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Abstract—This article investigates the resilient bipartite consen-
sus problem for continuous-time second-order multiagent systems
in the presence of totally bounded malicious nodes under signed di-
graphs. An event-based resilient impulsive algorithm is employed,
which cannot only mitigate the malicious nodes’ influence on the
convergence of normal ones but also reduce the communication
loads of agents. A necessary and sufficient condition related to
the network topology is established for solving resilient bipartite
consensus by using system transformation. A numerical simulation
illustrates the effectiveness of the result.

Index Terms—Event-triggered communication, impulsive
control, resilient bipartite consensus, second-order dynamics.

I. INTRODUCTION

MULTIAGENT systems (MASs) can accomplish complex
tasks through distributed collaboration of a group of

agents with relatively limited capabilities. The coordination
control of MASs has received a lot of attention owing to its
wide application in consensus [1]–[3], formation control [4],
clock synchronization [5], rendezvous [6], etc. In recent years,
network and information technology have developed rapidly
and researchers have attached more and more importance to the
security of the network. Some fragile agents can easily become
malicious agents that do not follow the predefined protocol in
an unreliable environment. These malicious agents may try to
mislead normal nodes to fail to converge or enter an unsafe
range. As such, the resilience of consensus with malicious agents
has aroused widespread concern. Particularly, it aims to design
resilient algorithms to reduce malicious’ influence and ensure
the agreement among normal agents.
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The resilient consensus problems are essentially fault-tolerant
problems. Redundant nodes and redundant connection edges
are the primary means to tolerate malicious agents. In the
early researches [7], [8], connectivity was used to char-
acterize network topology conditions with sufficient redun-
dant information. However, the traditional connectivity met-
ric is not sufficient to describe networks with only local
interaction. In [9], a new metric named graph robustness
is proposed by Leblancn et al. to characterize the network
structure. Using the mean-subsequence-reduced (MSR) al-
gorithm, sufficient and necessary conditions using the no-
tion of graph robustness were presented to ensure the re-
silient consensus for first-order MASs in discrete-time do-
main. In [10], the authors presented a quantized version of
MSR algorithm for first-order MASs. The resilient group con-
sensus was addressed based on MSR-type algorithm in [11].
In [12], the resilient consensus in a leader–follower architec-
ture was investigated. In [13] and [14], Zheng et al. proposed
the concept of hybrid consensus for discrete- and continuous-
time dynamical agents, and then the resilient hybrid consensus
for first-order hybrid MASs is presented in [15]. For a switched
MAS, consensus problem is considered using Lyapunov func-
tion in [16] and resilient consensus problem is considered using
a filtering algorithm in [17]. In [18] and [19], the resilient
consensus problems are investigated for second-order MASs
without and with time delays, respectively. In [20], a resilient
impulsive algorithm is proposed for consensus of a multiagent
network with second-order agents. In [21], resilient consensus
condition was obtained for heterogeneous MASs composed of
first-order agents and second-order agents.

Although there are numerous existing results on resilient
consensus for MASs with various dynamics and network topolo-
gies, as far as we know, there is little work on event-triggered
strategy for resilient consensus. In fact, when the sampled data
fluctuates a little, such a time-triggered sampling mechanism
can lead to excessive consumption of communication and com-
puting resources. For this shortcoming, event-triggered idea
provides a solution. Its basic idea is to drive some actions
of the system through events rather than time. Tabuada et al.
[22] first proposed the event-triggered idea to reasonably al-
locate the energy consumption in the network control system.
Dimarogonasn et al. [23] then introduced it to solve the con-
sensus of MASs. Roughly speaking, according to the trigger

1937-9234 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on December 27,2021 at 09:26:26 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-3395-2289
https://orcid.org/0000-0002-1143-2509
mailto:1742242992@qq.com
mailto:zhuuruu@163.com
mailto:zhuuruu@163.com
mailto:zhengyuanshi2005@163.com
mailto:wanghz78@qq.com


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE SYSTEMS JOURNAL

response’s action, event-triggered schemes include event-
triggered sampling, event-triggered control, event-triggered
communication. Based on event-triggered sampling, Li et al.
[24] studied the leader-following consensus. In [25], consensus
of MASs with communication delays was investigated by em-
ploying event-triggered control. In [26], both event-triggered
communication and event-triggered control were adopted to
solve average consensus. Recently, there are some work em-
ploying event-triggered strategy to solve resilient consensus for
MASs under different attacks (see [27]–[32]). In [27] and [28],
resilient consensus protocols under event-based communication
were designed for discrete-time first-order MAS in the presence
of malicious nodes without and with quantized information,
respectively.

In the (resilient) consensus problem, (normal) agents are
all cooperative, which is characterized by nonnegative weight
edges. In the real world, however, the relationship between
agents is more complicated. It makes more sense to think of
networks that have both cooperative and competitive relation-
ships. Such cooperative-competitive networks are ubiquitous
on social networks, such as two teams competing on a sports
field and two companies in the same business field. The in-
teraction among agents in cooperative-competitive networks
is generally described by signed graphs, where some edges
weights can be negative. In 2013, Altafini [33] studied the
consensus of first-order MASs on signed graphs and proposed
the concept of bipartite consensus, which refers to all agents
converge to two opposite values. The author showed that un-
der a connected signed graph, the structurally balanced graph
is necessary and sufficient for achieving bipartite consensus.
In [34], the authors made an analysis on equivalence of bi-
partite and ordinary consensus for linear MASs. In [35], a
nonlinear consensus protocol was proposed for finite-time bi-
partite consensus. Until now, many interesting results on the
bipartite consensus problem have been obtained under differ-
ent contexts, such as input saturation [36], time-varying net-
work [37], time delay [38], quantization [39], and heterogeneous
dynamics [40].

Motivated by the abovementioned work, we studies the re-
silient bipartite consensus of second-order MASs under signed
graphs with up to f malicious agents. The event-triggered
communication strategy and impulsive control protocol based
on only-position measurement are applied to the system. The
existence of malicious agents, more complicated dynamics of
agents and network topology, and the state errors causing by
the event-triggered communication make the problem difficult.
The main contributions of this article are three aspects: First,
the resilient consensus of MASs under cooperative network
is extended to the cooperative-competitive network, which is
more practical in real-world applications. Second, an impulsive
resilient algorithm with event-triggered communication is pro-
posed for resilient bipartite consensus. Compared with resilient
impulsive algorithm in [20], our algorithm significantly reduces
the communication loads of agents. Different from [27], we
deal with agents with continuous-time second-order dynamics,
which are more complicated compared with the first-order case.
Finally, a necessary and sufficient condition for normal agents

to achieve bipartite consensus is obtained through system trans-
formation.

The rest of this article is organized as follows. In Section II, we
introduce the preliminaries and problem set. Section III contains
our main results. Section IV gives a simulation example. Finally,
Section V concludes this article.

Notation: Throughout this article, the sets of integers, real
numbers, nonnegative integers and nonnegative real numbers
are denoted by Z, R, Z≥0, and R≥0, respectively. The number
of elements in the set S is represented by |S|. Let S1 \S2 =
{s : s ∈ S1 ∩ s /∈ S2}. The empty set is denoted ∅. sgn(·) is the
sign function.

II. PRELIMINARIES AND PROBLEM SET

A. Signed Digraph

Let G = (V, E ,A) be a signed digraph, where
V = {1, 2, . . . , n} is the node set, E ⊆ V × V is the edge
set, and A = [aij ] ∈ Rn×n is the adjacency weight matrix.
If the edge (j, i) ∈ E , then aij �= 0, otherwise aij = 0. We
assume that aii = 0, ∀i ∈ V . Unlike unsigned digraphs, the
edge weights in signed digraphs can be positive or negative.
G is digon sign-symmetric if aijaji ≥ 0, ∀i, j ∈ V . In this
article, we always hold that the G is digon sign-symmetric.
Let Ni = {j : (j, i) ∈ E} be the set of in-neighbors of node
i, Nout

i = {j : (i, j) ∈ E} be the set of out-neighbors of node
i. For a subset S ⊆ V , a node i ∈ S , if j ∈ Ni ∩ (V\S), then
j is called the outer in-neighbor of i about S , if j ∈ Ni ∩ S ,
then j is called the inner in-neighbor of i about S . A path is a
sequence of edges (is1 , is2), (is2 , is3), . . . , (isk , isk+1

), where
isj ∈ V . G is said to have a spanning tree if there is a node in
G, such that from it to every other node, there exists a path.

Definition 1 (see [33]): Consider a signed digraph
G = (V, E ,A), we say it is structurally balanced if there exist
two disjoint subsets V1,V2 ∈ V with V1 ∪ V2 = V , such that
aij ≥ 0 if i, j in the same subset, and aij ≤ 0, otherwise.

Lemma 1 (see [33]): A signed digraph G = (V, E ,A) is
structurally balanced if and only if there exists a diagonal matrix
P with diagonal elements either +1 or −1 such that all elements
of P−1AP are nonnegative, that is, σiσjaij ≥ 0.

Next, we will introduce the related concept of graph robust-
ness. It plays an essential role in the following proof of resilient
bipartite consensus.

Definition 2 (see [9]): A digraph G is (r, s)-robust if for any
two nonempty and disjoint subsets S1, S2 ⊆ V , at least one of
the three conditions is satisfied

1) |X r
S1
| = |S1|; 2) |X r

S2
| = |S2|; 3) |X r

S1
|+ |X r

S2
| ≥ s

where X r
Si

= {i ∈ Si : |Ni\Si| ≥ r}, i ∈ {1, 2}.
Lemma 2 (see [10]): G is (1,1)-robust if and only if G has a

spanning tree.

B. Event-Based Bipartite Consensus Protocol

Consider a group of agents with double integrator dynamics{
ẋi(t) = vi(t)
v̇i(t) = ui(t)

(1)

where i ∈ V , xi(t), vi(t), ui(t) ∈ R are the position state,
velocity state, and control input of node i at time t, respectively.
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All the results in this article still hold for xi(t), vi(t), ui(t)
∈ Rm(m > 0) by using the property of Kronecker product.

Impulsive control strategy, with the virtue of robustness, fast
transient and less energy, has been widely used for solving
consensus. Considering that in some scenarios, the velocity state
values of neighbor nodes are not available for technical reasons,
the following impulsive control protocol using position-only
measurements is proposed in [41]

ui(t)=

∞∑
k=1

[
− k1

∑
j∈Ni

aij (xi(t)−xj(t))−k2 (xi(t)−xi(tk−1))

]
δ(t−tk)

(2)

where k1 > 0, k2 > 0 are control gains, δ(·) is Dirac function,
tk is impulsive instant. The impulsive instants sequence is de-
noted as {tk|∞k=1}, where 0 = t0 < t1 < t2 < · · · < tk < · · · ,
limk→+∞ tk = ∞. Let tk+1 − tk ≡ h > 0 for k ∈ Z≥0, h > 0
is the sampling interval.

Although the impulsive control protocol can avoid continu-
ous communication, it is generally believed that such a time-
triggered sampling method still has the disadvantage of causing
excessive consumption of communication resources and com-
puting resources, especially when the system states are almost in
equilibrium [22]. To avoid this shortcoming, we adopt an event-
triggered communication mechanism, which can significantly
reduce the communication loads of nodes.

Different from impulsive control protocol (2), where node i
sends its state value to all of its out-neighbors at every impulsive
instant, in the proposed event-based impulsive control protocol
(4), we design an event-triggered communication rule, where
node i sends its state value to its out-neighbors only at the
impulsive instants when the event-triggered condition (ETC)
is satisfied. Let x̂i(tk) store the latest broadcast value of i at
time tk, that is, the state value of node i at the last event trigger
time. Denoted by tik, k = 0, 1, . . . the time when event of node
i is activated, which satisfies 0 = ti0 < ti1 < . . .. Thus, we have
x̂i(tk) = xi(t

i
l), tk ∈ [til, t

i
l+1). More specifically, the outline of

the scheme is as follows.
At each impulsive instant tk, each normal node i checks if its

ETC is satisfied. If the ETC is satisfied, it will broadcast its state
value xi(tk) to all out-neighbors, then x̂i(tk) = xi(tk). Other-
wise, it will not broadcastxi(tk) to out-neighbors, thus, x̂i(tk) =
x̂i(tk−1). Dependent on its own state xi(tk), xi(tk−1) and the
latest received values of neighbors x̂j(tk), j ∈ Ni, normal agent
i updates its control input ui(tk). We assume x̂i(t0) = xi(t0),
i ∈ V . Now, we introduce the event-triggered function. Define
the position measurement error ei(tk) = x̂i(tk)− xi(tk+1) for
k ≥ 0. If |ei(tk)| is small, it means that the new state xi(tk+1)
of node i has almost the same effect on its out-neighbors as
the latest information it sent. Therefore, it is not necessary to
broadcast the new state. Inspired by the ETC in [42], we adopt
the following ETC:

fi (tk) = |ei (tk)| −
(
c0 + c1e

−αk
)
> 0 (3)

where c0, c1, and α ≥ 0 are constants predefined according to
actual requirements.

Considering the cooperative-competitive network denoted by
a signed digraph and the above event-triggered communication
scheme, we propose the following control protocol based on
protocol (2)

ui(t) =

∞∑
k=1

[
− k1

∑
j∈Ni

|aij | (xi(t)− sgn(aij)x̂j(t))

− k2 (xi(t)− xi(tk−1))

]
δ(t− tk) (4)

where |aij | is the absolute value of the edge weight, x̂j(t)
represents node is the latest broadcast state value at t, and the
meaning of other parameters is shown in protocol (2).

C. Threat Model and Resilient Bipartite Consensus Algorithm

In practical applications, there may be malicious nodes in
the MAS. Therefore, two types of nodes are considered in this
article: normal nodes and malicious nodes. Let VN be the set
of normal nodes, which always follow the protocol (4), VM be
the set of malicious nodes, which can update arbitrarily. As-
sume they satisfy VN ∪ VM = V , VN ∩ VM = ∅, |VN | = m,
|VM | = n−m.

Definition 3 (see [9]): The network G is said to under the
f -total threat model if there are no more than f malicious nodes
in the entire network, i.e., |VM | ≤ f , f ∈ Z≥0.

Definition 4: Given a constant e ≥ 0, we say the MAS (1)
with malicious nodes achieves resilient bipartite consensus at
the error level e if the following conditions are satisfied for any
initial state values.

C1) Safety condition: There exists an interval Ω such that
xi(t) ∈ Ω for t ≥ 0, ∀i ∈ VN .

C2) Bipartite consensus condition: For ∀i, j ∈ VN , there is

lim sup
t→∞

||xi(t)|−|xj(t)|| ≤ e. (5)

When malicious nodes appear in the network, the bipartite
consensus problem becomes more complicated. The MSR al-
gorithm with the idea of ignoring extreme values in [9] is a
popular way to alleviate the impact of malicious nodes. Inspired
by the idea, Algorithm 1 is presented for resilient bipartite
consensus with event-triggered communication. Note that some
malicious nodes’ information may not be deleted in Algorithm 1,
but the undeleted value must not be greater (less) than the
maximum (minimum) value of normal nodes. Such nodes are
generally considered to be incapable of attack, that is, they can
be temporarily considered as normal nodes.

III. MAIN RESULTS

In this section, we will analyze the convergence of system
(1) under the designed event-based resilient impulsive control
protocol.
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Algorithm 1:

Require:x(0), v(0), VN , VM , A=[aij ];
for i in VN do

if t = tk then
1) Check if its ETC is satisfied. If it is satisfied, node i

sends its state value xi(tk) to its all out-neighbors. If
not, not. Then, x̂i(tk) is set as

x̂i (tk) =

{
xi (tk) if fi (tk−1) > 0
x̂i (tk−1) otherwise.

(6)

2) Collect the values sgn(aij)x̂j(tk), j ∈ Ni, and sort
them in ascending order, denoted by Fi(tk).

3) Agent i ignores the largest f values that are strictly
greater than xi(tk) in Fi(tk). If there are less than f
such values, agent i ignores all of these values.
Similarly, agent i ignores the smallest f values that are
strictly less than xi(tk) in Fi(tk). If there are fewer than
f such values, agent i ignores all of these values. Let
Qi(tk) be the set of nodes whose values were remained.

4) Use the following control input:

ui(t) =
∞∑

k=1

[
− k1

∑
j∈Qi(tk)

|aij | (xi(t)− sgn(aij)x̂j(t))

− k2 (xi(t)− xi(tk−1))

]
δ(t− tk). (7)

else
ui(t) = 0.

end if
end for

Under control input (7), MAS (1) can be rewritten as follows:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋi(t) = vi(t),
v̇i(t) = 0, t ∈ (tk, tk+1]
Δvi (tk) = −k1

∑
j∈Qi(tk)

|aij | (xi (tk)− sgn(aij)x̂j (tk))

−k2 (xi (tk)− xi (tk−1))
(8)

where Δvi(tk) = vi(t
+
k )− vi(tk), vi(t

+
k ) = limt→t+k

vi(t). For

simplicity, we assume thatvi(t) is left-hand continuous at t = tk,
then vi(t

+
k ) = vi(tk+1) for ∀k ∈ Z≥0.

Since xi(t) is continuous and vi(t) is left-hand continuous at
t= tk, from (8), we have

xi (tk+1) = xi (tk) + hvi
(
t+k

)
(9)

and

vi
(
t+k

)
= vi (tk)− k1

∑
j∈Qi(tk)

|aij | (xi (tk)− sgn(aij)x̂j (tk))

− k2(xi(tk)− xi(tk−1))

= − k1
∑

j∈Qi(tk)

|aij | (xi (tk)− sgn(aij)x̂j (tk))

+

(
1

h
− k2

)
(xi(tk)− xi(tk−1)). (10)

Then, we can arrive at

xi (tk+1) =

⎛
⎝2− k2h− k1h

∑
j∈Qi(tk)

|aij |
⎞
⎠xi(tk)

+ k1h
∑

j∈Qi(tk)

aij x̂j(tk) + (k2h− 1)xi(tk−1).

(11)

According to Lemma 1, we can choose a matrix
P = diag{σ1, σ2, . . . , σn}, σi ∈ {±1} such that σiσjaij =
|aij |. Let yi = σixi and ŷi = σix̂i, then we have σiaij x̂j(tk) =
σiσjaijσj x̂j(tk) = |aij |ŷj(tk). Thus, the position dynamic of
each node after coordinate conversion is given by

yi (tk+1) =

⎛
⎝2− k2h− k1h

∑
j∈Qi(tk)

|aij |
⎞
⎠ yi(tk)

+ k1h
∑

j∈Qi(tk)

|aij |ŷj(tk) + (k2h− 1)yi(tk−1).

(12)

Remark 1: Note that before the coordinate conversion, the
node i deletes f extreme values strictly larger than xi and f
extreme values strictly smaller thanxi from the set{sgn(aij)x̂j :
j ∈ Ni} in Algorithm 1. After the coordinate transformation,
the corresponding operation in Algorithm 1 is that the node i
deletes f extreme values larger than yi and f extreme values
smaller than yi in the set {ŷj : j ∈ Ni} since sgn(aij) = σiσj ,
yi = σixi, ∀i, j ∈ V . Hence, the set Qi in (11) is the same as
that in (12).

Next, we will give the main result. Define m̄(tk) =
mini∈VN {yi(tk),yi(tk−1)}, M̄(tk) = maxi∈VN {yi(tk),
yi(tk−1)}, m(tk) = mini∈VN {yi(tk), yi(tk−1), ŷi(tk)},
M(tk) = maxi∈VN {yi(tk), yi(tk−1), ŷi(tk)}, and the set
S(tk) = [m(tk),M(tk)] for k = 1, 2, . . ..

Theorem 1: Consider a network G = (V, E ,A) under the f -
total thereat model. Support G is structurally balanced and 1

h <
k2 < 2

h − k1 maxi∈VN

∑
j∈Ni

|aij |. The MAS (1) with protocol
(7) can achieve resilient bipartite consensus at the error level e
if and only if the digraph G is (f + 1, f + 1)-robust and the
bipartite consensus error level e is achieved if the parameter c0
in ETC (3) satisfies c0 ≤ μme

4mk1h
.

Proof: (Sufficiency): To prove sufficiency, we take two steps
to show that (C1) and (C2) in Definition 4 are satisfied.

step 1: From 1
h < k2 < 2

h − k1 maxi∈VN

∑
j∈Ni

|aij |, it has
the coefficients of system (12) are nonnegative and the sum
of coefficients is less than 1. Hence, yi(tk+1) is a convex
combination of values in {yi(tk), yi(tk−1)}

⋃{ŷj(tk)}j∈Qi(tk)

for k ≥ 1. Denote by η the smallest value among all nonzero
coefficients, then0 < η < 1. Note the values in{ŷj(tk)}j∈Qi(tk)

lie in S(tk), since the malicious nodes with values out-
side S(tk) will be ignored in step 3 of Algorithm 1. It
follows that yi(tk+1) ∈ S(tk). Moreover, according to (6),
ŷi(tk+1) takes value in {yi(tk+1), ŷi(tk)}, which implies that
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ŷi(tk+1) ∈ S(tk). Hence, we haveS(tk+1) ⊆ S(tk). Therefore,
it can be concluded that yi(tk) ∈ S(t1) for ∀k ≥ 0, i ∈ VN . De-
fine H̄ = maxi∈VN {|xi(t1)|, |xi(t0), |x̂i(t1)|}. From yi(tk) =
σixi(tk), it is easy to obtain that xi(tk) ∈ [−H̄, H̄] for ∀k ≥ 0,
i ∈ VN . From (8), we have xi(tk−1) ≤ xi(t) ≤ xi(tk) for i ∈
VN , t ∈ (tk, tk+1]. Thus, xi(t) ∈ [−H̄, H̄] for ∀t ≥ 0, i ∈ VN .
This completes the proof of step 1.

Step 2: Let êi(tk) = ŷi(tk)− yi(tk+1) = σiei(tk), f̂i(tk) =
|êi(tk)| − (c0 + c1e

−αk) = fi(tk). From (6), we can know
that if f̂j(tk−1) > 0, then ŷj(tk) = yj(tk), otherwise ŷj(tk) =
ŷj(tk−1) = yj(tk) + êj(tk−1). Let

ēj(tk−1) =

{
0 if f̂j (tk−1) > 0
êj(tk−1) otherwise.

(13)

Then, ŷj(tk) = yj(tk) + ēj(tk−1) always holds for k =
1, 2, . . . . Furthermore, we have

|ēj(tk−1)| ≤ |êj(tk−1)| ≤ c0 + c1e
−α(k−1). (14)

Thus, system (12) can be rewritten as

yi (tk+1) =

⎛
⎝2− k2h− k1h

∑
j∈Qi(tk)

|aij |
⎞
⎠ yi(tk)

+ (k2h− 1)yi(tk−1)

+ k1h
∑

j∈Qi(tk)

|aij |(yj(tk) + ēj(tk−1))

≤ M̄(tk) + k1h|ēj(tk−1)|
≤ M̄(tk) + k1hc0 + k1hc1e

−α(k−1). (15)

Hence, it can be obtained that

M̄(tk+1) ≤ M̄(tk) + k1hc0 + k1hc1e
−α(k−1). (16)

Similarly, m̄(tk+1) ≥ m̄(tk)− k1hc0 − k1hc1e
−α(k−1) can be

obtained.
Next, we introduceV (tk) = M̄(tk)− m̄(tk) fork = 1, 2, . . .

and analyze the upper bound of V (tk) to get the error level e.
Inspired by (16), we create two variables as follows to find the
upper bound of M̄(tk) and the lower bound of m̄(tk)

Φ(k + 1) = Φ(k) + k1hc0 + k1hc1e
−α(k−1)

φ(k + 1) = φ(k)− k1hc0 − k1hc1e
−α(k−1) (17)

where k = 1, 2, . . ., Φ(1) = M̄(t1) and φ(1) = m̄(t1). It easy
to know that M̄(tk) ≤ Φ(k) and m̄(tk) ≥ φ(k).

Define a recursive sequence {εk} as

εk+1 = ηεk, k = 1, 2, . . . (18)

where ε1 = 1
2V (t1). It is easy to show that 0 < εk+1 < εk since

0 < η < 1.
Next, define the following two sets with Φ(k), φ(k) and εk:{

S (tk, εk) := {i ∈ V : yi (tk) > Φ(k)− εk}
S (tk, εk) := {i ∈ V : yi (tk) < φ(k) + εk} . (19)

For these two sets, the following two conclusions hold.
1) S(tk, εk) and S(tk, εk) are disjoint.

2) At least one of sets S(tm+1, εm+1) ∩ VN and
S(tm+1, εm+1) ∩ VN is empty.

For conclusion (1), we get the result by Φ(k)− εk > φ(k) +
εk. From (17) and (18), we can obtain

(Φ(k)−εk)−(φ(k)+εk)

=

(
Φ(1)+(k − 1)k1hc0+k1hc1

1−e−α(k−1)

1−e−α

)

−
(
φ(1)−(k−1)k1hc0−k1hc1

1−e−α(k−1)

1−e−α

)
−2ηk−1ε1

= (1−ηk−1)V (t1)+2(k−1)k1hc0+2k1hc1
1−e−α(k−1)

1−e−α
.

(20)

From 0 < η < 1, it is easy to have (Φ(k)− εk)− (φ(k) +
εk) > 0. Conclusion (1) is established.

For conclusion (2), we first consider sets S(t1, ε1) and
S(t1, ε1). We suppose that S(t1, ε1) ∩ VN and S(t1, ε1) ∩ VN

are not empty (If one of them is an empty set, the conclusion
can be drawn directly). From conclusion (1), we know that
these two sets are disjoint. Since the digraph is (f + 1, f + 1)-
robust, one has that there is one or more normal nodes in
S(t1, ε1) ∪ S(t1, ε1) with no less than f + 1 in-neighbors about
its set. Assume that the normal node i ∈ S(t1, ε1) has this
property. In Algorithm 1, at most f values from these outer
in-neighbors are deleted. Thus, at least one normal node from
set Qi(t1)\S(t1, ε1) is used to update node i. Therefore, node i
is updated according to

yi (t2)=

⎛
⎝2−k2h− k1h

∑
j∈Qi(t1)

|aij |
⎞
⎠ yi(t1) + (k2h− 1)yi(t0)

+ k1h
∑

j∈Qi(t1)∩S(t1,ε1)

|aij |yj(t1) + k1h
∑

j∈Qi(t1)\S(t1,ε1)

|aij |yj(t1)

+ k1h
∑

j∈Qi(t1)

|aij |ēj(t0)

≤ (1− η)M̄(t1) + η max
j∈Qi(t1)\S(t1,ε1)

yj(t1) + k1h(c0 + c1)

≤ (1− η)Φ(1) + η (Φ(1)− ε1) + k1h(c0 + c1)

≤ Φ(1)− ηε1 + k1hc0 + k1hc1

= Φ(2)− ε2. (21)

It shows that node i will be outside the set S(t2, ε2) after
updating.

For normal node i /∈ S(t1, ε1), we have

yi (t2) =

⎛
⎝2− k2h− k1h

∑
j∈Qi(t1)

|aij |
⎞
⎠ yi(t1)

+ (k2h− 1)yi(t0)

+ k1h
∑

j∈Qi(t1)

|aij |yj(t1) + k1h
∑

j∈Qi(t1)

|aij |ēj(t0)
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Fig. 1. (3,3)-robust digraph. It is structurally balanced. The solid line repre-
sents cooperative interaction, the dotted line represents competitive interaction.

Fig. 2. Trajectory of the position and velocity state of agents under c0 = 0,
c1 = 1.

≤ η(Φ(1)− ε1) + (1− η)Φ(1) + k1h(c0 + c1)

≤ Φ(2)− ε2. (22)

It shows that all normal nodes outside the set S(t1, ε1) will
not enter the set S(t2, ε2) after updating. Thus, it has that
|S(t2, ε2) ∩ VN | < |S(t1, ε1) ∩ VN |. Similar arguments can
be used to show |S(t2, ε2) ∩ VN | < |S(t1, ε1) ∩ VN |. Due to
|VN | = m, that is, the number of normal agents is limited, by re-
peating the same analysis as above and after at most m steps, we
have |S(tm+1, εm+1) ∩ VN | = 0 or |S(tm+1, εm+1) ∩ VN | =
0. The proof of conclusion (2) is completed.

We assume S(tm+1, εm+1) ∩ VN = ∅ (The same result
can be obtained if S(tm+1, εm+1) ∩ VN = ∅). It follows that
M̄(tm+1) ≤ Φ(m+ 1)− εm+1. Thus, we have

V (tm+1)=M̄ (tm+1)−m̄ (tm+1)

≤Φ(m+1)−εm+1−φ(m+1)

≤Φ(1)−φ(1)+2 mk1hc0+2k1hc1
1−e−αm

1−e−α
−ηmε1

≤
(
1− 1

2
ηm

)
V (t1)+2 mk1hc0+2k1hc1

1−e−αm

1−e−α
.

(23)

Similarly, the abovementioned results can be extended further
as

V (tlm+1) ≤
(
1− 1

2
ηm

)
V
(
t(l−1)m+1

)
+ 2 mk1hc0

+ 2k1hc1
1− e−αm

1− e−α
e−α(l−1)m

≤
(
1− 1

2
ηm

)l

V (t1) + 2mk1hc0
1− (

1− 1
2η

m
)l

1− (
1− 1

2η
m
)

+ 2k1hc1
1−e−αm

1−e−α

(
1−1

2η
m
)l−1 (

1−(
1− 1

2η
m
)−l

e−αml
)

1−(
1− 1

2η
m
)−1

e−αm
.

(24)

Then, it has

lim sup
l→∞

V (tlm+1) ≤ 4mk1hc0
ηm

. (25)

Following the similar analysis mentioned above, we can get
lim supl→∞ V (tlm+1+d) ≤ 4mk1hc0

ηm , d = 1, 2, . . . ,m. There-
fore, we have

lim sup
k→∞

V (tk) ≤ 4mk1hc0
ηm

≤ e (26)

which implies that lim supk→∞ |yi(tk)− yj(tk)| ≤ e for all
i, j ∈ VN . It follows that lim supk→∞ ||xi(t)| − |xj(t)|| ≤ e.
The proof of sufficiency is completed.

Necessity: In the interest of space we omit the proof, which
follows from Theorem 1 for the first-order case presented in [9]
by setting c0 = c1 = 0.

Remark 2: Note that the error level e is related to the pa-
rameter c0 of the event-triggered function. Choosing c0 = 0,
we have lim supk→∞ ||xi(t)| − |xj(t)|| ≤ 0. From (9), there is
yi(tk+1) = yi(tk) + hσivi(t

+
k ). Combining (16), we can get

lim sup
k→∞

σivi(tk) = lim sup
k→∞

σivi(t
+
k−1)

= lim sup
k→∞

yi (tk)− yi (tk−1)

h

≤ lim sup
k→∞

M̄ (tk)− m̄ (tk−1)

h

≤ lim sup
k→∞

M̄ (tk−1)+k1hc0+k1hc
−α(k−2)
1 −m̄ (tk−1)

h

≤ 4mk1
ηm

c0 + k1c0. (27)

Similarly, lim supk→∞ σivi(tk) ≥ − 4mk1

ηm c0 − k1c0 can be ob-
tained. Thus, we have

lim sup
k→∞

|vi(tk)| ≤
(
4mk1
ηm

+ k1

)
c0 = 0 (28)

that is the system achieves exact resilient static bipartite consen-
sus.

Remark 3: We consider the periodic sampling in this article.
In fact, for the aperiodic sampling, that is, tk+1 − tk = hk,
where hm < hk < hM for k ∈ Z≥0, the corresponding (12) can
be written in the following form:

yi (tk+1)=

⎛
⎝1+

hk

hk−1
−k2hk−k1hk

∑
j∈Qi(tk)

|aij |
⎞
⎠ yi(tk)
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TABLE I
EVENT-TRIGGERED TIMES AND CONSENSUS ERROR

+k1hk

∑
j∈Qi(tk)

|aij |ŷj(tk)+
(
k2hk− hk

hk−1

)
yi(tk−1).

(29)

The results of this article still hold if 1
hm

< k2 < 2
hM

−
k1 maxi∈VN

∑
j∈Ni

|aij |.
Corollary 1: Consider the MAS (1) with no mali-

cious agents and assume that its corresponding network
topology G is structurally balanced. Under 1

h < k2 < 2
h −

k1 maxi∈VN

∑
j∈Ni

|aij |, system (1) with protocol (4) can
achieve bipartite consensus if and only if the digraph G has a
spanning tree.

Proof: In this case, f = 0. The system can achieve bipartite
consensus if G is (1,1)-robust from Theorem 1. Then, it follows
straightforwardly from Lemma 2.

IV. NUMERICAL SIMULATIONS

Consider a structurally balanced digraph with seven nodes
shown in Fig. 1. We assume that node 3 and node 5
are malicious nodes with dynamics x3 = 100 sin(0.1t), v3 =
2, x5 = 100 cos(0.1t), v5 = 4. Other normal agents up-
dates according to the local protocol (7). Divide the
set V into two subsets V1 = [1, 2, 3], V2 = [4, 5, 6, 7].
Take P = diag{1, 1, 1,−1,−1,−1,−1}. Set x(0) = x̂(0) =
[10, 35, 30, 55, 65, 80, 90], v(0) = [1, 4, 2, 3, 4, 2, 3]. Take the
impulsive interval h = 0.5 and the control gains k1 = 1,
k2 = 2.4. For the parameters of the event-triggered function, we
always set α = 0.01, and set c0 and c1 according to Table I. The
trigger times of each normal node in 25s and the consensus error
at 100s are given in Table I. Fig. 2 gives the dynamic trajectories
of all nodes with c0 = 0, c1 = 1. The specific trigger instants of
each normal agent is shown in Fig. 3.

V. CONCLUSION

This article studied the resilient bipartite consensus of second-
order MASs with malicious agents. An event-based resilient
impulsive algorithm was employed not only to mitigate the ef-
fects of malicious nodes but also greatly reduce communication
loads of agents. Under the f -total threat model, two groups of
competing normal nodes in structurally balanced signed digraph
can successfully converge to two opposing values if and only

Fig. 3. Trigger instants of normal nodes. The time with the vertical line
represents the trigger instant, and the black dot represents the position state
of the agent at that trigger instant.

if the digraph is (f, f)-robust. Our future research will focus
on finite-time (bipartite) resilient consensus with even-triggered
communication.
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