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Summary
This article studies consensus of a group of heterogeneous agents with first-order
and second-order integrator dynamics in presence of malicious agents. We
employ the algorithm where each normal agent ignores large and small relative
state values of its neighbors to mitigate the effects of malicious agents. Assum-
ing that the maximum number of malicious agents in the neighborhood of each
agent is known, sufficient topological condition is obtained to guarantee resilient
consensus in directed networks. The result is further extended to heterogeneous
multiagent systems with bounded communication delays. Moreover, impulsive
control strategy is introduced in the update schemes and sufficient condition
in terms of graph robustness is provided for resilient consensus. Numerical
examples are provided to illustrate the effectiveness of the theoretical results.
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1 INTRODUCTION

Considerable attention has been paid to coordination of multiagent systems in the past decades because of its wide appli-
cation in many fields, such as distributed computation, mobile robots formation, and intelligent transportation systems.
Consensus problem, which is a fundamental problem in multiagent systems, aims at making a group of locally interacting
agents reach an agreement upon some quantities of interest. So far, lots of work has been done under different contexts,
such as communication delays,1 noise,2 quantization,3 states constraints,4 and fast consensus.5

In most of the existing literature on the consensus problem, the agents are cooperative to achieve the global goal.
However, some agents may become noncooperative or even malicious when the network is suffering malicious attack or
platform-level failures, which will lead to degradation of system performance and even failure of the global goal. There-
fore, it is of great importance to consider how to improve the algorithms to avoid system performance being influenced by
such compromised agents. Resilient consensus, as a special case of consensus, has long been studied in computer science.
A class of algorithms where each normal agent disregards the most deviated agents in the updates has been extensively
used for resilient consensus and is often called the mean subsequence reduced (MSR) algorithms.6 However, this strat-
egy had been studied mostly under complete graphs. In Reference 7, a new concept in graph theory, termed r-robustness,
was introduced to study resilient consensus in noncomplete networks. Afterward, a lot of excellent work emerged in
discrete-time setting by employing the concept of network robustness and MSR-type algorithms. In References 8 and 9,
resilient conditions were obtained for second-order multiagent systems under DP-MSR algorithm, which took an adapted
form of the MSR-type algorithms for second-order multiagent systems. In Reference 10, SW-MSR algorithm, which
extended MSR-type algorithm by introducing a sliding window, was introduced for multiagent systems with time-varying
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network topologies. To reduce the communication burden, E-MSR algorithm, which introduced event-based update rule
to MSR-type algorithms, was proposed in Reference 11 for first-order multiagent systems to reach resilient consensus. In
References 12-16, resilient consensus results were given in continuous-time setting. In Reference 12, ARC-P algorithm,
which is a continuous-time variation of the MSR, was proposed to solve asymptotic consensus under totally bounded
malicious model. In Reference 14, DRSC algorithm, which is an improved ARC-P algorithm, was proposed for nonlin-
ear multiagent systems with communication delays to reach resilient consensus. In Reference 17, resilient consensus
problem was studied for multiagent systems with both continuous-time and discrete-time subsystems.

Heterogeneity is an important feature of multiagent systems. The agents in one group often have different dynamics
due to various restrictions in practical application. There has been a lot of work studying on coordination of heteroge-
neous multiagent systems. In Reference 18, the authors investigated output consensus problem for heterogeneous linear
multiagent systems. In Reference 19, an event-based communication strategy was proposed for heterogeneous linear
multiagent systems to solve leader-follower consensus problem. The authors of Reference 20 investigated containment
control problem for heterogeneous linear multiagent systems. In Reference 21, adaptive algorithms were designed for a
group of agents with nonidentical nonlinear dynamics to reach consensus. The authors of References 22 and 23 studied
the consensus problem for hybrid multiagent systems consisting of continuous-time and discrete-time dynamic agents.
In Reference 24, a game-theoretic approach was adopted to solve the consensus of hybrid multiagent systems. In Refer-
ence 25, multitarget tracking problem was studied for a group of heterogeneous inertial agents using the decomposition
approach. This article focus on resilient consensus of heterogeneous multiagent systems composed of first-order and
second-order integrator dynamics. A power transmission network including generator buses and load buses is a good
example of such heterogeneous multiagent systems.26 In Reference 27, the authors implemented a secondary control for
paralleled inverters using this heterogeneous multiagent model to regulated the frequency. Due to its potential applica-
tions, a lot of work has been done on this type of multiagent systems. In References 28 and 29, the authors obtained some
sufficient conditions for consensus of this type of heterogeneous multiagent systems in continuous-time setting in Ref-
erence 28 and discrete-time setting in Reference 29. The work in Reference 28 was improved to containment control in
Reference 30. In References 31 and 32, group consensus was studied for the heterogeneous multiagent systems.

Inspired by the work above, we study the resilient consensus problem for heterogeneous multiagent systems in this
article. We aim to make a group of normal agents to reach consensus in presence of malicious agents. The difficulty of
this problem comes from the presence of malicious agents and more complex system dynamics. The main contribution
of this article is threefold. First, the resilient consensus problem is investigated for the heterogeneous multiagent system
composed of first-order and second-order integrator agents. Such system has many applications, but exhibits more com-
plicated dynamics in comparison to the homogeneous systems with identical dynamics agents.7-9 MSR-type algorithm is
proposed and sufficient conditions are obtained for resilient consensus under the f-locally bounded model. When there
are just second-order agents in heterogeneous multiagent systems, the constraint on control gain is looser than that in
Reference 8. Second, considering the agents might not have access to the current data of all neighbors simultaneously in
practice, we extend the results to heterogeneous multiagent systems with communication delays. Moreover, a modified
update algorithm is introduced for resilient consensus with switching topologies. Third, sufficient conditions in terms
of graph robustness are obtained for resilient of heterogeneous multiagent systems with impulsive control input and
quantized relative information.

This article is organized as follows. In Section 2, some mathematical preliminaries are presented. The resilient con-
sensus problem is discussed in Section 3. In Section 4, the simulation results are given to show the effectiveness of the
obtained results. Section 5 is a brief conclusion.

2 PRELIMINARIES

2.1 Notation and graph theory

Throughout this article, we denote the set of real numbers by R and the set of nonnegative integers by N. Let |S| be the
cardinality of a set S. The set union and set difference operations of two sets S1 and S2 are denoted by S1 ∪ S2 and S1 ⧵ S2,
respectively.

A directed graph is denoted by  = ( ,  ,), where  = {1, 2, … ,n} is the node set,  = {eij} ⊆  ×  is the edge
set, and  = [aij]n×n is the weighted adjacency matrix. The edge (j, i) ∈  indicates that node i can receive information
from node j. If (j, i) ∈  , aij > 0 and aij = 0 otherwise. Note that for directed graph (i, j) ∈  does not necessarily imply
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that (j, i) ∈  . The graph is assumed to be simple, namely, (i, i) ∉  , ∀i ∈  . For node i, the set of neighbors is given by
i = {j ∶ (j, i) ∈ }.

Definition 1 (7). For r ∈N, a set S ⊂  is said to be r-reachable if there exists a node i∈ S such that |i ⧵ S| ≥ r.

Definition 2 (7). For r ∈N, a graph  is said to be r-robust if for any pair of nonempty, disjoint subsets of  , at least one
of them is r-reachable.

2.2 Model description

In this article, we consider a heterogeneous multiagent system composed of first-order and second-order integrator agents.
The dynamics of first-order integrator agents is as follows:

ẋi(t) = ui(t), (1)

and the dynamics of second-order integrator agents is as follows:

ẋi(t) = vi(t), v̇i(t) = ui(t), (2)

where xi,vi ∈R are, respectively, the position and velocity states of agent i, ui ∈R is the input of agent i.
This article considers a partition of the agents. An agent i is called normal if it applies a predefined control input.

Otherwise, it is called malicious and its input can be arbitrary. We assume there are n agents with communication graph
 = ( ,  ,), and there are at most f malicious agents in the neighborhood of each normal agent. Let 1 = {1, … ,n1},
2 = {n1 + 1, … ,n1 + n2}, and 3 = {n1 + n2 + 1, … ,n1 + n2 + n3}, where n1 +n2 +n3 =n denote the sets of normal
agents with first-order dynamics, normal agents with second-order dynamics and malicious agents.

We investigate resilient consensus problems in a sampled-data setting, where the sampling interval is h. First, we
study the case that the control inputs are based on zero-order hold. Thus, the discretized model of normal agents can be
written as: {

xi(k) = xi(k) + hui(k), i ∈ 1,

xi(k) = xi(k) + hvi(k) + h2

2
ui(k), vi(k + 1) = vi(k) + hui(k), i ∈ 2,

(3)

where we omit the sampling time interval to simplify the notations.

Definition 3. The heterogeneous multiagent system is said to reach resilient consensus if for any set of malicious agents,
any initial states and any malicious inputs, the following conditions are satisfied:

1. Safety condition: there exists an interval S⊂R such that xi(k)∈ S for all i ∈ 1 ∪ 2, k ≥ 0.
2. Agreement condition: there exists c∈R such that lim

k→+∞
xi(k) = c,∀i ∈ 1 ∪ 2 and lim

k→+∞
vi(k) = 0,∀i ∈ 2.

3 MAIN RESULTS

In this section, we first outline the proposed algorithm and then present the conditions in terms of graph robustness for
resilient consensus under the proposed algorithm.

For the case that there is no malicious agent, that is, f = 0, the following distributed protocol is often adopted for
consensus

ui(k) =
⎧⎪⎨⎪⎩
∑

j∈i

aij(xj(k) − xi(k)), i ∈ 1,∑
j∈i

aij(xj(k) − xi(k)) − 𝛼vi(k), i ∈ 2,
(4)
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where aij is the entry of adjacency matrix  and 𝛼 > 0 is a control parameter. In Reference 29, the authors showed that by
properly choosing 𝛼 and h, the heterogeneous multiagent systems can reach stationary consensus if the communication
graph has a spanning tree. However, this distributed protocol cannot solve resilient consensus even if the communication
graph has a spanning tree.

Inspired by the work in References 7 and 8, we propose the heterogeneous position-based mean subsequence reduced
(HP-MSR) algorithm for resilient consensus. The specific steps are as follows:

1. At time step k, each normal agent i receives the relative position values of its neighbors, that is, xj(k)− xi(k), j ∈ i
and its velocity value vi(k), and sorts the relative position values from the largest to the smallest.

2. Agent i removes the f largest values that are larger than zero in this list. If there are less than f such values, all of them
are removed. The similar removal process is applied to the values that are smaller than zero. The set of neighbors
which are removed by agent i at time step k is represented by i(k).

3. Agent i updates its state by:

ui(k) =
⎧⎪⎨⎪⎩

∑
j∈i⧵i(k)

aij(xj(k) − xi(k)), i ∈ 1,∑
j∈i⧵i(k)

aij(xj(k) − xi(k)) − 𝛼vi(k), i ∈ 2.
(5)

Let s1 = min
(

min
i∈1∪2

xi(0),min
i∈2

(
xi(0) + 2

𝛼
vi(0)

))
, s2 = max

(
max

i∈1∪2
xi(0),max

i∈2

(
xi(0) + 2

𝛼
vi(0)

))
and S= [s1,s2].

In the following, we will present the resilient consensus conditions and show that the safety condition holds with the
interval S.

Theorem 1. Suppose h <
1∑

j∈i ,i∈1
aij

and 2
√∑

j∈i,i∈2
aij < 𝛼 <

√
5−1
h

. Under the f-locally bounded model, the heteroge-

neous multiagent system using HP-MSR algorithm with control input (5) can solve the resilient consensus problem if the
communication graph  is (2f + 1)-robust.

Proof. For normal agent i ∈ 1 , the discretized model under (5) can be written as:

xi(k + 1) = xi(k) + h
∑

j∈i⧵i(k)

aij(xj(k) − xi(k)). (6)

For normal agent i ∈ 2, define xn2+n3+i(k) = xi(k) + 2
𝛼

vi(k) and the discretized model under control input (5) can be
written as:

xi(k + 1) = xi(k) + hvi(k) +
h2

2

⎛⎜⎜⎝
∑

j∈i⧵i(k)

aij(xj(k) − xi(k)) − 𝛼vi(k)
⎞⎟⎟⎠

= xi(k) +
(

h − h2

2
𝛼

)
vi(k) +

h2

2
∑

j∈i⧵i(k)

aij(k)(xj(k) − xi(k))

= xi(k) +
(

h𝛼
2

− h2𝛼2

4

)
(xn2+n3+i(k) − xi(k)) +

h2

2
∑

j∈i⧵i(k)

aij(k)(xj(k) − xi(k)), (7)

and

xn2+n3+i(k + 1) = xi(k + 1) + 2
𝛼

vi(k + 1)

= xi(k) +
(

h𝛼
2

− h2𝛼2

4

)
(xn2+n3+i(k) − xi(k)) +

h2

2
∑

j∈i⧵i(k)

aij(k)(xj(k) − xi(k))

+ 2
𝛼

vi(k) +
2h
𝛼

∑
j∈i⧵i(k)

aij(xj(k) − xi(k)) − 2hvi(k)
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= xn2+n3+i(k) +
(

h2

2
+ 2h

𝛼

) ∑
j∈i⧵i(k)

aij(xj(k) − xi(k)) + (h𝛼
2

+ h2𝛼2

4
)(xi(k) − xn2+n3+i(k))

= xn2+n3+i(k) +
(

h2

2
+ 2h

𝛼

) ∑
j∈i⧵i(k)

aij(xj(k) − xn2+n3+i(k)) + 𝛽(k)(xi(k) − xn2+n3+i(k)), (8)

where 𝛽(k) = h𝛼
2
+ h2𝛼2

4
− h2

2

∑
j∈i⧵i(k)

aij − 2h
𝛼

∑
j∈i⧵i(k)

aij.

For i ∈ 2, from 2
√∑

j∈i,i∈2
aij < 𝛼, it has h2𝛼2

4
− h2

2

∑
j∈i⧵i(k)

aij > 0 and h𝛼
2
− 2h

𝛼

∑
j∈i⧵i(k)

aij > 0.Hence, 𝛽(k) > 0.

From 0 < 𝛼 <
√

5−1
h

, it has 0 <
h𝛼
2
<

h𝛼
2
+ h2𝛼2

4
< 1. It follows that 0 <

h𝛼
2
− h2𝛼2

4
< 1, h𝛼

2
− h2𝛼2

4
+ h2

2

∑
j∈i⧵i(k)

aij <
h𝛼
2
< 1

and 𝛽 (k) +
(

h2

2
+ 2h

𝛼

)∑
j∈i⧵i(k)

aij = h𝛼
2
+ h2𝛼2

4
< 1.

Let 4 = {n + 1, … ,n + n2} and xi, i ∈ 4 be the position state of agent i. Thus, there are n1 + 2n2 normal agents with
dynamics shown in (6), (7), and (8). We use the directed graph ′ = ( ′,  ′,′) to describe the communication among
agents, where  ′ =  ∪ 4 and ′ = [a′

ij](n+n2)×(n+n2). According to the analysis above, we know the weights in ′ satisfy
that h

∑
j∈i

a′
ij < 1 for i ∈ 1 ∪ 2 ∪ 4, which implies that the position value of each normal agent in ′ at k+ 1 is a convex

combination of values of i and its neighbors in′ at time k. Let 𝛾 be the minimum nonzero element of ha′
ij, i ∈ 1 ∪ 2 ∪ 4.

We check the robustness of the graph ′. For any pair of nonempty, disjoint subsets S1 and S2 of  ′, we consider the
following two cases.

(i) The first case is that Si ⊆ 4 for some i∈{1,2}. In the graph ′, we know from (7) and (8) that each agent i, i ∈ 2
keeps all its neighbors in , which are also the neighbors of agent n2 +n3 + i. By (2f + 1)-robustness, it is easy to
know that each agent i, i ∈  has at least 2f + 1 neighbors from  in . Thus, agent n2 +n3 + i also has at least 2f + 1
neighbors from  in ′. It follows that Si is (2f + 1)-reachable.

(ii) The second case is that Si ⊈ 4 for all i∈{1,2}. It implies that the disjoint sets S1 ∩  and S2 ∩  are nonempty.
Therefore, by (2f + 1)-robustness of , there exists an agent i, i ∈ Si ∩  for some i∈{1,2}, having at least 2f + 1
neighbors from the set  ⧵ Si. Note each agent i, i ∈  in ′ keeps all its neighbors in  and  ⊆  ′. Thus, the agent
i has at least 2f + 1 neighbors from the set  ′ ⧵ Si in ′, that is, Si is (2f + 1)-reachable.
Thus, we can conclude that the graph ′ is (2f + 1)-robust.

We next show that the interval S satisfies the safety condition. Define xM(k) = max
i∈1∪2∪4

xi(k) and xm(k) = min
i∈1∪2∪4

xi(k).

Thus, S= [xm(0), xM(0)]. According to HP-MSR algorithm, if agent i has some malicious neighbors with values outside
[xm(k), xM(k)] at time k, they will be removed. Thus, it holds that xi(k+ 1)∈ [xm(k), xM(k)], which implies that xM(k)
is nonincreasing and xm(k) is nondecreasing. Hence, it has xi(k)∈ [xm(0), xM(0)] for k≥ 0, which means S is the safety
interval.

In the rest of proof, we establish the agreement condition. Let V(k)= xM(k)− xm(k). Take 𝜀0 = 𝜂V(0) with 𝜂 ∈
(

0, 1
2

]
and 𝜀k+1 = 𝛾𝜀k, k≥ 1. Define sets

H1(k, 𝜀k) = {j ∈ 1 ∪ 2 ∪ 4 ∶ xj(k) > xM(0) − 𝜀k},

and

H2(k, 𝜀k) = {j ∈ 1 ∪ 2 ∪ 4 ∶ xj(k) < xm(0) + 𝜀k}.

It is obvious that the sets H1(0, 𝜀0) and H2(0, 𝜀0) are nonempty and the sets H1(k, 𝜀k) and H2(k, 𝜀k) are disjoint by 𝜀k+ 1 ≤ 𝜀k.
If the disjoint sets H1(k, 𝜀k) and H2(k, 𝜀k) are nonempty, considering a normal agent j∉H1(k,𝜀k), that is,

xj(k)≤ xM(0)− 𝜀k, it has

xj(k + 1) ≤ (1 − 𝛾)xM(k) + 𝛾(xM(0) − 𝜀k)
≤ (1 − 𝛾)xM(0) + 𝛾(xM(0) − 𝜀k)
= xM(0) − 𝛾𝜀k,

= xM(0) − 𝜀k+1,



6 ZHU et al.

where we have used the fact each normal agent in ′ updates its position value by a convex combination of its own value
and the values of its neighbors with coefficients bounded below by 𝛾 . Thus, j∉H1(k+ 1,𝜀k+ 1). Similarly, we can show
that if j∉H2(k, 𝜀k), then j∉H2(k+ 1, 𝜀k+ 1).

Since graph ′ is (2f + 1)-robust, there exists an agent j, j∈Hi(k, 𝜀k) for some i∈{1, 2}, having at least 2f + 1 neighbors
outside of its set. Suppose j∈H1(k, 𝜀k). Note there are at most f malicious agents in the neighborhood of j. Therefore, agent
j has at least f + 1 normal neighbors outside H1(k, 𝜀k). According to HP-MSR algorithm, at least one normal neighbor
outside H1(k, 𝜀k) will be used by agent j to update its state. Hence, we have

xj(k + 1) ≤ (1 − 𝛾)xM(k) + 𝛾(xM(0) − 𝜀k)
≤ xM(0) − 𝛾𝜀k,

= xM(0) − 𝜀k+1,

which implies that j∉H1(k+ 1,𝜀k+ 1). Likewise, if j∈H2(k,𝜀k) has at least 2f + 1 neighbors outside of its set, then
j∉H2(k+ 1,𝜀k+ 1). Since there are n1 + 2n2 normal agents in the network, by following the steps above, we can obtain that
there exists T ≤ (n1 + 2n2) such that for some i∈{1,2}, the set Hi(T,𝜀T) becomes empty .

Suppose H1(T, 𝜀T) is empty, which implies that xM(T)≤ xM(0)− 𝜀T . By xM(k+ 1)≤ xM(k) and 𝜀k+ 1 ≤ 𝜀k, it
has xM(T + p)≤ xM(T)≤ xM(0)− 𝜀T ≤ xM(0)− 𝜀T + p, p≥ 1. It follows that xM(n1 + 2n2) ≤ xM(0) − 𝜀n1+2n2 . Note that
xm(n1 + 2n2)≥ xm(0). Thus, it has

V(n1 + 2n2) = xM(n1 + 2n2) − xm(n1 + 2n2)
≤ xM(0) − 𝜀n1+2n2 − xm(0)
= (1 − 𝜂𝛾n1+2n2)V(0).

Similarly, the inequality above holds if H2(T,𝜀T) is empty. Follow the steps above and we have for s∈N, V(s(n1 +
2n2)) ≤ (1 − 𝜂𝛾n1+2n2)sV(0).

Similar to the analysis above, it can be obtained that V(s(n1 + 2n2) + l) ≤ (1 − 𝜂𝛾n1+2n2)sV(l), l = 1, 2 … ,n1 + 2n2 −
1. Thus, it has lim

s→+∞
V(s(n1 + 2n2) + l) = 0, l = 1, 2 … ,n1 + 2n2 − 1. It follows that lim

k→+∞
V(k) = 0, that is lim

k→+∞
(xM(k) −

xm(k)) = 0. Since xM(k) and xm(k) are monotone functions and bounded by the interval [xM(0), xm(0)], they have limits.
Thus, it has lim

k→+∞
xM(k) = lim

k→+∞
xm(k) = c, which implies that lim

k→+∞
xi(k) = c, i ∈ 1 ∪ 2 ∪ 4. Note for i ∈ 2, xn2+n3+i(k) =

xi(k) + 2
𝛼

vi(k). Thus, it has lim
k→+∞

vi(k) = 0, i ∈ 2. This completes the proof. ▪

Remark 1. We can modify the control input (5) as ui(k) =
∑

j∈i⧵i(k)
aij((xj(k) − rj) − (xi(k) − ri)), i ∈ 1 and ui(t) =∑

j∈i⧵i(k)
aij((xj(k) − rj) − (xi(k) − ri)) − 𝛼vi(k), i ∈ 2, where ri represents the desired relative position of agent i in a for-

mation. Thus, the normal agents in heterogeneous multiagent will converge to the desired formation under (2f + 1)-robust
network.

Remark 2. It is worth noting the model transformation technique used in this article is not applicable for the case
that the control inputs of normal agents are continuous, that is, ui(t) =

∑
j∈i⧵i(k)

aij(xj(t) − xi(t)), i ∈ 1 and ui(t) =∑
j∈i⧵i(k)

aij(xj(t) − xi(t)) − 𝛼vi(t), i ∈ 2. This is because the network topology does not maintain (2f + 1)-robust after
transformation.

Communication delay is an important issue in information exchange for multiagent systems. In practical appli-
cations, the interference of communication delays is inevitable, which may cause the divergence or oscillation of the
network system. Hence, we will study the resilient consensus with communication delays in the following. Considering
the communication delay, control input (5) can be modified as:

ui(k) =
⎧⎪⎨⎪⎩

∑
j∈i⧵i(k)

aij(xj(k − 𝜏ij(k)) − xi(k)), i ∈ 1,∑
j∈i⧵i(k)

aij(xj(k − 𝜏ij(k)) − xi(k)) − 𝛼vi(k), i ∈ 2,
(9)

where the communication delay 𝜏ij(k) ∈ N and 0 ≤ 𝜏ij(k) ≤ 𝜏max.
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Let s1 = min
(

min
i∈1∪2,𝜏∈[0,𝜏max]

xi(−𝜏), min
i∈2,𝜏∈[0,𝜏max]

(
xi(−𝜏) + 2

𝛼
vi(−𝜏)

))
, s2 = max

(
max

i∈1∪2,𝜏∈[0,𝜏max]
xi(−𝜏), max

i∈2,𝜏∈[0,𝜏max](
xi(−𝜏) + 2

𝛼
vi(−𝜏)

))
, and S= [s1,s2].

In the following, we will extend the results in Theorem 1 to the multiagent systems with time-varying communication
delays and show the safety condition holds with the interval S.

Theorem 2. Suppose h <
1∑

j∈i ,i∈1
aij

and
√∑

j∈i,i∈2
aij < 𝛼 <

√
5−1
h

. Under the f-locally bounded model, the heterogeneous

system using DH-MSR algorithm with control input (9) can solve resilient consensus problem if the communication graph 

is (2f + 1)-robust.

Proof. For i ∈ 2, define xn2+n3+i(k) = xi(k) + 2
𝛼

vi(k). Thus, the discretized model of normal agents under input (9) can be
written as:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

xi(k + 1) = xi(k) + h
∑

j∈i⧵i(k)
aij(xj(k − 𝜏ij(k)) − xi(k)), i ∈ 1,

xi(k + 1) = xi(k) +
(

h𝛼
2
− h2𝛼2

4

)
(xn2+n3+i(k) − xi(k)) + h2

2

∑
j∈i⧵i(k)

aij(xj(k − 𝜏ij(k)) − xi(k)), i ∈ 2,

xn2+n3+i(k + 1) = xn2+n3+i(k) + 𝛽(k)(xi(k) − xn2+n3+i(k))
+
(

h2

2
+ 2h

𝛼

) ∑
j∈i⧵i(k)

aij(xj(k − 𝜏ij(k)) − xn2+n3+i(k)), i ∈ 2,

(10)

where 𝛽(k) = h𝛼
2
+ h2𝛼2

4
− h2

2

∑
j∈i⧵i(k)

aij − 2h
𝛼

∑
j∈i⧵i(k)

aij.

Let4 = {n + 1, … ,n + n2} and xi, i ∈ 4 be the position state of agent i. Thus, we get a multiagent systems of n1 + 2n2
normal agents with communication graph ′ = ( ′,  ′,′), where  ′ =  ∪ 4, and ′ = [a′

ij]. Take the parameters h and
𝛼 satisfying the condition in Theorem 2. It has been proved in Theorem 1 that ′ is (2f + 1)-robust and

∑
j∈i

a′
ij < 1 for

i ∈ 1 ∪ 2 ∪ 4.

We next show that the interval S satisfies the safety condition. Define xM(k) = max
i∈1∪2∪4,𝜏∈[0,𝜏max]

xi(k − 𝜏) and xm(k) =

min
i∈1∪2∪4,𝜏∈[0,𝜏max]

xi(k − 𝜏). Then, S= [xm(0),xM(0)]. Note xi(k+ 1) is a convex combination of values of i and its neighbors

from time k to k − 𝜏max. If the values of agent i received from some malicious neighbors at time k are outside [xm(k),xM(k)],
they will be moved by HP-MSR. Thus, it holds that xi(k+ 1)∈ [xm(k),xM(k)], which implies that xM(k) is nonincreasing
and xm(k) is nondecreasing. Hence, it has xi(k)∈ [xm(0),xM(0)] for k≥ 0, which means S is the safety interval.

In the rest of proof, we establish the agreement condition. Let V(k)= xM(k)− xm(k). Take 𝜀0 = 𝜂V(0) with 𝜂 ∈
(

0, 1
2

]
and 𝜀k+1 = 𝛾𝜀k for k≥ 0. Define sets

H1(k, 𝜀k) = {j ∈ 1 ∪ 2 ∪ 4 ∶ xk(k) > xM(0) − 𝜀k}

and

H2(k, 𝜀k) = {j ∈ 1 ∪ 2 ∪ 4 ∶ xj(k) < xm(0) + 𝜀k}.

It is obvious that the sets H1(0,𝜀0) and H2(0,𝜀0) are nonempty and H1(k,𝜀k) and H2(k,𝜀k) are disjoint by 𝜀k+1 ≤ 𝜀k.
If the disjoint sets H1(k,𝜀k) and H2(k,𝜀k) are nonempty, considering a normal agent j∉H1(k,𝜀k), that is

xj(k)≤ xM(0)− 𝜀k, it has

xj(k + 1) ≤ (1 − 𝛾)xM(k) + 𝛾(xM(0) − 𝜀k)
≤ xM(0) − 𝜀k+1,

that is, j∉H1(k+ 1,𝜀k+ 1). Similarly, we can show that if j∉H2(k,𝜀k), then j∉H2(k+ 1,𝜀k+ 1).
Since graph ′ is (2f + 1)-robust, there exists an agent j, j∈Hi(k,𝜀k) for some i∈{1,2}, having at least 2f + 1 neighbors

outside of its set. Suppose j∈H1(k,𝜀k). Since there are at most f malicious agents in the neighborhood, agent j has at least
f + 1 normal neighbors outside H1(k,𝜀k). By HP-MSR algorithm, at least one normal neighbor outside H1(k,𝜀k) will be
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used by agent j to update its state. Hence, we have

xj(k + 1) ≤ (1 − 𝛾)xM(k) + 𝛾(xM(0) − 𝜀k)
≤ xM(0) − 𝜀k+1.

Analogously, it has that xj(k+ p)≤ xM(0)− 𝜀k+ p, p≥ 1. From 𝜀k+ 1 < 𝜀k, it is obtained that j ∉ H1(k + 𝜏max +
1, 𝜀k+𝜏max+1). Likewise, if agent j∈H2(k,𝜀k) has at least 2f + 1 neighbors outside of its set, we can obtain that j ∉ H2(k +
𝜏max + 1, 𝜀k+𝜏max+1).

Follow the steps above and we can conclude that there exists a time T ≤ (𝜏max + 1)(n1 + 2n2) such that for some
i∈{1,2}, the set Hi(T,𝜀T) becomes empty. We assume H1(T,𝜀T) is empty, that is xM(T)≤ xM(0)− 𝜀T . Since T ≤ (𝜏max +
1)(n1 + 2n2), it follows that xM((𝜏max + 1)(n1 + 2n2)) ≤ xM(T) ≤ xM(0) − 𝜀T ≤ xM(0) − 𝜀(𝜏max+1)(n1+2n2). Thus, we have

V((𝜏max + 1)(n1 + 2n2)) = xM((𝜏max + 1)(n1 + 2n2)) − xm((𝜏max + 1)(n1 + 2n2))
≤ xM(0) − 𝜀(𝜏max+1)(n1+2n2) − xm(0)
= (1 − 𝜂𝛾 (𝜏max+1)(n1+2n2)−1)V(0).

Similarly, the inequality above holds if H2(T,𝜀T) is empty. Follow the steps above and we have for s∈N, V(s(𝜏max +
1)(n1 + 2n2)) ≤ (1 − 𝜂𝛾 (𝜏max+1)(n1+2n2))sV(0).

Similar to the analysis above, we can obtain the inequalities V(s(𝜏max + 1)(n1 + 2n2) + l) ≤
(1 − 𝜂𝛾 (𝜏max+1)(n1+2n2))sV(l), l = 1, 2 … , (𝜏max + 1)(n1 + 2n2) − 1. Thus, we have lim

s→+∞
V(s(n1 + 2n2) + l) = 0. It follows that

lim
k→+∞

V(k) = 0. Similar to the deduce in Theorem 1, we can get the resilient consensus is achieved. This completes the
proof. ▪

Remark 3. In fact, the results we have gotten can be extended to heterogeneous system with time delays under switching
topology by making a modification to the proposed algorithm. Different from step 1 of HP-MSR algorithm, at time k,
each normal agent i receives full relative position information from its neighbors during time interval [k− q,k], k≥ q.
In the case that normal agent i may receives more than one values from the same neighbor, agent i just stores the most
recent received value from its neighbor for later use. Then follow the step 2 and step 3 in HP-SMR. Take h <

1∑
j∈i ,i∈1

aij

and
√∑

j∈i,i∈2
aij < 𝛼 <

√
5−1
h

. Similar to the proofs above, we can get the heterogeneous multiagent system using the

modified HP-MSR algorithm can solve the resilient consensus problem if the union of the switching topologies
q⋃

𝜏=0
((k −

𝜏)h) are (2f + 1)-robust for k≥ q.

Impulsive control strategy enjoys many advantages, such as fast transient, less energy, and more flexible design. In
Step 3 of HP-MSR, normal agent i can update its state using the following impulsive protocol with sampled information:

ui(t) =

⎧⎪⎪⎨⎪⎪⎩
h1

∞∑
k=0

[ ∑
j∈i⧵i(t)

aij(xj(t) − xi(t))

]
𝛿(t − tk), i ∈ 1,

∞∑
k=0

[ ∑
j∈i⧵i(t)

aij(xj(t) − xi(t))

]
𝛿(t − tk) − 𝛼vi(t), i ∈ 2,

(11)

where 𝛿(⋅) is the Dirac function, the impulsive instants satisfy 0 = t0 < t1 < … < tk < … , lim
k→+∞

tk = +∞, tk+ 1 − tk ≡ h
and h1, 𝛼 > 0 are control parameters.

It should be noted that the system is running without any control when t ≠ tk. This is quite different from the control
inputs based on zero-order hold, where the control inputs are applied continuously through each sampling period. Let

s1 = min
(

min
i∈1∪2

xi(0),min
i∈2

(xi(0) + vi(0))
)

, s2 = max
(

max
i∈1∪2

xi(0),max
i∈2

(xi(0) + vi(0))
)

and S= [s1,s2].

Theorem 3. Suppose h1 <
1∑

j∈i ,i∈1
aij

and h
∑

j∈i,i∈2
aij + 1

2
< 𝛼 < 1. Under the f-locally bounded model, the heterogeneous

system using DH-MSR algorithm with control input (11) can solve resilient consensus problem if the communication graph
 is (2f + 1)-robust.
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Proof. For i ∈ 2, define xn2+n3+i(k) = xi(k) + vi(k). Thus, the discretized model of normal agents under input (11) can be
written as:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

xi(k + 1) = xi(k) + h
∑

j∈i⧵i(k)
aij(xj(k) − xi(k)), i ∈ 1,

xi(k + 1) = xi(k) + (1 − 𝛼)(xn2+n3+i(k) − xi(k)) + h
∑

j∈i⧵i(k)
aij(xj(k) − xi(k)), i ∈ 2,

xn2+n3+i(k + 1) = xn2+n3+i(k) + 𝛽(k)(xi(k) − xn2+n3+i(k)) + 2h
∑

j∈i⧵i(k)
aij(xj(k) − xn2+n3+i(k)), i ∈ 2,

(12)

where xn2+n3+i(k) = xi(k) + hvi(k) and 𝛽(k) = 2𝛼 − 1 − 2h
∑

j∈i⧵i(k)
aij. Following a similar proof to that of Theorem 1, we

can get that the heterogeneous multiagent system with input (11) can reach resilient consensus with safety interval S if
the communication graph  is (2f + 1)-robust. ▪

Remark 4. Considering the restriction of network bandwidth, the agents sometimes cannot acquire the precise relative
position information, but the information in its quantized form. Thus, the Step 3 in HP-MSR, agent i updates its state
using the following predefined control input:

ui(t) =

⎧⎪⎪⎨⎪⎪⎩
h1

∞∑
k=0

[ ∑
j∈i⧵i(t)

aijq(xj(t) − xi(t))

]
𝛿(t − tk), i ∈ 1,

∞∑
k=0

[ ∑
j∈i⧵i(t)

aijq(xj(t) − xi(t))

]
𝛿(t − tk) − 𝛼vi(t), i ∈ 2,

(13)

where q(⋅) is a quantizer.
Logarithmic quantizer is one of the commonly used quantizers. Define the set of quantization levels as U = {±ui,ui =

𝜌iu0, i = ±1,±2, …} ∪ {±u0} ∪ {0}, where u0 > 0 and accuracy parameter 0 < 𝜌 < 1. A logarithmic quantizer q : R→R is
a map defined as: for a > 0, q(a)=ui, 1

1+𝛿
ui < a ≤

1
1−𝛿

ui, for a= 0, q(a)= 0 and for a < 0, q(a)=−q(− a), where 𝛿 = 1−𝜌
1+𝜌

.

From the definition, it can be derived that ∀a∈R, a − q(a) = Δa, where |Δ| ≤ 𝛿. Thus, the heterogeneous multiagent
systems with quantized relative information can be seen as a multiagent systems with time-varying weights. Suppose h1 <

1
(1+𝛿)

∑
j∈i ,i∈1

aij
and h(1 + 𝛿)

∑
j∈i,i∈2

aij + 1
2
< 𝛼 < 1. Similar to the proofs above, it can be obtained that the heterogeneous

multiagent system with control input (13) can solve the resilient consensus problem if the communication graph  is
(2f + 1)-robust.

4 SIMULATIONS

In this section, we will provide three examples to demonstrate the effectiveness of the theoretical results.

Example 1. Let us consider a heterogeneous multiagent system with a 3-robust interaction graph  shown in Figure 1,
in which 1 and 3 are normal agents with first-order dynamics, 5-7 are the normal agents with second-order dynamics,
and 2 and 4 are malicious agents with dynamics x2(k+ 1)=−0.2k and x4(k+ 1)= 0.2k. For simplification, we assume each
edge weight is 1. According to Theorem 1, set sampling interval h= 0.1 and control gain 𝛼 = 3. We can see from Figure 2
that the consensus is not attained without using HP-MSR algorithm. Figure 3 shows the position trajectory of the system
using the HP-MSR algorithm. We can see that normal agents reach consensus as expected.

Example 2. For the case that there are communication delays between agents, we assume, for simplification reasons,
that each agent i has the same communication delays with their neighbors, that is, 𝜏ij1 = 𝜏ij2 , j1, j2 ∈ i. Specifically, the
communication delays are 𝜏1j = 7, 𝜏3j = 2, 𝜏5j = 3, 𝜏6j = 7, 𝜏7j = 0. The simulation result is shown in Figure 4. We can see
that the resilient consensus is achieved, but the communication delays leads to slower convergence speed.

Example 3. For the case that the normal agents update their states via impulsive input, we take sampling interval h= 0.05
and control gains h1 = 0.1, 𝛼 = 0.8 according to Theorem 3. We can see from Figure 5 that normal agents reach consensus
as expected.
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F I G U R E 1 A 3-robust graph

F I G U R E 2 Position trajectories of agents without
HP-MSR algorithm [Colour figure can be viewed at
wileyonlinelibrary.com]

F I G U R E 3 Position trajectories of agents with
HP-MSR algorithm [Colour figure can be viewed at
wileyonlinelibrary.com]

5 CONCLUSIONS

In this article, the resilient consensus was considered for a group agents with heterogeneous dynamics under directed
communication graph. HP-MSR algorithm was employed to mitigate the effects of malicious agents. We proved that
the resilient consensus can be achieved if the communication graph is (2f + 1)-robust. We further dealt the case with
communication delays. We showed that if the time-varying delays are bounded, the same conclusion can be drawn as
in the case without communication delays. Moreover, sufficient topological condition in terms of graph robustness was
obtained for resilient consensus with impulsive control techniques. For future research, it is interesting to consider the
resilient consensus of heterogeneous multiagent system with event-based control techniques. The other extensions of the

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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F I G U R E 4 Position trajectories of agents with
HP-MSR algorithm and communication delays [Colour
figure can be viewed at wileyonlinelibrary.com]

F I G U R E 5 Position trajectories of agents with HP-MSR
algorithm and impulsive input [Colour figure can be viewed at
wileyonlinelibrary.com]

results presented in this article is to further study this problem for heterogeneous multiagent system with general linear
dynamics.
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