+1

(18)

where k1, k2, k3 > 0.
Since ei = η̂i − ηi , and based on (4) and (6), one gets

ė = (IN ⊗ S0)e − μ1(L1 ⊗ G)(e + η̃)− μ2(IN ⊗ G)

× sig(ψ)
2α
α+1 − μ3(IN ⊗ G)sig(ψ)

α+β
α+1 . (19)

Second, the derivative of V2 along (14) and (19) is defined as

V̇2 = ω(sig(ψ))T
�
(L1 ⊗ P)

�
ė + ˙̃η	+ (IN ⊗ P)ė

	
= ω(sig(ψ))T

�
(L1 ⊗ PS0 − μ1 L1 ⊗ PG)η̃

+ (L1 ⊗ PS0 + IN ⊗ PS0 −μ1L1 ⊗ PG)e

− (μ2 IN ⊗ PG)sig(ψ)
2α
α+1

− (μ3 IN ⊗ PG)sig(ψ)
α+β
α+1

�
≤
�
ω

2k4
+ ω

2k5

�
(sig(ψ))T sig(ψ)

+ ωk4

2
�L1 ⊗ PS0 − μ1 L1 ⊗ PG�2�η̃�2
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+ ωk5

2
�L1 ⊗ PS0 + IN ⊗ PS0 − μ1 L1 ⊗ PG�2�e�2

+ ω
�
μ2

2k6 + μ2
3k7
	�IN ⊗ PG�2

2
(sig(ψ))T sig(ψ)

+ ω

2k6

�
sig(ψ)

2α
α+1

�T
sig(ψ)

2α
α+1

+ ω

2k7

�
sig(ψ)

α+β
α+1

�T
sig(ψ)

α+β
α+1 (20)

where k4, k5, k6, k7 > 0.
Moreover, the derivative of V3 is

V̇3 =
N�

i=1

υsig(φi )
αφ̇i

=
N�

i=1

�−υγi |φi |2α − υσi |φi |α+β	. (21)

Combined with (18), (20), and (21), we can obtain

V̇ ≤ ι1�η̃�2 + ι2�e�2 + (ι3 + 2 − 2)(sig(ψ))T sig(ψ)

+ (ι4 + 2 − 2)
�

sig(ψ)
2α
α+1

�T
sig(ψ)

2α
α+1

+ (ι5 + 2 − 2)
�

sig(ψ)
α+β
α+1

�T
sig(ψ)

α+β
α+1

−
N�

i=1

�
υγi |φi |2α + υσi |φi |α+β	 (22)

where ι2 = k1�μ1(L1 ⊗ P2)�2 + (ωk5/2)�L1 ⊗ PS0+
IN ⊗ PS0 − μ1 L1 ⊗ PG�2, ι3 = (ωk4/2) + (ωk5/2) +
((ω(μ2

2k6 + μ2
3k7)�IN ⊗ PG�2)/2), ι4 = k2�μ2 IN ⊗

P2�2 + (ω/2k6), and ι5 = k3�μ3 IN ⊗ P2�2 + (ω/2k7).
By Lemma 1, note that�

sig(ψ)
2α
α+1

�T
sig(ψ)

2α
α+1

= �(L1 ⊗ P)(e + η̃)+ (IN ⊗ P)e�
4α
α+1
4α
α+1

≤ (q N)
1−3α
α+1 �(L1 ⊗ P)(e + η̃)+ (IN ⊗ P)e� 4α

α+1

≤ (q N)
1−3α
α+1
�
2�(L1 ⊗ P)η̃�2 + 2�((L1 + IN )⊗ P)e�2	 2α

α+1

≤ (q N)
1−3α
α+1 2

2α
α+1

�
�(L1 ⊗ P)η̃� 4α

α+1 + �((L1+ IN )⊗ P)e� 4α
α+1

�
(23)

−
�

sig(ψ)
2α
α+1

�T
sig(ψ)

2α
α+1

= −
q N�
i=1

|ψi | 4α
α+1 ≤ −

�
q N�
i=1

|ψi |
� 4α

α+1

= −�ψ� 4α
α+1

= −�(L1 ⊗ P)η̃ + ((L1 + IN )⊗ P)e� 4α
α+1

≤ −�(L1 ⊗ P)η̃� 4α
α+1 + ι6�e� 4α

α+1 (24)

where ι6 = �(L1 + IN )⊗ P�(4α/(α+1)).
Similarly, by Lemma 2, one gets

(sig(ψ))T sig(ψ)

= �(L1 ⊗ P)(e + η̃)+ (IN ⊗ P)e�2
2

≤ �(L1 ⊗ P)(e + η̃)+ (IN ⊗ P)e�2

≤ 2�(L1 ⊗ P)η̃�2 + 2�((L1 + IN )⊗ P)e�2 (25)

�
sig(ψ)

α+β
α+1

�T
sig(ψ)

α+β
α+1

= �(L1 ⊗ P)(e + η̃)+ (IN ⊗ P)e�
2(α+β)
α+1

2(α+β)
α+1

≤ �
2�(L1 ⊗ P)η̃�2 + 2�((L1 + IN )⊗ P)e�2	 α+β

α+1

≤ (q N)
β−1
α+1 2

α+β
α+1

�
�(L1 ⊗ P)η̃� 2(α+β)

α+1

+�((L1 + IN )⊗ P)e� 2(α+β)
α+1

�
(26)

−(sig(ψ))T sig(ψ) −
�

sig(ψ)
α+β
α+1

�T
sig(ψ)

α+β
α+1

= −
q N�
i=1

|ψi |2 −
q N�
i=1

|ψi | 2(α+β)
α+1

≤ −(q N)−1

�
q N�
i=1

|ψi |
�2

− (q N)1− 2(α+β)
α+1

�
q N�
i=1

|ψi |
� 2(α+β)

α+1

= −(q N)−1�ψ�2 − (q N)1− 2(α+β)
α+1 �ψ� 2(α+β)

α+1

= −(q N)−1�(L1 ⊗ P)η̃ + ((L1 + IN )⊗ P)e�2

− (q N)1− 2(α+β)
α+1 �(L1 ⊗ P)η̃ + ((L1 + IN )⊗ P)e� 2(α+β)

α+1

≤ −(q N)−1�(L1 ⊗ P)η̃�2 + ι7�e�2

− (q N)1− 2(α+β)
α+1 �(L1 ⊗ P)η̃� 2(α+β)

α+1 + ι8�e� 2(α+β)
α+1 (27)

where ι7 = (q N)−1�(L1 + IN )⊗ P�2 and ι8 =
(q N)1−((2(α+β))/(α+1))�(L1 + IN )⊗ P�((2(α+β))/(α+1)).

Based on (12) and Lemma 1, we have

�(L1 ⊗ P)η̃� 4α
α+1

= ��(IN ⊗ P)ŵ − (L1 ⊗ P)e�2	 2α
α+1

≤ �
2�(IN ⊗ P)ŵ�2 + 2�(L1 ⊗ P)e�2	 2α

α+1

≤ �
2�(IN ⊗ P)ŵ�2	 2α

α+1 + �
2�(L1 ⊗ P)e�2	 2α

α+1

≤ 2
2α
α+1 �P� 4α

α+1 �ŵ� 4α
α+1 + 2

2α
α+1 �L1 ⊗ P� 4α

α+1 �e� 4α
α+1 . (28)

Similarly, by Lemma 2, one gets

�(L1 ⊗ P)η̃�2

≤ 2�(IN ⊗ P)ŵ�2 + 2�(L1 ⊗ P)e�2

= 2�P�2�ŵ�2 + 2�L1 ⊗ P�2�e�2 (29)

�(L1 ⊗ P)η̃� 2(α+β)
α+1

≤ �
2�(IN ⊗ P)ŵ�2 + 2�(L1 ⊗ P)e�2	 α+β

α+1

≤ (q N)
β−1
α+1
�
2�(IN ⊗ P)ŵ�2	 α+β

α+1

+ (q N)
β−1
α+1
�
2�(L1 ⊗ P)e�2	 α+β

α+1

≤ (q N)
β−1
α+1 2

α+β
α+1 �P� 2(α+β)

α+1 �ŵ� 2(α+β)
α+1

+ (q N)
β−1
α+1 2

α+β
α+1 �L1 ⊗ P� 2(α+β)

α+1 �e� 2(α+β)
α+1 . (30)

Substituting (28) into (23), (29) into (25), and (30) into (26)
yields

(ι4 + 2)
�

sig(ψ)
2α
α+1

�T
sig(ψ)

2α
α+1 ≤ ι9�ŵ� 4α

α+1 + ι10�e� 4α
α+1

(31)

where ι9 = (q N)((1−3α)/(α+1))2(4α/(α+1))(ι4 + 2)�P�(4α/(α+1))

and ι10 = (q N)((1−3α)/(α+1))2(4α/(α+1))(ι4 + 2)�L1⊗
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P�(4α/(α+1))+(q N)((1−3α)/(α+1))2(2α/(α+1))(ι4 + 2)�((L1 + IN )⊗
P)e�(4α/(α+1))

(ι3 + 2)(sig(ψ))T sig(ψ)

+ (ι5 + 2)
�

sig(ψ)
α+β
α+1

�T
sig(ψ)

α+β
α+1

≤ ι11�ŵ�2 + ι12�e�2 + ι13�ŵ� 2(α+β)
α+1 + ι14�e� 2(α+β)

α+1 (32)

where ι11 = 4(ι3 + 2)�P�2, ι12 = 2(ι3 + 2)(�(L1 + IN )⊗
P�2 + 2�L1 ⊗ P�2), ι13 = (q N)((2(β−1))/(α+1))

2((2(α+β))/(α+1))(ι5 + 2)�P�((2(α+β))/(α+1)), and ι14 =
(q N)((β−1)/(α+1))2((α+β)/(α+1))(ι5 + 2)�(L1 + IN )⊗
P�((2(α+β))/(α+1))+(q N)((2(β−1))/(α+1))2((2(α+β))/(α+1))(ι5 + 2)�
L1 ⊗ P�((2(α+β))/(α+1)).

By substituting (24), (27), (31), and (32) into (22), it follows
that:
V̇

≤ ι1�η̃�2 + (ι2 + ι7 + ι12)�e�2 + ι9�ŵ� 4α
α+1

+ (ι6 + ι10)�e� 4α
α+1 + ι11�ŵ�2 + ι13�ŵ� 2(α+β)

α+1

+ (ι8 + ι14)�e� 2(α+β)
α+1 − �(L1 ⊗ P)η̃� 4α

α+1

− (q N)−1�(L1 ⊗ P)η̃�2 − (q N)1− 2(α+β)
α+1 �(L1 ⊗ P)η̃� 2(α+β)

α+1

−
�

sig(ψ)
2α
α+1

�T
sig(ψ)

2α
α+1 − (sig(ψ))T sig(ψ)

−
�

sig(ψ)
α+β
α+1

�T
sig(ψ)

α+β
α+1 −

N�
i=1

υγi |φi |2α

−
N�

i=1

υσi |φi |α+β. (33)

Due to the fact that ι1 < 0 and the triggering function fηi ≤ 0,
one has

V̇ ≤ −�(L1 ⊗ P)η̃� 4α
α+1 − (q N)1− 2(α+β)

α+1 �(L1 ⊗ P)η̃� 2(α+β)
α+1

− (q N)−1�(L1 ⊗ P)η̃�2 −
�

sig(ψ)
2α
α+1

�T
sig(ψ)

2α
α+1

− (sig(ψ))T sig(ψ) −
�

sig(ψ)
α+β
α+1

�T
sig(ψ)

α+β
α+1

−
N�

i=1

υ(γi − θi)|φi |2α −
N�

i=1

υσi |φi |α+β . (34)

In (34), note that

−�(L1 ⊗ P)η̃� 4α
α+1 − (q N)1− 2(α+β)

α+1 �(L1 ⊗ P)η̃� 2(α+β)
α+1

= −
�
η̃T
�
L1

T L1 ⊗ P2
	
η̃

η̃T (IN ⊗ P)η̃
η̃T (IN ⊗ P)η̃

� 2α
α+1

− (q N)1− 2(α+β)
α+1

�
η̃T
�
L1

T L1 ⊗ P2
	
η̃

η̃T (IN ⊗ P)η̃
η̃T (IN ⊗ P)η̃

� α+β
α+1

≤ −ϑ1V
2α
α+1

1 − ϑ2V
α+β
α+1

1 (35)

where ϑ1 = (((λmin(L1
T L1 ⊗ P2))/(λmax(IN ⊗ P))))(2α/(α+1))

and ϑ2 = (q N)1−((2(α+β))/(α+1))((λmin(L1
T L1 ⊗ P2))/

(λmax(IN ⊗ P)))((α+β)/(α+1)). What is more

−
�

sig(ψ)
2α
α+1

�T
sig(ψ)

2α
α+1 −

�
sig(ψ)

α+β
α+1

�T
sig(ψ)

α+β
α+1

= −
N�

i=1

q�
j=1

�ψi j

2� 2α
α+1 −

N�
i=1

q�
j=1

�ψi j

2� α+β
α+1

≤ −
�

2

ω

� 2α
α+1

⎛
⎝ N�

i=1

q�
j=1

ω

2

ψi j

2
⎞
⎠

2α
α+1

− (q N)1− α+β
α+1

�
2

ω

� α+β
α+1

⎛
⎝ N�

i=1

q�
j=1

ω

2

ψi j

2
⎞
⎠

α+β
α+1

= −ϑ3V
2α
α+1

2 − ϑ4V
α+β
α+1

2 (36)

where ϑ3 = (2/ω)(2α/(α+1)) and ϑ4 =
(q N)1−((α+β)/(α+1))(2/ω)((α+β)/(α+1)). Furthermore,

−
N�

i=1

υ(γi − θi )|φi |2α −
N�

i=1

υσi |φi |α+β

≤ −υγθ min

N�
i=1

�|φi |α+1	 2α
α+1 − υσmin

N�
i=1

�|φi |α+1	 α+β
α+1

≤ −γθ min
(α + 1)

2α
α+1

υ
α−1
α+1

N�
i=1

�
υ

α + 1
|φi |α+1

� 2α
α+1

− σmin N
1−β
α+1
(α + 1)

α+β
α+1

υ
β−1
α+1

N�
i=1

�
υ

α + 1
|φi |α+1

� α+β
α+1

= −ϑ5V
2α
α+1

3 − ϑ6V
α+β
α+1

3 (37)

where ϑ5 = γθ min(((α + 1)(2α/(α+1)))/(υ((α−1)/(α+1)))),
γθ min = min{γi − θi} > 0, ϑ6 = σmin N ((1−β)/(α+1))

(((α + 1)((α+β)/(α+1)))/(υ((β−1)/(α+1)))), and σmin =
min{σi } > 0.

According to (35)–(37), we have

V̇ ≤ −ϑ1V
2α
α+1

1 − ϑ2V
α+β
α+1

1 − ϑ3V
2α
α+1

2 − ϑ4V
α+β
α+1

2

−ϑ5V
2α
α+1

3 − ϑ6V
α+β
α+1

3 . (38)

Since 0 < (2α/(α + 1)) < 1 and ((α + β)/(α + 1)) > 1,
then, we obtain

V̇ ≤ −ϑmin

�
V

2α
α+1

1 + V
2α
α+1

2 + V
2α
α+1

3

�

−ϑmin

�
V

α+β
α+1

1 + V
α+β
α+1

2 + V
α+β
α+1

3

�
≤ −ϑmin(V1 + V2 + V3)

2α
α+1

−ϑmin31− α+β
α+1 (V1 + V2 + V3)

α+β
α+1

= −ϑminV
2α
α+1 − ϑmin31− α+β

α+1 V
α+β
α+1 (39)

where ϑmin = min{ϑ1, ϑ2, ϑ3, ϑ4, ϑ5, ϑ6}. We can know
limt→T1 η̃i = 0 in fixed time by Lemma 3, where
T1 = ((α + 1)/(ϑmin(1 − α))) + ((α + 1)/
(ϑmin3((1−β)/(α+1))(β − 1))). Next, we prove that the Zeno
behavior can be ruled out on each interval.

The general solution to (4) for [t i
k, t i

k+1) is

ηi = eS0(t−t i
k)ηi

�
t i
k

	+
� t

t i
k

eS0(t−s)

×
�
μ2Gsig(P(ŵi + ei))

2α
α+1
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+μ3Gsig(P(ŵi + ei ))
α+β
α+1 + μ1Gŵi

�
ds. (40)

Since ei(t i
k) = 0, and by (7), we get

ei = −
� t

t i
k

eS0(t−s)
�
μ1Gŵi + μ2Gsig(P(ŵi + ei))

2α
α+1

+μ3Gsig(P(ŵi + ei ))
α+β
α+1

�
ds. (41)

ei can be bounded by �ei� as follows:

�ei� ≤
�����
� t

t i
k

eS0(t−s)
�
μ1Gŵi + μ2Gsig(P(ŵi + ei))

2α
α+1

+μ3Gsig(P(ŵi + ei ))
α+β
α+1

�
ds

�����. (42)

Since η̃i and ei , i = 1, . . . , N are bounded on [0,∞), we know
from (12) that ŵ,i = 1, . . . , N are bounded on [0,∞).
Besides this, eS0(t−t i

k ) is bounded on any interval [t i
k, t i

k+1).
Therefore, there exists a positive number � that guaran-
tees �eS0(t−s)(μ1Gŵi + μ2Gsig(P(ŵi + ei ))

(2α/(α+1)) + μ3G ·
sig(P(ŵi + ei))

((α+β)/(α+1)))� ≤ � . Then, we have
�ei� ≤ �(t − t i

k), for [t i
k, t i

k+1). Thus, from (9a), a lower

bound of interevent time t i
k+1 − t i

k can be obtained by the
solution of τi

c1���2τ 2
i + c2��� 4α

α+1 τ
4α
α+1

i + c3��� 2(α+β)
α+1 τ

2(α+β)
α+1

i

+ c4χ
2 + c5χ

4α
α+1 + c6χ

2(α+β)
α+1 = υθi |φi |2α (43)

where �ŵ� ≤ χ . From (43), we know that τi is positive if
φi 	= 0. However, if φi converge to 0 in fixed time, τi is
not strictly positive. Therefore, the Zeno behavior cannot be
totally ruled out in this case.

Remark 6: From Theorem 1, we have proved
that limt→T1 η̃i = 0 can be achieved in fixed
time T1 = ((α + 1)/(ϑmin(1 − α))) + ((α + 1)/
(ϑmin3((1−β)/(α+1))(β − 1))). From (9b), it is clear that
limt→Tφ φi = 0 in fixed time Tφ = (1/(γmin(1 − α))) +
(1/(σmin(β − 1))), where γmin = min{γ1, . . . , γN } and
σmin = min{σ1, . . . , σN }. Therefore, the Zeno behavior can
be ruled out when T1 < Tφ . We can choose the parameters
associated with T1, Tφ to guarantee T1 < Tφ to excluded the
Zeno behavior. This is under the condition of T1 < Tφ , and τi

is positive over each interval [t i
k, t i

k+1), which implies that the
Zeno behavior is conditionally excluded over each interval
[t i

k, t i
k+1).

Theorem 2: Consider the MASs described by (1) and (2),
and under Assumptions 1–5, the output regulation problem
can be addressed using the following distributed state feedback
controller (44) with the distributed fixed-time event-triggered
compensator (4) and event-triggering mechanism (9):

ui = K1i xi + K2iηi − δ1 K3i sig
�
xi − X∗

i ηi
	�1

− δ2 K3i sig
�
xi − X∗

i ηi
	�2 (44)

where δ1, δ2 > 0. �1 ∈ (0, 1), �2 > 1. K1i , K2i , and K3i are
the constant matrices meeting the condition that Ai + Bi K1i

is Hurwitz and Bi K3i = In . K2i = U∗
i − K1i X∗

i , and (X∗
i ,U

∗
i )

is the solution of (3).

Proof: If x̃i = xi − X∗
i v, ũi = ui − U∗

i v and K2i =
U∗

i − K1i X∗
i , for t ≥ T1, then we have

ũi = K1i x̃i + K2i η̃i − δ1 K3i sig
�
x̃i − X∗

i η̃i
	�1

− δ2 K3i sig
�
x̃i − X∗

i η̃i
	�2

= K1i x̃i − δ1 K3i sig(x̃i)
�1 − δ2 K3i sig(x̃i)

�2 . (45)

Based on (45), for t ≥ T1, we can obtain

˙̃xi = Ai x̃i + Bi ũi + �
Ai X∗

i + BiU
∗
i + Fi − X∗

i S0
	
v

= Ai x̃i + Bi
�
K1i x̃i − δ1 K3i sig(x̃i)

�1 − δ2 K3i sig(x̃i)
�2
�

= Ti x̃i − δ1sig(x̃i)
�1 − δ2sig(x̃i)

�2 (46)

where Ti = Ai + Bi K1i , and we have used the fact that
Bi K3i = In .

Construct the Lyapunov function V4 = x̃ T
i x̃i , and due to

the fact that Ti = Ai + Bi K1i is Hurwitz, the derivative of V4

along (46) is

V̇4 = 2x̃ T
i Ti x̃i − 2δ1

�
x̃ T

i x̃i
	 1+�1

2 − 2δ2
�
x̃ T

i x̃i
	 1+�2

2

≤ −2δ1V
1+�1

2
4 − 2δ2V

1+�2
2

4 . (47)

By Lemma 3, limt→T1+T2 x̃i = 0 in fixed time, where
T2 = (1/(δ1(1 − �1))) + (1/(δ2(�2 − 1))). It implies that
limt→T1+T2 ũi = 0.

Finally, by (3), one has

ẽi = Ci x̃i + Di ũi . (48)

Thus, following from limt→T1+T2 x̃i = 0 and
limt→T1+T2 ũi = 0, we can conclude that limt→T1+T2 ẽi = 0 in
fixed time T1 + T2. This completes the proof.

Remark 7: The following procedure is used to describe the
key idea of proving Theorems 1 and 2: 1) in Theorem 1,
consider the dynamic compensator (4) and (5) and exosystem
(2), the compensator state can estimate the exosystem state for
each agent in fixed time is verified, that is, limt→T1(ηi − v) =
0, for i = 1, . . . , N ; 2) consider the event-triggered mech-
anism (8) and show that the Zeno behavior can be condi-
tionally excluded; and 3) in Theorem 2, consider the MASs
(1), exosystem (2), distributed controller (4) and (44), and
event-triggered mechanism (9) and show that the regulated
output for each agent converge to zero in fixed time, that is,
limt→T1+T2 ẽi = 0, for i = 1, . . . , N .

Remark 8: It is remarkable that the proposed distributed
event-triggered control strategy in this article includes con-
troller (4) and (44) and event-triggered mechanism (9), which
makes the estimation error and regulated output of each agent
tend to zero within fixed time. This strategy has significant
advantages over the existing event-triggered control strategies
in [18]–[20] and [33]–[35].

Remark 9: Leader-following consensus and synchronization
of linear MASs can be treated as special cases of the con-
sidered cooperative output regulation problem in this article.
As applications, the result shows that the strategy in this
article is suitable for the leader-following consensus and
synchronization problems of some linearized MASs, such as
multiple nonholonomic mobile robots [36].
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As a reminder, the controller (44) is designed based on
the system states. However, due to practical constraints such
as technical or external disturbances, not all agents’ states
are available. In view of this case, Theorem 3 is the output
regulation problem with the distributed observer-based output
feedback controller.

Theorem 3: Consider the MASs described by (1) and (2),
and under Assumptions 1–5, the output regulation problem
can be addressed using the following observer-based output
feedback controller (49) with the distributed fixed-time event-
triggered compensator (4) and event-triggering mechanism (9):

ui = K1iζi + K2iηi − δ1 K3i sig
�
ζi − X∗

i ηi
	�1

− δ2 K3i sig
�
ζi − X∗

i ηi
	�2

ζ̇i = Aiζi + Bi ui + Fiηi + Ji(Cmiζi + Dmi ui + Fmiηi − ymi )

− εi1sig(Ri(Cmi ζi + Dmi ui + Fmiηi − ymi))
ρ1

− εi2sig(Ri (Cmiζi + Dmi ui + Fmiηi − ymi))
ρ2 (49)

where ζi ∈ R
n is the observer state; δ1, δ2, εi1, εi2 > 0.

�1, ρ1 ∈ (0, 1). �2, ρ2 > 1; and K1i , K2i , K3i , Ji , and Ri are
the constant matrices meeting the condition that Ai + Bi K1i

and A + Ji Cmi are Hurwitz, Bi K3i = In , and Ri Cmi = In .
K2i = U∗

i − K1i X∗
i , and (X∗

i ,U
∗
i ) is the solution of (3).

Proof: If x̂i = ζi − xi , one has

˙̂xi = Ai x̂i + Fi η̃i + Ji (Cmi x̂i + Fmi η̃i )

− εi1sig(Ri(Cmi x̂i + Fmi η̃i))
ρ1

− εi2sig(Ri (Cmi x̂i + Fmi η̃i ))
ρ2

= �i x̂i + (Fi + Ji Fmi )η̃i − εi1sig(x̂i + Ri Fmi η̃i )
ρ1

− εi2sig(x̂i + Ri Fmi η̃i)
ρ2 (50)

where �i = A+ Ji Cmi , and we have used the fact that Bi K3i =
In . According to Theorem 1, we have that η̃i = 0 holds in fixed
time T1, that is, for t ≥ T1, we can get

˙̂x i = �i x̂i − εi1sig(x̂i)
ρ1 − εi2sig(x̂i)

ρ2 . (51)

As �i = A + Ji Cmi is Hurwitz and similar to the analysis of
(46), we can deduce limt→T1+T3 x̂i = 0 in fixed time, where
T3 = (1/(εmin(1 − ρ1))) + (1/(εmin(ρ2 − 1))) and εmin =
min{ε11, ε21, . . . , εN1, ε12, ε22, . . . , εN2}.

If x̃i = xi − X∗
i v, ũi = ui − U∗

i v and K2i = U∗
i − K1i X∗

i ,
for t ≥ T1 + T3, we have

ũi = K1i x̂i + K1i x̃i + K2i η̃i − δ1 K3i sig
�
x̃i + x̂i − X∗

i η̃i
	�1

− δ2 K3i sig
�
x̃i + x̂i − X∗

i η̃i
	�2

= K1i x̃i − δ1 K3i sig(x̃i)
�1 − δ2 K3i sig(x̃i)

�2 . (52)

Based on (52), for t ≥ T1 + T3, we can obtain

˙̃x i = Ai x̃i + Bi ũi + �
Ai X∗

i + BiU
∗
i + Fi − X∗

i S0
	
v

= Ai x̃i + Bi
�
K1i x̃i − δ1K3i sig(x̃i)

�1 − δ2 K3i sig(x̃i)
�2
�

= (Ai + Bi K1i )x̃i − δ1sig(x̃i)
�1 − δ2sig(x̃i)

�2 . (53)

As Ai + Bi K1i is Hurwitz and similar to the analysis of
(46), we can deduce limt→T1+T2+T3 x̃i = 0 in fixed time.
It implies that limt→T1+T2+T3 ũi = 0. Then, we can conclude
that limt→T1+T2+T3 ẽi = 0 in fixed time T1 + T2 + T3. This
completes the proof.

Fig. 1. Communication topology.

Remark 10: We can see that the designed controller (49)
proposed in Theorem 3 requires strict of system dynamic,
that is, when the agents’ states are not available, the system
dynamic is required to satisfy Bi K3i = In and Ri Cmi = In .
Therefore, how to relax these requirements is the important
aspect to investigate in the future.

IV. SIMULATION EXAMPLE

Consider the cooperative output regulation problem of mul-
tiple wheeled mobile robots borrowed from [45], where the
dynamics of each wheeled mobile robots are modeled by

ẋi =
⎡
⎣ 0 1 0

0 0 ki

0 −mi −ni

⎤
⎦xi +

⎡
⎣ si ri 0

0 di 0
0 0 −gi

⎤
⎦ui + Fiv

ymi = �
1 0 0

�
xi

ẽi = �
1 0 0

�
xi + Eiv, i = 1, . . . , 4

and the exosystem

v̇ =
"

0 1
0 0

#
v

where Fi = [ −0.5i 0; −1 0.5i ; 0 0 ], i = 1, . . . , 4; E1 =
E2 = [ −1 0 ]; E3 = [ −1.5 −1 ]; E4 = [ −2 −1 ]; and
parameters {ki,mi , ni , si , ri , di , gi}, i = 1, . . . , 4 are selected
as {1, 0, 1, 1, 0, 1, 1}, {1, 0, 10, 1, 0, 1, 1}, {1, 10, 2, 1, 0, 1, 1}
and {1, 1, 2, 1, 0, 1, 1}. Let agent 0 be denoted the exosys-
tem. The communication graph of agents is shown in
Fig. 1. Assumptions 1–5 are evidently satisfied. Thus,
the distributed fixed-time event-based protocols can be
used to solve the cooperative output regulation prob-
lem for heterogeneous linear MASs. Solving the regulator
equations (3) yields X∗

1 = [ 1 0; 0 1; 1 −1.5 ], X∗
2 =

[ 1 0; 0 1; 1 1 ], X∗
3 = [ 1.5 1; 0 1; 1 1 ], X∗

4 =
[ 2 1; 0 1; 1 1 ], U∗

1 = [ 0.5 0; 0 1; 1 −0.5 ], U∗
2 =

[ 1 0; 0 −2; 10 11 ], U∗
3 = [ 1.5 0.5; 0 −2.5; 2 13 ],

and U∗
4 = [ 2 1; 0 −3; 2 4 ]. By solving the inequation

(10), we can obtain P = [ 0.9102 0.4142; 0.4142 1.2872 ]
and G = −P . The gain matrices in (44) are given
as K1i = [ −28 −28 −28; 0 −28 −1; 0 −28 −28 ],
K2i = U∗

i − K1i X∗
i , and K3i = [ 1 0 0; 0 1 0; 0 0 1 ],

i = 1, . . . , 4. Moreover, the other parameters are set as
μ1 = 4.2, μ2 = 0.8, μ3 = 1.2, α = 0.25, β = 1.2,
ω = 0.0015, ν = 100, θi = 3.5, σi = 0.003, γi = 5, �1 = 0.5,
�2 = 1.5, δ1 = 2, and δ2 = 2.

The initial states x(0), v(0), and η are randomly chosen
over (0, 1) and the simulation results are given in Figs. 2–4.

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on May 21,2022 at 02:08:53 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHANG et al.: COOPERATIVE OUTPUT REGULATION FOR LINEAR MULTIAGENT SYSTEMS 9

Fig. 2. Compensator errors ηi−v = [η̃1
i ; η̃2

i ], i = 1, . . . , 4.

Fig. 3. Regulated outputs ẽi of four agents, i = 1, . . . , 4.

Fig. 4. Interevent times of four agents.

Fig. 2 shows the compensator errors of four agents, that
is, ηi−v = [ η̃1

i ; η̃2
i ], i = 1, . . . , 4. We then deduce

that the compensator errors approach to zero in fixed time.
Fig. 3 shows the regulated outputs of four agents. We then
see that the regulated outputs approach to zero in fixed time.
Furthermore, Fig. 4 shows the interevent times of four agents
in the [0 s, 10 s] and the minimum interevent times of agent
i = 1, . . . , 4 are 0.04, 0.07, 0.08, and 0.07 s, respectively,
which implies that the Zeno behavior is excluded.

V. CONCLUSION

This article addressed the fixed-time cooperative output
regulation problem for linear MASs via the distributed
event-triggered control. A novel distributed fixed-time event-
triggered compensator is presented for each agent, which over-
comes the problem that only the follower agent connected to

the leader can obtain the information of the leader. Moreover,
with the novel triggering function, the measurement error
and the relative estimate are needed to be monitored by the
agent, and continuous communication between agents and
their neighbors is entirely avoidable. Then, a novel fixed-time
event-triggered control protocol is proposed using a dynamic
compensator method and the cooperative output regulation
problem is addressed in fixed time without regard to any
initial conditions. As an extension, for the case that the
states are not available, the output regulation problem can
further be addressed by the distributed observer-based output
feedback controller with the event-triggered mechanism in
fixed time. Finally, a simulation example has been made to
demonstrate the theoretical results. In our work, we considered
the fixed topology. Switching topology communication will be
investigated in the future.
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