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Abstract
In this article, the containment control problem is studied for hybrid multi-agent
systems (MASs), which is comprised of continuous-time and discrete-time
dynamic agents. For first-order hybrid MASs, two effective distributed proto-
cols are designed when followers have continuous-time dynamics, and one
distributed protocol is designed when followers have discrete-time dynamics.
Meanwhile, for second-order hybrid MASs, we also propose three kinds of dis-
tributed protocols to solve the containment control. By utilizing stability theory
and system transformation method, some criteria are derived for solving the con-
tainment control problem of hybrid MASs. Simulation examples are provided to
show the efficiency of the theoretical results.
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1 INTRODUCTION

In the past few decades, coordinated control of multi-agent systems (MASs) has received extensive attention in the control
science community. That is mainly due to its wide application in consensus,1,2 formation control,3 flocking,4 rendezvous,5
constraint control,6 and so forth. The purpose of coordinated control is to complete some complex tasks by mutual com-
munication and cooperation between a group of agents, so as to improve the overall performance of the system. Among
these issues, consensus is an important and basic one to coordinated control. It means that a group of autonomous agents
reach an agreement on certain quantities of interest via local interaction. The leaderless consensus and consensus tracking
problems have been investigated, see References 7-9, just to name a few.

In some realistic scenarios, such as environmental monitoring, transportation of supplies, search and rescue, removal
or transfer of hazardous materials, multiple leaders may be required. These leaders usually have outstanding abilities in
sensing, calculation, decision-making, and so forth. In general, this kind of consensus issue is called containment control.
Its main objective is to drive followers into the convex hull spanned by leaders by designing some appropriate distributed
protocols. Dimarogonas et al.10 proposed a discontinuous time-varying feedback control strategy based on the unicycle
model. Inspired by the swarming phenomenon in silkworm moths, Notarstefano et al.11 modeled containment control of
continuous-time (CT) MASs with interval communication in undirected topologies. Liu et al.12 designed some distributed
protocols based on CT and sampled-data to solve the containment control problem of first- and second-order MASs under
directed networks. It is worth mentioning that they proved an important lemma related to Laplacian matrix and net-
work topology and derived the final convergence states of followers. The containment control problem of CT MASs with
time delays and communication noises were also considered in References 13 and 14, respectively. For discrete-time (DT)
MASs, Cao and Ren15 obtained some necessary and sufficient conditions to achieve containment under fixed and switch-
ing directed networks, in light of a Lyapunov-based approach. In Reference 16, the authors transformed the asynchronous
containment control problem into a stability problem of synchronous error system equivalently. Then, by using graph
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theory and nonnegative matrix theory, the asynchronous containment control problem of second-order DT MASs with
time-varying delays was solved. Zhu et al.17 investigated the containment control problem of first- and second-order MASs
with DT-CT switching behaviors, and then the case of general second-order dynamics was also considered in Reference
18. Xu et al.19 studied the containment control problem for high-order DT MASs with input saturation.

Note that the aforementioned works merely focus on the case that all agents have identical dynamics in homogeneous
MASs. However, in reality, a collection of agents with different dynamics might be required to cooperate with each other
for achieving the prespecified goals. For example, cockroaches and socially integrated autonomous robots with differ-
ent dynamics showed collective decision-making,20 which indicates that the necessity of studying heterogeneous MASs.
Consensus of heterogeneous MASs composed of first- and second-order integrator agents was considered in References
21 and 22. By virtue of Lyapunov direct method, Zheng et al.21 studied the consensus of heterogeneous MASs based on
undirected connected graphs and leader-following networks. In Reference 22, the authors further analyzed the consensus
problem based on fixed and switched directed topologies by using non-negative matrix theory. The containment control
problem for CT heterogeneous MASs has been studied extensively. In Reference 23, Zheng and Wang proposed a linear
protocol and a nonlinear protocol to address the containment control problem of heterogeneous MASs. And Asgari and
Atrianfar24 extended the results of Reference 23 to the case that DT dynamic agents have fixed time delay. Recently, the
cases in which followers have different dynamics, time delays and state dimensions have also been taken into account.25-27

Hybrid MASs are a class of systems in which CT and DT dynamic agents coexist. An early attempt on consensus
of hybrid MASs was made in Reference 28, and the concept of hybrid consensus was put forward. They devised three
kinds of hybrid consensus protocols in accordance with the interaction modes between agents. Moreover, necessary and
sufficient conditions involving the sampling period and the degree matrix of the system was established to guarantee
the consensus. Zhao et al.29 considered a new interaction mode among agents and established a unified framework for
the consensus of CT and DT MASs. In Reference 30, the second-order consensus of hybrid MASs was further analyzed,
and two kinds of consensus protocols with absolute velocity information were devised. The analysis tools developed in
References 28-30 mainly include algebraic graph theory, system transformation method, matrix theory and differential
mean value theorem of matrix function. A game-theoretic approach was also proposed in Reference 31 to analyze the
consensus of hybrid MASs. In addition, the hybrid consensus based on event-triggered32,33 and malicious nodes34 has
also been reported in details. The containment control problem that agents have CT dynamics,12-14 DT dynamics15,16 and
CT-DT switching behaviors17,18 has been considered in the existing papers. By contrast, the containment control problem
in which CT agents and DT agents coexist is still a novel topic. The development of computer science and robotics provides
conditions for the interaction between CT individuals and DT individuals. Therefore, the containment control of hybrid
MASs composed of CT agents and DT agents may be applied to our real life, such as robotic dogs instead of shepherd
dogs to shepherd the sheep, robotic fish instead of otters to drive fish, a team of unmanned aerial vehicles to encircle the
enemy, and so forth. All of these have aroused our interest in studying containment control of hybrid MASs.

Inspired by all the above analyses, our attention is focused on the containment control of first- and second-order hybrid
MASs, which are composed of CT followers/leaders and DT leaders/followers. There are two main difficulties in solving
this kind of containment control problem. One is the design of distributed protocols. Obviously, the design of those general
containment control protocols is not feasible here. Compared with the containment control problem of homogeneous
MASs, it is more difficult for hybrid MASs to understand the interaction modes between agents. Motivated by References
28-30, this article analyzes three new types of interaction modes: (a) each CT follower can observe its own states in real
time and interact with all its neighbors at the sampling time; (b) each CT follower can observe its own states in real time,
interact with the leader neighbors at the sampling time, and interact with the follower neighbors in real time; (c) each DT
follower can observe its own states and interact with all its neighbors only at the sampling time. Meanwhile, three novel
distributed protocols are designed for first- and second-order hybrid MASs, respectively. The other is system analysis. For
the containment control of homogeneous MASs, the system matrix is relatively easy to obtain. However, for hybrid MASs,
the interaction between CT agents and DT agents undoubtedly increases the difficulty of system analysis. The main idea
of this article is to construct the error function by using convex hull spanned by leaders, so that the containment control
of hybrid MASs can be converted into the stability analysis problem of the error system. Then, by means of graph theory,
matrix theory, stability theory, and system transformation method, some criteria to achieve containment are derived.

The rest of this article is organized as follows. In Section 2, we present some notions in graph theory and matrix
theory, and list some key lemmas. The first- and second-order dynamic models of hybrid MASs are given in Section 3
and Section 4, respectively. Moreover, some distributed protocols are designed for first- and second-order hybrid MASs
and four theorems are proposed. In Section 5, we give some simulations to illustrate the validity of the theoretical results.
Lastly, the conclusion is drawn in Section 6.



CHEN et al. 3

Notations: Throughout this article, we use R, RN , and RN×N for the set of real numbers, the N-dimensional real vector
space, and N × N real matrix space, respectively. Let N, C, and CN×N be the set of natural numbers, the set of complex
numbers, and N × N complex matrix space, respectively. IN is the N × N identity matrix, and 0 is the all-zeros vector or
matrix with compatible dimension. ST is the transpose of vector S. Re(𝜆) and Im(𝜆) represent the real and imaginary parts
of a complex number 𝜆. 𝜆 and |𝜆| are the conjugate complex number and the module of 𝜆, respectively. Meanwhile, diag(⋅)
denotes the diagonal matrix, det(⋅) denotes the determinant of the matrix, and ‖⋅‖ represents the Euclidian norm.

2 PRELIMINARIES

2.1 Graph theory

A weighted digraph of order N is denoted by  = ( ,  ,), where  = {s1, s2,… , sN} is the vertex set,  = {eij = (si, sj)} ⊆

 ×  is the edge set, and  = [aij]N×N is the weighted adjacency matrix. For the edge (si, sj) ∈  , si is the beginning
of the edge, sj is the end of the edge, which indicates that sj can receive information from si. If (si, sj) ∈  for i ≠ j,
then aij > 0, otherwise aij = 0. And we assume that aii = 0 for i = 1, 2,… ,N. Let i denote the set of neighbors of si,
i = {sj ∈  ∶ eji = (sj, si) ∈  , j ≠ i}. A directed path between two distinct vertices sj and si is denoted by a finite ordered
sequence (sj, sj1), (sj1, sj2),… , (sjk, si). For a directed tree, there is a special vertex called the root whose in-degree is 0, and
the in-degree of the remaining vertices is 1. A directed forest consists of one or more directed trees without common ver-
tices. Then, a directed spanning forest is a directed forest composed of all vertices and some edges in a digraph . The
degree matrix  = [dij]N×N is a diagonal matrix with di =

∑
j∶sj∈i

aij. The Laplacian matrix associated with digraph  is
defined as L = [lij]N×N =  −.

2.2 Some useful lemmas and definitions

Lemma 1 (35). Let A = [aij] ∈ CN×N and ri(A) =
∑N

j=1,j≠i|aij|, i = 1, 2,… ,N. Then all eigenvalues of A satisfy

N⋃
i=1

{z ∈ C ∶ |z − aii| ≤ ri(A)}.

Definition 1 (36). The set P ⊂ RN is said to be convex if there is (1 − 𝜂)x + 𝜂y ∈ P for any x ∈ P, y ∈ P, and 𝜂 ∈ [0, 1].
Let Co{x1, x2,… , xN} = {

∑N
i=1𝜉ixi|𝜉i ∈ R, 𝜉i ≥ 0,

∑N
i=1𝜉i = 1} denote the convex hull for a finite set of points.

Lemma 2 (37). For a given block matrix

B =

[
B11 B12

B21 B22

]
,

where B11, B12, B21, B22 ∈ RN×N . If B21B22 = B22B21 then det(B) = det(B11B22 − B12B21) and if B11B21 = B21B11 then det(B) =
det(B11B22 − B21B12).

Lemma 3 (38). A quadratic complex coefficient polynomial is given as

H(s) = s2 + 𝜔1s + 𝜔0,

where 𝜔1 and 𝜔0 are complex numbers. Then, h(s) is Hurwitz stable if and only if Re(𝜔1) > 0 and Re(𝜔1)Im(𝜔1)Im(𝜔0) +
Re2(𝜔1)Re(𝜔0) − Im2(𝜔0) > 0.

Lemma 4. Let g1(t) = e𝛼(t−tk )−1
𝛼

, g2(t) = e𝛼(t−tk), and g3(t) = 𝛼e𝛼(t−tk) for t ∈ (tk, tk+1]. Here, tk = kh, k ∈ N and h ∈ R+. Then,
g1(t), g2(t), and g3(t) are monotone bounded functions for the constant 𝛼 < 0.

Proof. First, it is easy to get

ġ1(t) = e𝛼(t−tk) > 0, ġ2(t) = 𝛼e𝛼(t−tk) < 0, ġ3(t) = 𝛼2e𝛼(t−tk) > 0,

hence g1(t) and g3(t) are monotone increasing functions, g2(t) is a monotone decreasing function.
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When tk = kh, k ∈ N, we have 0 < t − tk ≤ h. Thence, for the constant 𝛼 < 0, we can also get

0 < g1(t) ≤
eh𝛼 − 1

𝛼
, eh𝛼 ≤ g2(t) ≤ 1, 𝛼 < g3(t) ≤ 𝛼eh𝛼,

which indicates that g1(t), g2(t), and g3(t) are bounded functions.
In conclusion, g1(t), g2(t), and g3(t) are monotone bounded functions for the constant 𝛼 < 0. ▪

Definition 2 (12). For an MAS, an agent is called a leader if it has no neighbors, and a follower if it has at least one neigh-
bor. In this article, we assume that an n-agent system has M (M < N) followers and N − M leaders. Let F = {1, 2,… ,M}
denote the set of followers and R = {M + 1,M + 2,… ,N} denote the set of leaders. Then the Laplacian matrix L
associated the digraph  can be partitioned to be

L =

[
LF LFR

0(N−M)×M 0(N−M)×(N−M)

]
,

where LF ∈ RM×M and LFR ∈ RM×(N−M).

Lemma 5 (12). LF is invertible if and only if the communication digraph  has a directed spanning forest. Moreover,
all eigenvalues of LF have positive real parts, each element of −L−1

F LFR is non-negative, and the sum of each row of −L−1
F

LFR is 1.

Definition 3. For MASs with first- or second-order dynamics, the containment control problem can be solved if the
states of all followers ultimately converge to the convex hull spanned by those of leaders under any initial conditions.

Lemma 6 (12). Consider the first-order MAS{
ẋi(t) =

∑N
j=1aij(xj(tk) − xi(tk)), t ∈ (tk, tk+1], tk = kh, k ∈ N, i ∈ F ,

ẋi(t) = 0, i ∈ R,

with sampled-data based protocol under the fixed digraph . Here, h > 0 is the sampling period and  = [aij]N×N is the
weighted adjacency matrix associated with the digraph . When i ∈ R, we can easily get xi(t) = xi(0). That is to say, the
position of each leader does not change with time t and is always the initial state. Therefore, these leaders are stationary
and the convex hull spanned by these leaders is also stationary. Then all followers will converge to the stationary convex hull
spanned by the stationary leaders for any initial conditions if and only if the digraph  contains a directed spanning forest
and the sampling period satisfies h < mini∈F

{
2Re(𝜆i)|𝜆i|

}
, where 𝜆i are the eigenvalues of LF .

3 CONTAINMENT CONTROL OF FIRST- ORDER HYBRID MULTI-AGENT
SYSTEMS

In this section, the containment control problem of hybrid MASs with first-order integrator agents is investigated. Then,
we consider the following two cases: (a) followers have CT dynamics and leaders have DT dynamics; (b) followers have
DT dynamics and leaders have CT dynamics.

3.1 Followers are agents with first-order CT dynamics

Consider the containment control of the first-order hybrid MAS, which is comprised of CT followers and DT leaders. The
dynamics of followers and leaders are given by{

ẋi(t) = ui(t), t ∈ (tk, tk+1], i ∈ F ,

xi(tk+1) = xi(tk) + hui(tk), tk = kh, k ∈ N, i ∈ R,
(1)
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where h > 0 is the sampling period, xi ∈ R and ui ∈ R are the position and the control input of agent i, respec-
tively. Let xF(⋅) = [x1(⋅), x2(⋅),… , xM(⋅)]T, xR(⋅) = [xM+1(⋅), xM+2(⋅),… , xN(⋅)]T, xF(0) = [x1(0), x2(0),… , xM(0)]T, and xR(0) =
[xM+1(0), xM+2(0),… , xN(0)]T, where xi(0) is the initial position of agent i.

When followers have CT dynamics and leaders have DT dynamics, it is evident that each follower can observe its own
states in real time and interact with leaders at the sampling time. As far as all followers are concerned, they can interact
with each other not only at the sampling time but also in real time. In this regard, we will consider the next two kinds of
distributed protocols.

3.1.1 Case 1

In this case, we assume that each follower interacts with all its neighbors at the sampling time tk and observes its own
states in real time. Thus, a distributed protocol for the hybrid MAS (1) is devised as{

ui(t) =
∑N

j=1aij(xj(tk) − xi(t)), t ∈ (tk, tk+1], i ∈ F ,

ui(tk) = 0, i ∈ R,
(2)

where  = [aij]N×N is the weighted adjacency matrix associated with the digraph .

Theorem 1. Consider a communication digraph . Then, the hybrid MAS (1) with protocol (2) can solve the containment
control problem if and only if the digraph  contains a directed spanning forest.

Proof. (Sufficiency): The proof of sufficiency can be divided into the following two steps.
Step 1: For the hybrid MAS (1) with protocol (2), we can get the position of each agent as

⎧⎪⎨⎪⎩
xi(t) = xi(tk) + 1−e

−
∑N

j=1aij(t−tk )∑N
j=1aij

∑N
j=1aij(xj(tk) − xi(tk)), i ∈ F ,

xi(tk+1) = xi(tk), i ∈ R.

(3)

When t = tk+1, for i ∈ F , we have

xi(tk+1) = xi(tk) +
1 − e−

∑N
j=1aijh∑N

j=1aij

N∑
j=1

aij(xj(tk) − xi(tk)). (4)

From (3), we get xR(tk) = xR(0), hence (4) can be written in a compact form as

xF(tk+1) = (IM − HMLF)xF(tk) − HMLFRxR(0), (5)

where

HM = diag

{
1 − e−

∑N
j=1a1jh∑N

j=1a1j
,

1 − e−
∑N

j=1a2jh∑N
j=1a2j

,… ,
1 − e−

∑N
j=1aMjh∑N

j=1aMj

}
.

Since the digraph  contains a directed spanning forest, the matrix LF is invertible in line with Lemma 5. Then, we
construct an error function based on the states of followers. Let 𝛿F(tk) = xF(tk) + L−1

F LFRxR(0). When tk → ∞, 𝛿F(tk) → 0
and the final states of followers can be obtained. Then, from Equation (5), we can get a DT error system as

𝛿F(tk+1) = P𝛿F(tk), (6)

where P = IM − HMLF . For convenience, we denote the diagonal elements of matrix P with Pi that Pi = e−dih, i ∈ F . By
Lemma 1, we have

|z − Pi| ≤ M∑
j=1,j≠i

||||1 − e−dih

di
aij
||||
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= 1 − e−dih

di

N∑
j=1,j≠i

aij

= 1 − e−dih

di
di

= 1 − e−dih,

where h > 0. In addition, the digraph  contains a directed spanning forest, which implies that each follower has at
least one neighbor. Hence di > 0, i ∈ F . Furthermore, we have 0 < e−dih < 1. All eigenvalues of matrix P are in the
union of all Gerschgorin circles with e−dih as the center and (1 − e−dih) as the radius. Since the centers and radii of
all Gerschgorin circles of matrix P have the same form, only one Gerschgorin circle is shown as a representative in
Figure 1.

Use 𝜇i to denote the eigenvalues of the matrix P and |𝜇i| to denote the modules of 𝜇i. Take any point C in the circle
shown in Figure 1 and connect OC and CD. Then, we have |DC| = |DE| and |OD| + |DC| = |OD| + |DE|. Based on a
property of triangle, we get |OC| ≤ |OD| + |DC| = |OE| = 1. Owing to |OC| = |𝜇i|, it is clear that |𝜇i| ≤ 1. And then, we
will apply the contradiction method to prove |𝜇i| ≠ 1.

Suppose that there is |𝜇i| = 1, hence we get 𝜇i = 1 by Figure 1. Then, we denote the eigenvalues of HMLF by 𝜆′i . The
characteristic equation of the matrix P in (6) is

det(𝜇IM − P) = det(𝜇IM − (IM − HMLF))
= det((𝜇 − 1)IM + HMLF)

=
M∏

i=1
(𝜇 − 1 + 𝜆′i)

= 0.

If 𝜇i = 1, then 𝜆′i = 0. It means that matrix HMLF has one or more eigenvalues of zero. Then, det(HMLF) = 0. By a
property of determinant, we have det(HMLF) = (

∏M
i=1

1−e−dih

di
)det(LF), where 1−e−dih

di
> 0. The matrix LF is invertible, thus

we get det(LF) ≠ 0, and further det(HMLF) ≠ 0. Obviously, that contradicts the result above. That is to say, |𝜇i| ≠ 1. And
then |𝜇i| < 1 is confirmed.

Therefore, all eigenvalues of the matrix P are within the unit circle, which indicates that the error system (6) is Schur
stable. Moreover, we can obtain xF(tk) → −L−1

F LFRxR(0) as tk → ∞. From Lemma 5 and Definition 1, we know that all fol-
lowers will asymptotically converge to the convex hull spanned by those of leaders. Thence, by Definition 3, the distributed
protocol (2) can solve the containment control problem of the hybrid MAS (1) when tk → ∞.

Step 2: In this step, we will prove that all followers almost not depart from the convex hull spanned by those of leaders
when t ∈ (tk, tk+1), t → ∞. From the system (3), we have

xF(t) − xF(tk) = −HM(t)(LFxF(tk) + LFRxR(tk)) = −HM(t)LF(xF(tk) + L−1
F LFRxR(0)), (7)

where HM(t) = diag
{

1−e
−
∑N

j=1a1j (t−tk )∑N
j=1a1j

,
1−e

−
∑N

j=1a2j (t−tk )∑N
j=1a2j

,… ,
1−e

−
∑N

j=1aMj(t−tk )∑N
j=1aMj

}
, i ∈ F . By Lemma 4, we can easily get that

1−e
−
∑N

j=1aij(t−tk )∑N
j=1aij

is a bounded function about t. That is to say, every element of the matrix HM(t) is bounded. Moreover, when

t → ∞, we have tk → ∞. In terms of Step 1, we know that (xF(tk) + L−1
F LFRxR(0)) → 0 as tk → ∞. Consequently, from (7),

we have

lim
t→∞

‖xF(t) − xF(tk)‖ = lim
t→∞

‖‖−HM(t)LF(xF(tk) + L−1
F LFRxR(0))‖‖ = 0,

which shows that xF(t) → xF(tk) → −L−1
F LFRxR(0) when t → ∞.

Combining Step 1 and Step 2, the containment control for the hybrid MAS (1) with protocol (2) can be achieved if the
communication digraph  contains a directed spanning forest.

Necessity: Suppose that the communication digraph  has no directed spanning forest. Then there exists at least one
follower that is incapable of receiving information from any leader, which implies that the position of this follower is
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F I G U R E 1 Any Gerschgorin circle of matrix P

uncorrelated with the positions of those leaders. Accordingly, the containment control of the hybrid MAS (1) cannot be
achieved in this case. ▪

3.1.2 Case 2

In this case, we still assume that followers interact with all leaders at the sampling time tk and observe their own positions
in real time. However, unlike Case 1, the interaction between all followers is presumed to occur in real time. Thus, a
distributed protocol for the hybrid MAS (1) is devised as{

ui(t) =
∑M

j=1aij(xj(t) − xi(t)) +
∑N

j=M+1aij(xj(tk) − xi(t)), t ∈ (tk, tk+1], i ∈ F ,

ui(tk) = 0, i ∈ R,
(8)

where  = [aij]N×N is the weighted adjacency matrix associated with the digraph .

Theorem 2. Consider a communication digraph . Then, the hybrid MAS (1) with protocol (8) can solve the containment
control problem if and only if the digraph  contains a directed spanning forest.

Proof. (Sufficiency): For the hybrid MAS (1) with protocol (8), we have{
ẋi(t) =

∑M
j=1aij(xj(t) − xi(t)) +

∑N
j=M+1aij(xj(tk) − xi(t)), i ∈ F ,

xi(tk+1) = xi(tk), i ∈ R.
(9)

From the system (9), we have xR(tk) = xR(0). By Lemma 5, the matrix LF is invertible. Thus, when i ∈ F , the states of
all followers can be written in a compact form as

ẋF(t) = −LFxF(t) − LFRxR(tk) = −LF(xF(t) + L−1
F LFRxR(0)). (10)

Similar to Case 1, we devise an error function 𝛿F(t) = xF(t) + L−1
F LFRxR(0) with regard to t. By deriving the error

function and using the result of Equation (10), one has

�̇�F(t) = ẋF(t) = −LF(xF(t) + L−1
F LFRxR(0)) = −LF𝛿F(t). (11)

By Lemma 5, all eigenvalues of −LF have negative real parts. In the light of Lyapunov stability criterion, we know that
the error system (11) is asymptotically stable when 𝛿F(t) → 0. That is xF(t) → −L−1

F LFRxR(0) as t → ∞. Therefore, from
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Lemma 5 and Definition 1, we know that all followers will asymptotically converge to the convex hull spanned by those
of leaders. Moreover, by Definition 3, the distributed protocol (8) can solve the containment control problem of the hybrid
MAS (1).

Necessity: The proof of necessity is similar to Section 3.1.1, which is omitted here. ▪

Remark 1. Compared to the containment control of the first-order CT MAS with sampled-data based protocol, the con-
tainment control of hybrid MASs with CT followers involves more real time information. It brings the advantage of
relaxing the reachable condition of the containment control. No matter Case 1 or Case 2, the sampling period h has no
upper limit.

3.2 Followers are agents with first-order DT dynamics

Consider the containment control of the first-order hybrid MAS, which is comprised of DT followers and CT leaders. The
dynamics of leaders and followers are given by{

xi(tk+1) = xi(tk) + hui(tk), tk = kh, k ∈ N, i ∈ F ,

ẋi(t) = ui(t), t ∈ (tk, tk+1], i ∈ R,
(12)

where h > 0 is the sampling period, xi ∈ R and ui ∈ R are the position and the control input of agent i, respectively.
In view of the definition of leaders, we know that each leader only sends but does not receive any information. Thus,

their control inputs are all zero. Those followers are agents with DT dynamics, hence they can only observe their own
states and communicate with all its neighbors at the sampling time. Although leaders are agents with CT dynamics,
followers only possess the ability to interact with leaders at the sampling time. Therefore, a distributed protocol for the
hybrid MAS (12) is designed as {

ui(tk) =
∑N

j=1aij(xj(tk) − xi(tk)), i ∈ F ,

ui(t) = 0, i ∈ R,
(13)

where  = [aij]N×N is the weighted adjacency matrix associated with the digraph .

Theorem 3. Consider a communication digraph . Then, the hybrid MAS (12) with protocol (13) can solve the containment
control problem if and only if the digraph  contains a directed spanning forest, and the sampling period satisfies

h < mini∈F

{
2Re(𝜆i)|𝜆i|

}
,

where 𝜆i are the eigenvalues of LF .

Proof. For the hybrid MAS (12) with protocol (13), it can be noted that the proof is basically similar to that of Corollary
1 in Reference 12. Moreover, the range of sampling period h is the same after analysis. Thus the verification is omitted
here. For more details, please refer to Reference 12. ▪

4 CONTAINMENT CONTROL OF SECOND- ORDER HYBRID
MULTI-AGENT SYSTEMS

In this section, we investigate the containment control problem of hybrid MASs with second-order integrator agents.
Compared with the first-order system, the second-order system involves the velocity information, which increases the
difficulty of solving the differential equations of the system. Similar to Section 3, we still discuss the following two situa-
tions: (a) followers are agents with CT dynamics and leaders are agents with DT dynamics; (b) followers are agents with
DT dynamics and leaders are agents with CT dynamics.



CHEN et al. 9

4.1 Followers are agents with second-order CT dynamics

For the second-order hybrid MAS, the containment control problem with CT followers and DT leaders is considered in
this section. Then, the dynamics of leaders and followers are given by{

ẋi(t) = vi(t), v̇i(t) = ui(t), i ∈ F ,

xi(tk+1) = xi(tk) + hvi(tk), vi(tk+1) = vi(tk) + hui(tk), tk = kh, k ∈ N, i ∈ R,
(14)

where h > 0 is the sampling period, xi ∈ R, vi ∈ R, and ui ∈ R are the position, the velocity, and the control input of
agent i, respectively. Let xF(⋅) = [x1(⋅), x2(⋅),… , xM(⋅)]T, vF(⋅) = [v1(⋅), v2(⋅),… , vM(⋅)]T, xR(⋅) = [xM+1(⋅), xM+2(⋅),… , xN(⋅)]T,

vR(⋅) = [vM+1(⋅), vM+2(⋅),… , vN(⋅)]T, xF(0) = [x1(0), x2(0),… , xM(0)]T, vF(0) = [v1(0), v2(0),… , vM(0)]T, xR(0) =
[xM+1(0), xM+2(0),… , xN(0)]T, and vR(0) = [vM+1(0), vM+2(0),… , vN(0)]T, where xi(0) and vi(0) are the initial conditions of
agent i.

Similar to the design of control protocols in Section 3.1 for the first-order hybrid MAS (1), the following two novel
distributed protocols with absolute velocity information are proposed in terms of the interaction modes between followers.

4.1.1 Case 1

In this case, we assume that those followers observe their own states in real time and interact with all their neighbors at
the sampling time tk. Thus, a distributed protocol with absolute velocity information for the hybrid MAS (14) is devised as{

ui(t) = k1
∑N

j=1aij(xj(tk) − xi(t)) − k2vi(t), t ∈ (tk, tk+1], i ∈ F ,

vi(tk) = 0, i ∈ R,
(15)

where k1 > 0, k2 > 0 are the feedback gains and = [aij]N×N is the weighted adjacency matrix associated with the digraph
.

Theorem 4. Consider a communication digraph . Assume that the feedback gains satisfy k2
2

k1
> 4maxi∈F {di} . Then, the

hybrid MAS (14) with protocol (15) can solve the containment control problem if and only if the digraph  contains a directed
spanning forest.

Proof. (Sufficiency): The proof of sufficiency can be divided into the following three steps.
Step 1: From (14) and (15), for i ∈ F and t ∈ (tk, tk+1], we have

ẍi(t) = v̇i(t) = k1

N∑
j=1

aij(xj(tk) − xi(t)) − k2ẋi(t),

that is

ẍi(t) + k2ẋi(t) + k1

N∑
j=1

aijxi(t) = k1

N∑
j=1

aijxj(tk).

By solving the above second-order nonhomogeneous linear ordinary differential equation, we have

⎧⎪⎨⎪⎩
xi(t) = c1ep1(t−tk) + c2ep2(t−tk) +

∑N
j=1aijxj(tk)∑N

j=1aij
,

vi(t) = ẋi(t) = c1p1ep1(t−tk) + c2p2ep2(t−tk),

(16)

where p1 =
−k2+

√
k2

2−4k1
∑N

j=1aij

2
, p2 =

−k2−
√

k2
2−4k1

∑N
j=1aij

2
, c1 =

vi(tk)+
p2

∑N
j=1aij(xj(tk )−xi(tk ))∑N

j=1aij

p1−p2
, c2 =

vi(tk)+
p1

∑N
j=1aij(xj(tk )−xi(tk ))∑N

j=1aij

p2−p1
. It is easy to know

that p1p2 = k1
∑N

j=1aij, p1 + p2 = −k2.
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For (16), when t = tk+1, we get

xi(tk+1) = c1ep1h + c2ep2h +
∑N

j=1aijxj(tk)∑N
j=1aij

=
vi(tk) +

p2
∑N

j=1aij(xj(tk)−xi(tk))∑N
j=1aij

p1 − p2
ep1h +

vi(tk) +
p1
∑N

j=1aij(xj(tk)−xi(tk))∑N
j=1aij

p2 − p1
ep2h +

∑N
j=1aijxj(tk)∑N

j=1aij

= ep1h − ep2h

p1 − p2
vi(tk) +

p2ep1h − p1ep2h∑N
j=1aij(p1 − p2)

N∑
j=1

aij(xj(tk) − xi(tk)) +
∑N

j=1aijxj(tk)∑N
j=1aij

= xi(tk) +
p2ep1h − p1ep2h + (p1 − p2)∑N

j=1aij(p1 − p2)

N∑
j=1

aij(xj(tk) − xi(tk)) +
ep1h − ep2h

p1 − p2
vi(tk)

and

vi(tk+1) = c1p1ep1h + c2p2ep2h

=
p1vi(tk) + k1

∑N
j=1aij(xj(tk) − xi(tk))

p1 − p2
ep1h +

p2vi(tk) + k1
∑N

j=1aij(xj(tk) − xi(tk))
p2 − p1

ep2h

= vi(tk) +
k1(ep1h − ep2h)

p1 − p2

N∑
j=1

aij(xj(tk) − xi(tk)) +
p1ep1h − p2ep2h − (p1 − p2)

p1 − p2
vi(tk).

Then, we will convert the second-order system to the first-order system by way of variable substitution. Let zi′ (tk) =
xi(tk) + k3vi(tk), and we get vi(tk) = 1

k3
(zi′ (tk) − xi(tk)). For i, i′ ∈ F , we have

xi(tk+1) = xi(tk) +
k1

(
ep1h−1

p1
− ep2h−1

p2

)
p1 − p2

N∑
j=1

aij(xj(tk) − xi(tk)) +
1
k3

ep1h − ep2h

p1 − p2
(zi′ (tk) − xi(tk))

= xi(tk) + k1k4

N∑
j=1

aij(xj(tk) − xi(tk)) +
k5

k3
(zi′ (tk) − xi(tk))

and

zi′ (tk+1) = xi(tk+1) + k3vi(tk+1)

= xi(tk) + k1k4

N∑
j=1

aij(xj(tk) − xi(tk)) +
k5

k3
(zi′ (tk) − xi(tk)) + k3(vi(tk) + k1k5

N∑
j=1

aij(xj(tk) − xi(tk)) + k6vi(tk))

= yi′ (tk) +
(

k5

k3
+ k6

)
(zi′ (tk) − xi(tk)) + k1(k4 + k3k5)

( N∑
j=1

aij(xj(tk) − zi′ (tk)) +
N∑

j=1
aij(zi′ (tk) − xi(tk))

)

= zi′ (tk) + k1(k4 + k3k5)
N∑

j=1
aij(xj(tk) − zi′ (tk)) + k5

(
k2 −

1
k3

− k1k3di

)(
xi(tk) − zi′ (tk)

)
,

where k4 =
ep1h−1

p1
− ep2h−1

p2
p1−p2

, k5 = ep1h−ep2h

p1−p2
, k6 = p1ep1h−p2ep2h−(p1−p2)

p1−p2
.

Let 𝛽i = k2 − 1
k3
− k1k3di, i ∈ F . Since the digraph  contains a directed spanning forest, we know that each follower

has at least one neighbor, hence di > 0 for i ∈ F . Let
k2−

√
k2

2−4k1di

2k1di
< k3 <

k2+
√

k2
2−4k1di

2k1di
. Owing to k2

2
k1

> 4maxi∈F {di} , we

get
k2−

√
k2

2−4k1di

2k1di
> 0, k3 > 0 and 𝛽i > 0 for i ∈ F . It is easy to know p2 < p1 < 0 according to p1p2 = k1

∑N
j=1aij and p1 + p2 =

−k2, hence we have k4 > 0 and k5 > 0. Furthermore, we get k1k4 > 0, k5

k3
> 0 and k1(k4 + k3k5) > 0.
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Since those followers and leaders are agents with second-order dynamics and the velocity of leaders is zero, we can
get a first-order MAS of N + M agents with DT dynamics as follows:

⎧⎪⎪⎨⎪⎪⎩
xi(tk+1) = xi(tk) + k1k4

∑N
j=1aij(xj(tk) − xi(tk)) +

k5

k3
(zi′ (tk) − xi(tk)), i ∈ F ,

zi′ (tk+1) = zi′ (tk) + k1(k4 + k3k5)
∑N

j=1aij(xj(tk) − zi′ (tk)) + k5

(
k2 − 1

k3
− k1k3di

)
(xi(tk) − zi′ (tk)), i ∈ F ,

xi(tk+1) = xi(tk), i ∈ R,

(17)

where xi ∈ R and zi′ ∈ R are the states of the ith and i′th agents, respectively.
Step 2: Let ′ = ( ′,  ′) be a communication digraph of the first-order MAS (17) with a vertex set  ′ = 1 ∪ 2 ∪ 3,

which 1 = {s1, s2,… , sM}, 2 = {s1′ , s2′ ,… , sM′ } and 3 = {sM+1, sM+2,… , sN}. Suppose that the digraph  has a directed
spanning forest (). For each edge (sj, si) ∈ (), we have (sj, si′ ) ∈  ′, (si′ , si) ∈  ′ for sj ∈ 3, si ∈ 1, and (sj′ , sj) ∈  ′,

(sj, si′ ) ∈  ′, (si′ , si) ∈  ′ for sj ∈ 1, si ∈ 1. Adding these edges to (), we get a directed spanning forest (′) for ′.

Combining Step 1, Step 2, and Lemma 6, we get that the first-order MAS (17) can solve the containment control
problem. Moreover, when tk → ∞, we can get

xF(tk) → −L−1
F LFRxR(0), vF(tk) → 0. (18)

Step 3: In this step, we will prove that xF(t) → xF(tk), vF(t) → vF(tk) when t → ∞. From (16), for i ∈ F , we have

xi(t) − xi(tk) = c1
(

ep1(t−tk) − 1
)
+ c2

(
ep2(t−tk) − 1

)
=

vi(tk) +
p2
∑N

j=1aij(xj(tk)−xi(tk))∑N
j=1aij

p1 − p2

(
ep1(t−tk) − 1

)
+

vi(tk) +
p1
∑N

j=1aij(xj(tk)−xi(tk))∑N
j=1aij

p2 − p1

(
ep2(t−tk) − 1

)
= k1q(1)

i (t)
N∑

j=1
aij(xj(tk) − xi(tk)) + q(2)

i (t)vi(tk), (19)

and

vi(t) − vi(tk) = c1p1
(

ep1(t−tk) − 1
)
+ c2p2

(
ep2(t−tk) − 1

)
=

p1vi(tk) + k1
∑N

j=1aij(xj(tk) − xi(tk))
p1 − p2

(
ep1(t−tk) − 1

)
+

p2vi(tk) + k1
∑N

j=1aij(xj(tk) − xi(tk))
p2 − p1

(
ep2(t−tk) − 1

)
= k1q(2)

i (t)
N∑

j=1
aij(xj(tk) − xi(tk)) + q(3)

i (t)vi(tk), (20)

where q(1)
i (t) =

ep1 (t−tk )−1
p1

− ep2 (t−tk )−1
p2

p1−p2
, q(2)

i (t) = ep1 (t−tk )−ep2 (t−tk )

p1−p2
, q(3)

i (t) = p1ep1 (t−tk )−p2ep2 (t−tk )−(p1−p2)
p1−p2

, i ∈ F .

From (17), we have xR(tk) = xR(0). Let Q(1)(t) = diag{q(1)
1 (t), q(1)

2 (t),… , q(1)
M (t)}, Q(2)(t) = diag{q(2)

1 (t), q(2)
2 (t),… , q(2)

M (t)},
Q(3)(t) = diag{q(3)

1 (t), q(3)
2 (t),… , q(3)

M (t)}, hence (19) and (20) can be written in the compact form as

xF(t) − xF(tk) = −k1Q(1)(t)LF(xF(tk) + L−1
F LFRxR(0)) + Q(2)(t)vF(tk), (21)

vF(t) − vF(tk) = −k1Q(2)(t)LF(xF(tk) + L−1
F LFRxR(0)) + Q(3)(t)vF(tk). (22)

By Lemma 4, we can obtain that q(1)
i (t), q(2)

i (t), and q(3)
i (t) are all bounded functions on t. Thus it is easy to discover that

every element of matrix Q(1)(t), Q(2)(t) and Q(3)(t) is bounded. When t → ∞, we have tk → ∞. Using (18) for (21)–(22), we
get

lim
t→∞

‖xF(t) − xF(tk)‖ = lim
t→∞

‖vF(t) − vF(tk)‖ = 0. (23)

Furthermore, from (18) and (23), we can obtain xF(t) → −L−1
F LFRxR(0) and vF(t) → 0 when t → ∞.
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Suppose that the feedback gains satisfy k2
2

k1
> 4maxi∈F {di}, combining Step 1, Step 2, and Step 3, we prove that the

hybrid MAS (14) with protocol (15) can solve the containment control problem if the digraph  contains a directed
spanning forest.

Necessity: Suppose that the communication digraph  has no directed spanning forest. Then there exists at least one
follower that is incapable of receiving information from any leader, which implies that the states of this follower are
uncorrelated with the states of those leaders. Therefore, the containment control of the hybrid MAS (14) cannot be reached
under the protocol (15). ▪

4.1.2 Case 2

In this case, we still assume that those followers interact with leaders at the sampling time and observe their own states
in real time. However, unlike Case 1, all followers interact with each other in real time. Thus, a distributed protocol for
the hybrid MAS (14) is devised as

⎧⎪⎨⎪⎩
ui(t) = k1

(∑M
j=1aij(xj(t) − xi(t)) +

∑N
j=M+1aij(xj(tk) − xi(t))

)
− k2vi(t), t ∈ (tk, tk+1], i ∈ F ,

vi(tk) = 0, i ∈ R,
(24)

where k1 > 0, k2 > 0 are the feedback gains and = [aij]N×N is the weighted adjacency matrix associated with the digraph
.

Remark 2. According to Section 4.1.1, we know that the premise of using the system transformation method is to solve the
system differential equation. However, using protocol (24) for the hybrid MAS (14), the resulting differential equations
are difficult to solve. Therefore, in this section, we will use stability theory to analyze the containment control problem.

Theorem 5. Consider a communication digraph . Then, the hybrid MAS (14) with protocol (24) can solve the containment
control problem if and only if the digraph  contains a directed spanning forest, and the feedback gains satisfy

k2
2

k1
> maxi∈F

{
Im2(𝜆i)
Re(𝜆i)

}
,

where 𝜆i are the eigenvalues of LF .

Proof. (Sufficiency): By Lemma 5, the matrix LF is invertible. Then, by using protocol (24) for the hybrid MAS (14), it can
be written in a compact form as ⎧⎪⎨⎪⎩

ẋF(t) = vF(t),
v̇F(t) = −k1LF(xF(t) + L−1

F LFRxR(tk)) − k2vF(t),
xR(tk+1) = xR(tk) = xR(0).

(25)

Define 𝛿(t) = [𝛿x(t), 𝛿v(t)]T with 𝛿x(t) = xF(t) + L−1
F LFRxR(0), 𝛿v(t) = vF(t). Then, according to (25), the derivative of 𝛿(t)

can be obtained as follows:

�̇�(t) =

[
�̇�x(t)
�̇�v(t)

]
=

[
ẋF(t)
v̇F(t)

]
=

[
𝛿v(t)

− k1LF𝛿x(t) − k2𝛿v(t)

]
= Γ𝛿(t), (26)

where Γ =
[

0 IM
− k1LF −k2IM

]
. By Lemma 2, the characteristic equation of Γ is written as

det(𝜇I2M − Γ) = det

(
𝜇IM −IM

k1LF 𝜇IM + k2IM

)
= det(𝜇2IM + k2𝜇IM + k1LF)



CHEN et al. 13

=
M∏

i=1
g(𝜇, 𝜆i)

= 0,

where g(𝜇, 𝜆i) = 𝜇2 + k2𝜇 + k1𝜆i, 𝜆i are the eigenvalues of LF , i ∈ F . By Lemma 3, we get that g(𝜇, 𝜆i) is Hurwitz stable if
and only if k2 > 0 and k2

2k1Re(𝜆i) − k2
1Im2(𝜆i) > 0 hold, that is, k2

2
k1

> maxi∈F

{
Im2(𝜆i)
Re(𝜆i)

}
. When the above condition holds,

we obtain that the CT error system (26) is asymptotically stable, which indicates that xF(t) → −L−1
F LFRxR(0) and vF(t) → 0

for t → ∞. Thence, from Lemma 5 and Definition 1, we know that all followers will asymptotically converge to the convex
hull spanned by those of leaders. And by Definition 3, the distributed protocol (24) can solve the containment control
problem of the hybrid MAS (14).

Necessity: The proof of necessity is similar to Section 4.1.1, which is omitted here. ▪

Remark 3. Consider a distributed protocol with relative velocity information described by{
ui(t) = k1

∑N
j=1aij(xj(tk) − xi(t)) + k2

∑N
j=1aij(vj(tk) − vi(t)), t ∈ (tk, tk+1], i ∈ F ,

ui(tk) = 0, i ∈ R,
(27)

where k1 > 0, k2 > 0 are the feedback gains and = [aij]N×N is the weighted adjacency matrix associated with the digraph
. Through simulation verification, we discover that the hybrid MAS (14) cannot reach the containment under the
protocol (27). That is why we consider the above two distributed protocols with absolute velocity information.

4.2 Followers are agents with second-order DT dynamics

For the second-order hybrid MAS, the containment control problem with DT followers and CT leaders is considered in
this section. Then, the dynamics of leaders and followers are given by{

xi(tk+1) = xi(tk) + hvi(tk), vi(tk+1) = vi(tk) + hui(tk), tk = kh, k ∈ N, i ∈ F ,

ẋi(t) = vi(t), v̇i(t) = ui(t), i ∈ R,
(28)

where h > 0 is the sampling period, xi ∈ R, vi ∈ R, and ui ∈ R are the position, the velocity, and the control input of
agent i, respectively. Let xF(⋅) = [x1(⋅), x2(⋅),… , xM(⋅)]T, vF(⋅) = [v1(⋅), v2(⋅),… , vM(⋅)]T, xR(⋅) = [xM+1(⋅), xM+2(⋅),… , xN(⋅)]T,

vR(⋅) = [vM+1(⋅), vM+2(⋅),… , vN(⋅)]T, xF(0) = [x1(0), x2(0),… , xM(0)]T, vF(0) = [v1(0), v2(0),… , vM(0)]T, xR(0) =
[xM+1(0), xM+2(0),… , xN(0)]T, and vR(0) = [vM+1(0), vM+2(0),… , vN(0)]T, where xi(0) and vi(0) are the initial conditions of
agent i.

This situation is similar to the analysis of the interaction mode between leaders and followers in Section 3.2. Those
followers can only observe their own states and interact with all their neighbors at the sampling time. Thus, a distributed
protocol with absolute velocity information for the hybrid MAS (28) is devised as{

ui(tk) = k1
∑N

j=1aij(xj(tk) − xi(tk)) − k2vi(tk), i ∈ F ,

vi(t) = 0, i ∈ R,
(29)

where k1 > 0, k2 > 0, k1, k2 are the feedback gains and  = [aij]N×N is the weighted adjacency matrix associated with the
digraph .

Theorem 6. Consider a communication digraph . Then, the hybrid MAS (28) with protocol (29) can solve the containment
control problem if and only if the digraph  contains a directed spanning forest, and the sampling period and the feedback
gains satisfy ⎧⎪⎨⎪⎩

h <
k2Re(𝜆i)
k1|𝜆i|2 ,

k3
1h4|𝜆i|4 + 𝜃i|𝜆i|2 + 𝜁i > 0,

(30)
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where {
𝜃i = k1h2(4k1(1 − k2h)Re(𝜆i) + k2

2),
𝜁i = 2(k2(2 − k2h)(k2 − 2k1hRe(𝜆i))Re(𝜆i) − 2k1Im2(𝜆i)),

and 𝜆i are the eigenvalues of LF, i ∈ F .

Proof. (Sufficiency): Using protocol (29) for the hybrid MAS (28), it can be written in a compact form as

⎧⎪⎨⎪⎩
xF(tk+1) = xF(tk) + hvF(tk),
vF(tk+1) = (IM − k2hIM)vF(tk) − k1hLF(xF(tk) + L−1

F LFRxR(tk)),
xR(t) = xR(0).

As far as protocol (29) is concerned, those followers only need to obtain the states of leaders at the sampling time. Then
let t = tk+1, we have xR(tk) = xR(0).

If the digraph  contains a directed spanning forest, then the matrix LF is invertible in line with Lemma 5. Hence, we
can define 𝛿(tk) = [𝛿x(tk), 𝛿v(tk)]T with 𝛿x(tk) = xF(tk) + L−1

F LFRxR(tk), 𝛿v(tk) = vF(tk). Then, we have

𝛿(tk+1) =

[
𝛿x(tk+1)
𝛿v(tk+1)

]
=

[
𝛿x(tk) + h𝛿v(tk)

− k1hLF𝛿x(tk) + (IM − k2hIM)𝛿v(tk)

]
= Γ′𝛿(tk), (31)

where Γ′ =
[

IM hIM
− k1hLF IM − k2hIM

]
. By Lemma 2, the characteristic equation of Γ′ is written as

det(𝜇I2M − Γ′) = det

(
(𝜇 − 1)IM −hIM

k1hLF (𝜇 − 1)IM + k2hIM

)
= det(𝜇2IM + (k2hIM − 2IM)𝜇 + k1h2LF − k2hIM + IM)

=
M∏

i=1
g′(𝜇, 𝜆i)

= 0,

where g′(𝜇, 𝜆i) = 𝜇2 + (k2h − 2)𝜇 + k1h2𝜆i − k2h + 1, 𝜆i are the eigenvalues of LF , i ∈ F . Then, we need to analyze the
Schur stability of the DT error system (31). Using the bilinear transformation 𝜇 = s+1

s−1
, we can obtain

ri(s) = (s − 1)2g′
( s + 1

s − 1
, 𝜆i

)
= k1h2𝜆is2 + 2(k2h − k1h2𝜆i)s + k1h2𝜆i − 2k2h + 4. (32)

Owing to k1h2𝜆i ≠ 0, the first coefficient of (32) can be reduced to 1. Then a new quadratic polynomial is written as

r̂i(s) = s2 +

(
2k2𝜆i

k1h|𝜆i|2 − 2

)
s + 4𝜆i

k1h2|𝜆i|2 − 2k2𝜆i

k1h|𝜆i|2 + 1 ≜ s2 + 𝜔1s + 𝜔0, (33)

where 𝜔1 = 2k2𝜆i
k1h|𝜆i|2 − 2, 𝜔0 = 4𝜆i

k1h2|𝜆i|2 − 2k2𝜆i
k1h|𝜆i|2 + 1.

The Schur stability of the DT error system (31) is equivalent to the Hurwitz stability of the quadratic polynomial (33).
By Lemma 3, we know that r̂i(s) is Hurwitz stable if and only if Re(𝜔1) > 0 and Re(𝜔1)Im(𝜔1)Im(𝜔0) + Re2(𝜔1)Re(𝜔0) −
Im2(𝜔0) > 0. Here,

⎧⎪⎨⎪⎩
Re(𝜔1) =

2k2Re(𝜆i)
k1h|𝜆i|2 − 2, Re(𝜔0) =

4Re(𝜆i)
k1h2|𝜆i|2 − 2k2Re(𝜆i)

k1h|𝜆i|2 + 1,

Im(𝜔1) =
2k2Im(𝜆i)
k1h|𝜆i|2 , Im(𝜔0) =

4Im(𝜆i)
k1h2|𝜆i|2 − 2k2Im(𝜆i)

k1h|𝜆i|2 .
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F I G U R E 2 A communication digraph  of hybrid MASs
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F I G U R E 3 State trajectories of followers and leaders under the protocol (2)

Thus the DT error system (31) is asymptotically stable if and only if (30) holds. It shows that xF(tk) → −L−1
F LFRxR(0) and

vF(tk) → 0 as tk → ∞. Thence, from Lemma 5 and Definition 1, we know that all followers will asymptotically converge
to the convex hull spanned by those of leaders. And by Definition 3, the containment control for the hybrid MAS (28)
with protocol (29) can be achieved.

Necessity: The proof of necessity is similar to Section 4.1.1, which is omitted here. ▪

5 SIMULATIONS

In this section, we will give some simulations to demonstrate the validity of the theorems in Sections 3 and 4. Consider a
communication digraph  depicted in Figure 2, in which followers are labeled F1 ∼ F5 and leaders are labeled R6 ∼ R8.

Obviously, the digraph  has a directed spanning forest. For simplicity, we assume that the weight of each edge is 1.
Furthermore, the eigenvalues of LF are 𝜆1 = 0.5567, 𝜆2,3 = 1.3904 ± 0.7072i, and 𝜆4,5 = 2.8312 ± 0.3224i, respectively.

Example 1. Consider the hybrid MAS (1) under the digraph , in which F1 ∼ F5 take the first-order CT dynamics, and
R6 ∼ R8 take the first-order DT dynamics. Suppose that the sampling period h = 0.2. Figures 3 and 4 display the position
trajectories of followers and leaders using distributed protocol (2) and (8), respectively. In both cases, the CT follower
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F I G U R E 4 State trajectories of followers and leaders under the protocol (8)
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F I G U R E 5 State trajectories of followers and leaders under the protocol (13)

F1 ∼ F5 asymptotically converge to the convex hull spanned by the positions of the DT leader R6 ∼ R8, which is consistent
with the results of Theorems 1 and 2.

Example 2. Consider the hybrid MAS (12) under the digraph . Assume that the sampling period h = 0.15, which sat-
isfies h < mini∈F

{
2Re(𝜆i)|𝜆i|

}
≈ 0.7064. By using distributed protocol (13), the position trajectories of followers and leaders

are depicted in Figure 5. The DT follower F1 ∼ F5 asymptotically converge to the convex hull spanned by the positions of
the CT leader R6 ∼ R8, which is consistent with the results of Theorem 3.

Example 3. Consider the hybrid MAS (14) under the digraph , in which F1 ∼ F5 take the second-order CT dynamics,
and R6 ∼ R8 take the second-order DT dynamics. Assume that the sampling period h = 0.5 and the feedback gains k1 = 2,
k2 = 5. Then, we have k2

2∕k1 > 4maxi∈F {di} = 12 and k2
2∕k1 > maxi∈F

{
Im2(𝜆i)∕Re(𝜆i)

}
≈ 0.3597. By using distributed

protocol (15) and (24), the state trajectories of followers and leaders are depicted in Figures 6 and 7, respectively. Figures 6A
and 7A illustrate that the CT follower F1 ∼ F5 asymptotically converge to the convex hull spanned by the positions of the
DT leader R6 ∼ R8. Figure 6B and 7B illustrate that the velocity of all agents eventually converge to zero. The result is
consistent with Theorems 4 and 5.
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F I G U R E 6 State trajectories of followers and leaders under the protocol (15). (A) Position. (B) Velocity
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F I G U R E 7 State trajectories of followers and leaders under the protocol (24). (A) Position. (B) Velocity
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F I G U R E 8 State trajectories of followers and leaders under the protocol (29). (A) Position. (B) Velocity
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Example 4. Consider the hybrid MAS (28) under the digraph . Suppose that the sampling period h = 0.3 and the feed-
back gains k1 = 2 and k2 = 5, which satisfy the condition (30). By using distributed protocol (29), the state trajectories of
followers and leaders are depicted in Figure 8. And we find that the DT follower F1 ∼ F5 asymptotically converge to the
convex hull spanned by the positions of the CT leader R6 ∼ R8 and the velocity of all agents eventually converge to zero.
That is consistent with the results of Theorem 6.

6 CONCLUSIONS

This article investigated the containment control problem of hybrid MASs with the coexistence of CT followers/leaders
and DT leaders/followers. In the case of multiple CT followers, two novel distributed protocols were designed for first- and
second-order hybrid MASs, respectively, by analyzing the interaction modes between followers. Meanwhile, in the case
of multiple DT followers, a distributed protocol was designed for first- and second-order hybrid MASs, respectively. For
the containment control problem under different protocols, appropriate methods were adopted to achieve containment,
and further some conditions were established to guarantee that CT/DT followers asymptotically converge to the convex
hull spanned by DT/CT leaders. In particular, when followers have CT dynamics, we found that the achievement of
containment control is not limited by the sampling period, no matter the first- or second-order hybrid MAS. Future work
will focus on the containment control of hybrid MASs with time delays.
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