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Abstract
Hybrid multiagent systems exist widely in real world and have been applied in
many engineering fields. In this article, we consider the consensus problem for
the hybrid multiagent system consisting of continuous-time and discrete-time
dynamic agents. Different from the previous works, in this article, the inter-
actions between different agents no longer only occur at the sampling time,
but continuous-time dynamic agents can interact with their continuous-time
dynamic neighbors in real time. By using graph theory and differential mean
value theorem of matrix function, a consensus criterion is obtained for the
hybrid multiagent system. A unified framework is also established for the con-
sensus of continuous-time and discrete-time multiagent systems. Finally, a
simulation example is given to illustrate the validity of our protocol.
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1 INTRODUCTION
Since the emergence of multiagent systems in the 1970s, it has been developed rapidly, and has become a method and tool
for complex systems analysis and simulation. The goal of multiagent systems is to achieve complex intelligence through
cooperation among a mass of agents which have simple intelligence but are easier to manage and control. Up to now,
the research of multiagent systems mainly focuses on consensus,1 flocking,2,3 tracking,4,5 game,6,7 containment control,8
formation control,9 coverage control,10 winner-take-all,11 and so on.

As a fundamental problem of distributed coordination control, consensus has attracted extensive interest. It refers
to that a great many agents in multiagent systems adjust and update their behavior under local mutual communication
and cooperation, and finally all agents can agree on certain quantity of their interest. In the field of distributed decision,
Tsitsiklis et al.12 considered convergence and asymptotic agreement of multiagent system. In Reference 13, Vicsek et al.
investigated a discrete-time system with n autonomous agents which can eventually move in the plane at the same speed
and in the same direction. The observed behavior of Vicsek model was further explained theoretically in Reference 14. At
the same time, continuous-time multiagent system has also attracted much attentions. In Reference 15, the authors stud-
ied the consensus of multiagent systems with fixed and switching topologies, they proposed two realistic and effective
consensus protocols for communication networks with and without time-delays and provided the convergence analy-
sis. Reference 16 extended the results of Reference 14 from undirected graphs to directed graphs, and gave some more
relaxable conditions for solving the consensus of continuous-time multiagent systems.

In the real world, continuous-time and discrete-time dynamic agents often coexist in one system. Hence, Zheng
et al.17 considered a multiagent system which keeps switching between continuous-time and discrete-time subsystems,
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and gave some consensus criteria for the switched multiagent system under arbitrary switching. More generally, different
dynamic agents in the system can interact and cooperate with each other. For instance, Halloy et al.18 showed that col-
lective decision-making of mixed groups of socially integrated autonomous robots and cockroaches leads to the choice of
shared shelter, where the collective decision is generated by nonlinear feedbacks based on local interactions. This result
is of great theoretical and practical significance, because it demonstrates the possibility of using intelligent autonomous
devices to study and control self-organized behavioral patterns of social animals. In consequence, many researchers began
to study the hybrid multiagent systems which are composed of continuous-time and discrete-time dynamic agents. In
Reference 19, the authors obtained some consensus criteria for the hybrid multiagent system under three kinds of proto-
cols, respectively. Next to, the second-order consensus of hybrid multiagent system is also considered in Reference 20. In
Reference 21, the authors also investigated the consensus problem for the hybrid multiagent systems with heterogeneous
dynamic. Reference 22 designed some pulse-modulated protocols for solving the consensus of hybrid multiagent system.
In Reference 23, Su et al. proposed an event-triggered method to solve the consensus problem for the second-order hybrid
multiagent system. In Reference 24, the author proposed a hybrid censoring strategy in order to reach resilient consen-
sus for cooperative agents of hybrid multiagent system with some Byzantine agents. Ma et al.25 used a game-theoretic
approach to model the interactions between continuous-time and discrete-time dynamic agents, and designed a suitable
cost function to achieve consensus of the considered hybrid multiagent system.

For the analysis of consensus problem for hybrid multiagent systems, the difficulty mainly lies in how to design the
interactive modes of different dynamic agents to reach consensus. In Reference 19, Zheng et al. presented three kinds of
protocols to solve the consensus problem for hybrid multiagent system. In the system of Reference 19, the information
interactions between agents and their neighbors either all happen at sampling time, or only continuous-time dynamic
agents can use their own states to update their behavior in real time. On account of it does not cover the situation that
the continuous-time dynamics agents can interact with their neighbors with continuous-time dynamics in real time,
Reference 19 does not establish a unified framework of the consensus problem for continuous-time and discrete-time
multiagent systems. In order to enrich the interactive modes between different dynamic agents in hybrid multiagent sys-
tems, we propose a novel consensus protocol to extend the aforementioned results. Since more position-like information
is used in this consensus protocol than the previous works, our consensus analysis is more difficult than that in Reference
19. Specifically, the mathematical tools used in Reference 19 no longer meet our need to prove the consensus problem
of this hybrid multiagent system. Therefore, the use of the differential mean value theorem of matrix function is added
on the basis of the original mathematical tools used in Reference 19. The main contributions of this article mainly con-
centrate on three aspects. Firstly, we propose a novel consensus protocol for the hybrid multiagent system, and enrich
the interactive modes between different dynamic agents in hybrid multiagent systems. Secondly, a criterion for solving
the consensus of the system is obtained by using graph theory and differential mean value theorem of matrix function.
Thirdly, we establish a unified framework of the consensus problem for continuous-time and discrete-time multiagent
systems under the proposed protocol.

The rest of this article is organized as follows. In Section 2, we introduce some related theories and give the hybrid
multiagent system with its consensus protocol and definition. In Section 3, we propose the main theoretical results of this
article. In Section 4, a numerical simulation is given to illustrate the effectiveness of our results. Finally, some conclusions
are provided in Section 5.

Notation: Throughout this article, R represents the set of real number, Rn denotes the n-dimensional real vector space.
N represents the set of natural number. Suppose that m = {1, 2, … ,m}, n ⧵ m = {m + 1,m + 2, … ,n}. For a given
matrix or vector X , XT denotes its transpose, ||X|| denotes the Euclidean norm of a vector X . A matrix is nonnegative
if all its elements are nonnegative. Denote by 1n (or 0n) the n-dimensional column vector with all entries equal to one
(or all zeros). In is an n-dimensional identity matrix. Matrix A > B means all elements in matrix A are greater than the
corresponding elements in matrix B, in other words, Aij > Bij always holds.

2 PRELIMINARIES

2.1 Algebraic graph theory and matrix theory

A weighted directed graph 𝒢 (𝒜 ) = (𝒱,ℰ,𝒜 ) of order n consists of a vertex set 𝒱, an edge set ℰ and a nonnegative matrix
𝒜 = [aij]n×n. The agent i’s neighbor set is i = {j ∶ aij > 0}. A directed tree is a directed graph, where every node, except
the root, has exactly one parent. A directed spanning tree is a directed tree, which is composed of all the nodes and some
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edges in graph 𝒢 . The degree matrix 𝒟 = [dij]n×n is a diagonal matrix with dii =
∑

j∶vj∈𝒩i
aij and the Laplacian matrix

associated with graph 𝒢 is defined as ℒ = [lij]n×n = 𝒟 −𝒜 . It is easy to know that ℒ1n = 0.
A nonnegative matrix is called to be a (row) stochastic matrix if all row sums of it are 1. A stochastic matrix P = [pij]n×n

is called indecomposable and aperiodic (SIA) if limk→∞ Pk = 1nyT , where y is some column vector. Next, we will introduce
some theories about the relationship between a stochastic matrix and its associated graph.

Lemma 1 (16). A stochastic matrix has algebraic multiplicity equal to 1 for its eigenvalue 𝜆 = 1, if and only if the graph
associated with the matrix has a spanning tree. In addition, a stochastic matrix with positive diagonal elements has the
following properties: every eigenvalue not equal to 1 satisfies |𝜆| < 1.

Lemma 2 (16). Let A = [aij]n×n. If A has an eigenvalue 𝜆 = 1 with algebraic multiplicity equal to 1, and the remaining eigen-
values satisfy |𝜆| < 1, then A is SIA, that is to say, limm→∞ Am = 1nvT,where v satisfies 1T

n v = 1 and ATv = v. Furthermore,
all elements of v are nonnegative.

Remark 1. Based on Lemmas 1 and 2, we can easily get the following result. Let A = [aij]n×n is a stochastic matrix with
positive diagonal elements. If the graph corresponding to the matrix A has a spanning tree, then A is SIA. It means that
limm→∞ Am = 1nvT , where v satisfies 1T

n v = 1 and ATv = v, and all elements of v are nonnegative.

Lemma 3 (26). Let D1 = [x0, x0 + Δx], F(x) ∈ Gr×s[x] defined on D1. Then, for arbitrary P ∈ Rr and Q ∈ Rs, there is at
least one point x1 = x0 + t1Δx ∈ D1, t1 ∈ (0, 1), such that

PT dF
dx

|||x=x1
Q = PT 1

Δx
GT[F(x0 + Δx) − F(x0)]Q.

Specially, when P = Ir and Q = Is, one get

dF
dx

||||x=x1

= 1
Δx

[F(x0 + Δx) − F(x0)].

2.2 Hybrid multiagent system

In this subsection, we investigate the consensus problem for hybrid multiagent system. The system consists of
continuous-time and discrete-time dynamic agents. The number of agents is n, labeled 1 to n, where the num-
ber of continuous-time dynamic agents is m (m ≤ n). Without loss of generality, we assume that agent 1 to
agent m are continuous-time dynamic agents. Thus, the dynamics of the hybrid multiagent system are described
as follows {

ẋi(t) = ui(t), i ∈ m,

xi(tk+1) = xi(tk) + ui(tk), tk = kh, k ∈ N, i ∈ n∕m,
(1)

where xi ∈ R and ui ∈ R are agent i’s position-like and control input, respectively. h = tk+1 − tk > 0 is the sampling period.
The initial condition of agent i is xi(0). Let X = [x1, x2, … , xn]T .

We assume that all continuous-time dynamic agents can utilize their own states and communicate with their neigh-
bors with continuous-time dynamics and update their control inputs in real time. Meanwhile, all discrete-time dynamic
agents interact with their neighbors and update their control inputs at the sampling time tk. Based on this, a novel
consensus protocol for hybrid multiagent system (1) is given as

⎧⎪⎪⎨⎪⎪⎩
ui(t) =

m∑
j=1

aij(xj(t) − xi(t)) +
n∑

j=m+1
aij(xj(tk) − xi(t)), t ∈ (tk, tk+1], i ∈ m,

ui(tk) = h
n∑

j=1
aij(xj(tk) − xi(tk)), i ∈ n∕m,

(2)

where 𝒜 = [aij]n×n is the aforementioned weighted adjacency matrix corresponding to graph 𝒢 .
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Remark 2. In consensus protocol (2), the interactions between discrete-time dynamic agents and their neighbors still
occurs at the sampling time tk for t ∈ (tk, tk+1], which is the same as that in Reference 19. Different from Reference 19, for
continuous-time dynamic agents, except for their interactions with their discrete-time dynamic neighbors still take place
at the sampling time, the rest of the information interactions all happen in real time. Therefore, a novel interaction mode
is designed for the hybrid multiagent system to solve consensus problem in this article.

Definition 1 (19). Hybrid multiagent system (1) can be said to reach consensus if for any initial conditions, we have

lim
t→∞

||xi(t) − xj(t)|| = 0, for i, j ∈ m (3)

and

lim
tk→∞

||xi(tk) − xj(tk)|| = 0, for i, j ∈ n. (4)

Remark 3. The problem studied in this article is similar to that in Reference 19, but the mathematical tools used are
different. The main reason is that the interaction modes between agents are different. In the protocol of this article,
continuous-time dynamic agents interact more information than continuous-time dynamic agents do in Reference 19.
Therefore, the dynamic form of this system has changed, and the mathematical tools used in Reference 19 no longer meet
our need to prove the consensus problem of this hybrid multiagent system. Hence, the use of the differential mean value
theorem of matrix function (Lemma 3) is added on the basis of the original mathematical tools used in Reference 19.

3 MAIN RESULTS

In this section, we give a criterion for the hybrid multiagent system (1) with protocol (2) to solve consensus problem.
Moreover, the results are proved mathematically by using graph theory and matrix theory.

Theorem 1. Consider a directed communication graph 𝒢 and suppose that 0 < h <
1

maxi∈n⧵m{dii}
. Then, the hybrid

multiagent system (1) with protocol (2) can solve consensus problem if graph 𝒢 has a directed spanning tree.

Proof. We divide the Laplacian matrix corresponding to the graph 𝒢 into the following form

ℒ =

(
ℒcc ℒcd

ℒdc ℒdd

)
,

where ℒcc ∈ Rm×m, ℒcd ∈ Rm×(n−m), ℒdc ∈ R(n−m)×m, ℒdd ∈ R(n−m)×(n−m).
Under consensus protocol (2), we can express system (1) in matrix forms as follows{

Ẋc(t) = −ℒccXc(t) −ℒcdXd(tk), t ∈ (tk, tk+1] ,
Xd(tk+1) = −hℒdcXc(tk) + (In−m − hℒdd)Xd(tk),

(5)

where Xc(t) = (x1(t), x2(t), … , xm(t))T , Xd(t) = (xm+1(t), xm+2(t), … , xn(t))T .
Next, we will prove the consensus of the hybrid multiagent system into two situations.
Situation 1: ℒcc is an irreversible matrix, that is ℒcd = 0.
By combining formula (5) and ℒcd = 0, we can get{

Xc(t) = e−(t−tk)ℒcc Xc(tk), t ∈ (tk, tk+1] ,
Xd(tk+1) = −hℒdcXc(tk) + (In−m − hℒdd)Xd(tk).

(6)

Let t = tk+1. We can obtain the following discrete-time multiagent system(
Xc(tk+1)
Xd(tk+1)

)
= B1

(
Xc(tk)
Xd(tk)

)
, (7)
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where B1 =
(

e−hℒcc 0m×(n−m)
−hℒdc In−m − hℒdd

)
.

According to Remark 1, we will first prove matrix B1 is a nonnegative matrix with positive diagonal elements. Let
𝜆 = maxi∈m{(hℒcc)ii}. Then one get

e−hℒcc = e−𝜆Im+(𝜆Im−hℒcc) = e−𝜆Im e𝜆Im−hℒcc ,

where

e−𝜆Im = Im − 𝜆Im + 𝜆2

2!
Im − 𝜆3

3!
Im + … = e−𝜆Im

and

e𝜆Im−hℒcc = Im + (𝜆Im − hℒcc) +
1
2!
(𝜆Im − hℒcc)2 + 1

3!
(𝜆Im − hℒcc)3 + … .

Obviously, 𝜆Im − hℒcc is a nonnegative matrix, in addition, all diagonal elements of the matrix e𝜆Im−hℒcc are positive
and all its nondiagonal elements are nonnegative. Simultaneously, e−𝜆 > 0 always holds. Hence, e−hℒcc = e−𝜆 ⋅ e𝜆Im−hℒcc

is a nonnegative matrix and all its diagonal elements are positive. According to the properties of Laplacian matrix and
h > 0, all elements of −hℒdc and all nondiagonal elements of In−m − hℒdd are obviously nonnegative. On account of
h <

1
maxi∈n⧵m{dii}

, it is easy to know that all diagonal elements of In−m − hℒdd are positive.
Then, we will prove matrix B1 is a stochastic matrix. Owing to ℒcd = 0, combined with the properties of Laplacian

matrix, we can get ℒcc1m = 0m and (ℒdc +ℒdd)1n = 0n. For the first m rows of matrix B1, the row sums are

e−hℒcc 1m = 1m − hℒcc1m + h2

2!
(ℒcc)21m − h3

3!
(ℒcc)31m + … = 1m.

For the last n − m rows of matrix B1,

−hℒdc1m + (In−m − hℒdd)1n−m = 1n−m − h(ℒdc +ℒdd)1n = 1n−m.

We already know matrix B1 is a nonnegative matrix, and therefore B1 is a stochastic matrix.
We have proved that matrix B1 is a stochastic matrix and all its diagonal elements are positive. Based on Remark 1, it

is easy to know that B1 is SIA if the communication graph 𝒢1 corresponding to matrix B1 has a directed spanning tree.
Hence, we need to prove that as long as graph𝒢 has a directed spanning tree, then graph𝒢1 must have a directed spanning
tree. That is to say, if 𝒜ij ≠ 0 (i ≠ j), we need to have (B1)ij ≠ 0 (i ≠ j). We already know that e−hℒcc = e−𝜆 ⋅ e𝜆Im−hℒcc and
𝜆Im − hℒcc are nonnegative matrixes, where

e𝜆Im−hℒcc = Im + (𝜆Im − hℒcc) +
1
2!
(𝜆Im − hℒcc)2 + 1

3!
(𝜆Im − hℒcc)3 + … ≥ Im + (𝜆Im − hℒcc).

When i ≠ j, if 𝒜ij ≠ 0, we have (e𝜆Im−hℒcc)ij ≠ 0. Together with e−𝜆 > 0 is always tenable, we get (e−hℒcc)ij ≠ 0. In the case
where 𝒜ij ≠ 0, i ≠ j, because 0 < h <

1
maxi∈n⧵m{dii}

, we can easily get (−hℒdc)ij ≠ 0 and (In−m − hℒdd)ij ≠ 0. In conclusion,
if 𝒜ij ≠ 0 (i ≠ j), we certainly have (B1)ij ≠ 0 (i ≠ j).

By the aforementioned analysis, when 0 < h <
1

maxi∈n⧵m{dii}
, since graph𝒢 has a directed spanning tree, it is easy to get

that limtk→∞ X(tk) = 𝛽1n, 𝛽 ∈ R. Hence, discrete-time multiagent system (7) can reach consensus, that is, limtk→∞ ||xi(tk) −
xj(tk)|| = 0, for i, j ∈ n. Thus, we get that Equation (4) holds if graph 𝒢 has a directed spanning tree.

Next, we will prove (3) holds. From Equation (6), it can be easily get

Xc(t) − Xc(tk) = (e−(t−tk)ℒcc − m)Xc(tk), t ∈ (tk, tk+1] .

We assume that e−ℒccx ∈ Gm×m on D1 = [0, t − tk], t ∈ (tk, tk+1] and 0 < 𝛼 < 1. According to Lemma 3, we have

e−(t−tk)ℒcc − m = −(t − tk)e−𝛼(t−tk)ℒccℒcc. (8)
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When t → ∞, we have tk → ∞. Because the row sums of Laplacian matrix are 0, it can be obtained that
ℒcc limtk→∞ Xc(tk) = 0m. Therefore,

lim
t→∞

(Xc(t) − Xc(tk)) = −lim
t→∞

(t − tk)e−𝛼(t−tk)ℒccℒccXc(tk) = 0m,

which implies that

lim
t→∞

Xc(t) = lim
tk→∞

Xc(tk) = 𝛽1m,

that is to say,

lim
t→∞

||xi(t) − xj(t)|| = 0, for i, j ∈ m.

Situation 2: ℒcd ≠ 0, at this point, ℒcc is an invertible matrix.
When ℒcd ≠ 0, we can get from (5) that{

Xc(t) = e−(t−tk)ℒcc Xc(tk) + (e−(t−tk)ℒcc − m)ℒ−1
cc ℒcdXd(tk), t ∈ (tk, tk+1] ,

Xd(tk+1) = −hℒdcXc(tk) + (In−m − hℒdd)Xd(tk).
(9)

When t = tk+1, we can get a discrete-time multiagent system is shown below(
Xc(tk+1)
Xd(tk+1)

)
= B2

(
Xc(tk)
Xd(tk)

)
, (10)

where B2 =
(

e−hℒcc (e−hℒcc − m)ℒ−1
cc ℒcd

−hℒdc In−m − hℒdd

)
.

By the analysis of Situation 1, we already know that e−hℒcc , −hℒdc and In−m − hℒdd are all nonnegative matrix, and
all matrices B2’s diagonal elements are positive if 0 < h <

1
maxi∈n⧵m{dii}

. From (8), it can be verified that

(e−hℒcc − m)ℒ−1
cc ℒcd = −he−𝛼hℒccℒcd,

where 0 < 𝛼 < 1. Given that e−hℒcc is a nonnegative matrix, then e−𝛼hℒcc is also a nonnegative matrix. According to the
properties of Laplacian matrix, we know that−ℒcd is a nonnegative matrix. Hence, (e−hℒcc − m)ℒ−1

cc ℒcd is a nonnegative
matrix. Therefore, matrix B2 is a nonnegative matrix with positive diagonal elements.

Next, we will prove that matrix B2 is a stochastic matrix. For the first m rows of matrix B2, it is easy to know

e−hℒcc = Im − hℒcc +
h2

2!
(ℒcc)2 − h3

3!
(ℒcc)3 + …

and

(e−hℒcc − m)ℒ−1
cc ℒcd = −hℒcd +

h2

2!
ℒccℒcd −

h3

3!
ℒ 2

ccℒcd + … .

Hence, it follows that

e−hℒcc 1m + (e−hℒcc − m)ℒ−1
cc ℒcd1n−m = 1m − h(ℒcc +ℒcd)1n + h2

2!
ℒcc(ℒcc +ℒcd)1n − h3

3!
ℒ 2

cc(ℒcc +ℒcd)1n + … = 1m.

In Situation 1, we have proved the last n − m rows of matrix B2 satisfy that the row sums are equal to 1. Thus, we can get
that matrix B2’s all row sums are 1. On account of B2 is a nonnegative matrix and all its row sums are 1, B2 is a stochastic
matrix.

On the basis of the above conditions, through Remark 1, we know that if graph 𝒢2 which corresponding to matrix
B2 has a directed spanning tree, then B2 is SIA. We already know that the original directed communication graph 𝒢
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has a directed spanning tree. When 𝒜ij ≠ 0 and 0 < h <
1

maxi∈n⧵m{dii}
, we already have (e−hℒcc)ij ≠ 0, (−hℒdc)ij ≠ 0 and

(In−m − hℒdd)ij ≠ 0 for i ≠ j. According to (8), it is easy to know

(e−hℒcc − Im)ℒ−1
cc ℒcd = −he−𝛼hℒccℒcd,

where 0 < 𝛼 < 1. We also can easily get that

e−𝛼hℒcc = e−𝛼𝜆Im+(𝛼𝜆Im−𝛼hℒcc) = e−𝛼𝜆e𝛼𝜆Im−𝛼hℒcc ≥ e−𝛼𝜆Im.

Combining the two conditions, it can be obtained that

(e−hℒcc − Im)ℒ−1
cc ℒcd ≥ −he−𝛼𝜆ℒcd,

where he−𝛼𝜆 > 0 always holds. Therefore, if 𝒜ij ≠ 0, one can get ((e−hℒcc − Im)ℒ−1
cc ℒcd)ij ≠ 0. To sum up, if 𝒜ij ≠ 0 (i ≠ j),

thus we must have (B2)ij ≠ 0 (i ≠ j). In other words, the communication graph 𝒢2 has a directed spanning tree if graph
𝒢 has a directed spanning tree.

Through the aforementioned analysis, if 0 < h <
1

maxi∈n⧵m{dii}
and graph 𝒢 has a directed spanning tree, it is easy to

know that limtk→∞ X(tk) = 𝛽1n, 𝛽 ∈ R. In other words, Equation (4) of Definition 1 holds.
Then, we will prove Equation (3) holds. From Equation (6), we can easily know

Xc(t) − Xc(tk) = (e−(t−tk)ℒcc − m)(Xc(tk) +ℒ−1
cc ℒcdXd(tk), t ∈ (tk, tk+1] .

On account of the row sums of Laplacian matrix are 0, it can be verified that

ℒcc lim
tk→∞

Xc(tk) +ℒcd lim
tk→∞

Xd(tk) = 0m.

When t → ∞, we have tk → ∞. Therefore,

lim
t→∞

(Xc(t) − Xc(tk)) = −lim
t→∞

(t − tk)e−𝛼(t−tk)ℒcc(ℒccXc(tk) +ℒcdXd(tk)) = 0m.

It implies that

lim
t→∞

Xc(t) = lim
tk→∞

Xc(tk) = 𝛽1m.

Hence, we obtain

lim
t→∞

||xi(t) − xj(t)|| = 0, for i, j ∈ m.

▪

Remark 4. In this article, hybrid multiagent system contains both discrete-time and continuous-time dynamic agents.
Different from Reference 19, the continuous-time dynamic agents in this article can interact with their continuous-time
dynamic neighbors in real time. By using the consensus protocol (2), we establish a unified framework of the consensus
problem for continuous-time and discrete-time multiagent systems in this article.

4 SIMULATION

It is assumed that there are eight agents in the hybrid multiagent system. The continuous-time and discrete-time dynamic
agents are denoted by 1–4 and 5–8, respectively. All agents’ dynamics are described in (1) and (2). The communication
graph𝒢 with 0–1 weights is shown in Figure 1. It is easy to see that𝒢 has a directed spanning tree and maxi∈8⧵4{dii} = 2.
Let x(0) = [−6,−5, 9,−11, 12,−9, 7,−3]T .

We choose the sampling period h = 0.2, which satisfies 0 < h <
1

maxi∈8⧵4{dii}
. Under the control of consensus protocol

(2), the state trajectories of all agents are shown in Figure 2, which is in agreement with Theorem 1.
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F I G U R E 1 A directed graph 𝒢
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F I G U R E 2 When h = 0.2, all agents’ state trajectories with communication graph 𝒢 and consensus protocol (2)

5 CONCLUSION

In this article, we mainly investigated the consensus problem for the hybrid multiagent system which is com-
posed of continuous-time and discrete-time dynamic agents. Crucially, we presented a novel protocol in which
all continuous-time dynamic agents can obtain their own states, and can interact with their own neighbors with
continuous-time dynamics in real time. The remaining information exchange takes place at the sampling time. Through
mathematical tools such as graph theory and differential mean value theorems of matrix function, we obtained the
consensus criterion for this hybrid multiagent system. In the future, the novel interactive mode will be applied to the
second-order consensus problem for hybrid multiagent systems, containment control of hybrid multiagent systems, and
so on.
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