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Abstract—With the incentive to solve Nash equilibrium com-
putation problems for networked games, this article tries to find
answers for the following two problems: 1) how to accommodate
hybrid games, which contain both continuous-time players and
discrete-time players? and 2) are there any other potential per-
spectives for solving continuous-time networked games except for
the consensus-based gradient-like algorithm established in our
previous works? With these two problems in mind, the study
of this article leads to the following results: 1) a hybrid gradi-
ent search algorithm and a consensus-based hybrid gradient-like
algorithm are proposed for hybrid games with their conver-
gence results analytically investigated. In the proposed hybrid
strategies, continuous-time players adopt continuous-time algo-
rithms for action updating, while discrete-time players update
their actions at each sampling time instant and 2) based on
the idea of consensus tracking, the Nash equilibrium learning
problem for continuous-time games is reformulated and two new
computation strategies are subsequently established. Finally, the
proposed strategies are numerically validated.

Index Terms—Consensus tracking, continuous games, hybrid
games, Nash equilibrium learning.

I. INTRODUCTION

AS AN effective analysis tool to accommodate the
cooperation and confliction among multiple interacting
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decision-making entities, game theory is active in fields vary-
ing from the smart grid, the wireless communication networks,
and economic markets, to cloud computing (see [1]–[3]).
Stimulated by the extensive application fields for games,
Nash equilibrium learning has received a lot of attention in
the last few years. Quite a few Nash equilibrium computa-
tion strategies have been reported among which the methods
in [4]–[8] are in discrete time while the algorithms in [2], [3],
and [10]–[18] are in continuous time.

Together, with a parallel update method, a random update
method as well as a gradient update method were intro-
duced in [4] to address flow control games. Games with
limited information flow were addressed by gossip-based Nash
equilibrium computation strategies in [5]. Lemke’s method
was adopted in [6] to deal with games with shared con-
straints. Through measuring the players’ cost functions, an
extremum seeker was designed in a discrete-time scenario to
solve games subject to linear dynamic constraints [7]. By uti-
lizing the ideas from projection and primal–dual techniques,
Zhu and Frazzoli [8] solved the generalized convex games.
Operator theory was employed in [9] to accommodate aggrega-
tive games with shared convex constraints. Continuous-time
repeated matrix games were accommodated by dynamic fic-
titious play and gradient play in [12]. A sinusoidal probing-
based extremum seeker was designed in [3] for nonmodeled-
based Nash equilibrium computation. Energy consumption
among a network of price-anticipating electricity users was
modeled as an aggregative game, which was addressed by a
dynamic average consensus-based strategy in [2]. General non-
cooperative games were further investigated under undirected
communication graphs [13], switching communication topolo-
gies [14], and weight-balanced digraphs [15], respectively.
Continuous-time and discrete-time algorithms were, respec-
tively, designed in [16] and [17] for two-network zero-sum
games. Furthermore, an N-cluster noncooperative game was
developed and solved through designing singularly perturbed
dynamics in [18]–[20].

The above works presented some clearsighted ideas to
achieve Nash equilibrium computation through designing
either discrete-time algorithms or continuous-time algorithms.
Nevertheless, a lot of real engineering systems are of hybrid
characteristics and intrinsically multimodal containing both
continuous-time and discrete-time subsystems (see [22]–[28]).
Take the heating and cooling system as an example. In the
heating and cooling system, subsystems, including the air

2168-2267 c© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on July 14,2020 at 01:52:54 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-5553-9124
https://orcid.org/0000-0001-5016-7237
https://orcid.org/0000-0003-0070-8597
https://orcid.org/0000-0002-1143-2509


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON CYBERNETICS

conditioner, the furnace, as well as the home heat loss dynam-
ics are continuous whereas the thermostat is a discrete-time
device [27]. Systems composed of both digital and analog
components [28] are also typical examples that fit the consid-
ered scenario. As the existing Nash equilibrium computation
strategies are established for games with either discrete-time
or continuous-time dynamics, hybrid games still remain to
be addressed. Therefore, Nash equilibrium computation for a
class of hybrid games is considered in this article. In partic-
ular, both continuous-time players and discrete-time players
exist in the considered game. Literally, the continuous-time
players are of continuous-time dynamics while the discrete-
time players are of discrete-time dynamics. Note that in the
considered games, the continuous-time players and discrete-
time players are interacting with each other. However, their
actions evolve in different time scenarios. Hence, it is chal-
lenging to find a unified framework to simultaneously analyze
their behaviors, especially when the players are of complex
dynamics.

Besides the consideration of games in hybrid systems,
this article also presents some novel insights into the design
of Nash equilibrium learning strategies for continuous-time
games. From the existing works, we have learned that
distributed Nash equilibrium computation can be achieved
by driving the players’ estimation variables to a consen-
sus state, which is the Nash equilibrium point. Similarly,
consensus-tracking problems with time-varying reference sig-
nals are concerned with a network of agents that are gov-
erned to follow some reference trajectories (see [29]).
These two observations motivate us to explore the poten-
tial linkages between distributed Nash equilibrium learning
problems and consensus-tracking problems. To find out the
answer, two new Nash equilibrium computation strategies
are developed from a consensus-tracking perspective. The
proposed consensus-tracking-based Nash equilibrium compu-
tation strategies relieve the gap between distributed Nash equi-
librium learning problems and consensus-tracking problems.

In summary, with part of the paper presented in [30], the
article has the following contributions.

1) A hybrid gradient search algorithm, in which discrete-
time players amend their actions by discrete-time gradi-
ent search while continuous-time ones take samples on
the gradient values and update their actions by utilizing
the sampled gradient values, is first proposed for the
hybrid games. Then, games under distributed networks
(see [13]) were further accommodated by introducing
consensus protocols to the hybrid gradient search algo-
rithm. The resulting learning method avoids the usage of
centralized information (i.e., the other players’ actions)
and hence, it is suitable for applications in distributed
systems.

2) The article proposes two novel distributed Nash equilib-
rium computation strategies for continuous-time games
by adapting the ideas from consensus tracking. In
the consensus-tracking-based algorithms, the players’
actions, which are generated via the gradient play,
are treated as time-varying tracking reference signals.
Based on the reference signals, two consensus-tracking

protocols are adapted to achieve the distributed Nash
equilibrium learning for continuous-time games.

3) By constructing the Lyapunov candidate functions, the
stability of the Nash equilibrium is analytically explored
for all the developed methods.

We arrange the remaining sections as follows. In Section II,
the notations and preliminaries are given. Together with a
hybrid gradient search algorithm, a distributed hybrid gradient-
like algorithm is presented in Section III to learn the Nash
equilibrium for the considered hybrid games. Moreover, two
novel consensus-tracking-based Nash equilibrium learning
strategies are presented in Section IV. Numerical verifica-
tions of the theoretical results are given in Section V. Finally,
Section VI provides the conclusions for this article.

II. NOTATIONS AND PRELIMINARIES

Notations: The set of real numbers is represented by R.
A column one vector of dimension N is denoted as 1N and
an identity matrix of dimension M × M is denoted as IM×M .
In addition, diag{kij}(diag{ki}), where kij ∈ R(ki ∈ R) and
i, j ∈ {1, 2, . . . , N}, is a diagonal matrix and its diagonal
elements are k11, k12, . . . , k1N, k21, , . . . , kNN(k1, k2, . . . , kN),

successively. Likewise, [kij]vec([ki]vec) defines a column vector
with its elements being kij(ki), successively. Moreover, λmin(P)

denotes the minimum eigenvalue of P, where P is a symmetric
real matrix. Furthermore, maxi∈{1,2,...,N}{ki} equals the maxi-
mum value of ki for i ∈ {1, 2, . . . , N}. In the remainder, we
utilize ⊗ to denote the Kronecker product.

Algebraic Graph Theory: Let G = (N , E), in which N =
{1, 2, . . . , N} is the set of nodes and E is the set of edges,
be a graph. In particular, the elements in E are denoted by
(i, j), which stands for an edge from i to j. Let the weight on
each edge (i, j) ∈ E be aji > 0. Note that aii = 0, implying
that the graph has no self-loop. The graph is undirected if
aij = aji ∀i, j ∈ N . Furthermore, we say that the undirected
graph is connected given that for any pair of distinct vertices,
there is a path. The matrix with its element on the ith row
and jth column being aij > 0 if (j, i) ∈ E, else, aij = 0 is
called the adjacency matrix of graph G, and is written as A.

In addition, L = D − A, in which D is a diagonal matrix
whose ith diagonal element is

∑M
j=1 aij, defines the Laplacian

matrix of G [13].
Definition 1 (A Normal Form Game): A normal form game

� is outlined as � � {N , X, f }, where N defines the set of
N players, X = X1 × · · · × XN , Xi ⊆ R (Xi = R in this
article) represents the set of actions for player i, and f =
(f1(x), f2(x), . . . , fN(x)), where fi(x) stands for player i’s cost
function, x = [x1, x2, . . . , xN]T and xi ∈ Xi stands for the
action of player i [13].

Definition 2 (Nash Equilibrium): An action profile x∗ =
(x∗

i , x∗−i) ∈ X is Nash equilibrium given that

fi
(
x∗

i , x∗−i

) ≤ fi
(
xi, x∗−i

) ∀i ∈ N (1)

for all xi ∈ Xi [13].
Note that in (1), x−i = [x1, x2, . . . , xi−1, xi+1, . . . , xN]T . In

the rest, we may write (xi, x−i) as x for notational convenience.
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III. DISTRIBUTED NASH EQUILIBRIUM LEARNING

FOR HYBRID GAMES

In the following, a Nash equilibrium learning problem for
hybrid games will be first stated. Following the problem for-
mulation, two hybrid Nash equilibrium learning algorithms
will be given.

A. Problem Statement

This section considers an N-player hybrid game. Among
the engaged players, m(m < N) players are of continuous-
time dynamics whereas the remaining N − m players are of
discrete-time dynamics. Let C and D (C ∪D=N and C∩D =
∅), respectively, be the sets of continuous-time players and
discrete-time players. Then, the dynamics of the players can
be described by

ẋi(t) = ui(t), i ∈ C
xi(tk+1) = xi(tk) + ui(tk), i ∈ D (2)

in which xi ∈ R and ui denote player i’s action and control
input, respectively. In addition, tk = hk, for k = 0, 1, 2, . . . ,

denote the sampling time instants and h is the sampling period.
This section aims to design control inputs such that the play-
ers’ actions can be driven to the Nash equilibrium of the hybrid
game.

For notational convenience, let

P(x) =
[
∂f1(x)

∂x1
,
∂f2(x)

∂x2
, . . . ,

∂fN(x)

∂xN

]T

.

The following conditions will be utilized to establish the
convergence results.

Assumption 1: For each i ∈ N , fi(x) is a C2 function and
([∂fi(x)]/∂xi) is globally Lipschitz with constant l̄i for x ∈ R

N .
Assumption 2: For x, z ∈ R

N

(x − z)T(P(x) − P(z)) ≥ L‖x − z‖2 (3)

where L is a positive constant.
Assumption 3: The players are provided with an undirected

and connected communication graph G.
Remark 1: Assumption 2 is a commonly utilized condition

in related works. By this assumption, the game admits a unique
Nash equilibrium [13], [34]. For more detailed elaborations
on this condition, we refer interested readers to [8], [13]–[18],
and [34].

In the upcoming sections, a hybrid gradient search algo-
rithm and a distributed learning strategy will be investigated,
successively.

B. Hybrid Gradient Search Algorithm

To compute the Nash equilibrium, we design the learning
strategy as

ẋi(t) = −ᾱi
∂fi
∂xi

(x(tk)), i ∈ C, t ∈ (tk, tk+1
]

xi(tk+1) = xi(tk) − αi
∂fi
∂xi

(x(tk)), i ∈ D (4)

where ᾱi for all i ∈ C are fixed positive control gains and
αi for i ∈ D are the step sizes to be determined. Moreover,

(∂fi/∂xi)(q) = ([∂fi(x)]/∂xi)|x=q throughout the rest of this
article. Then, the following theorem can be obtained.

Theorem 1: There exist h∗ > 0 and α∗ > 0 such that for
each h ∈ (0, h∗), αi ∈ (0, α∗), i ∈ D, x(tk) → x∗ as k → ∞
under (4) given that Assumptions 1 and 2 hold.

Proof: The conclusion can be obtained by constructing the
Lyapunov candidate function as

V(x(tk)) = (
x(tk) − x∗)Tα−1(x(tk) − x∗) (5)

where α = diag{αi}, i ∈ N .

This section accommodates the Nash equilibrium computa-
tion problem for the considered hybrid games via a gradient
search algorithm. In the gradient search algorithm, continuous-
time players continuously amend their actions by utilizing
sampled gradient information. In contrast, discrete-time play-
ers renew their actions at sampling time instants. Nevertheless,
in (4), the gradient values might possibly depend on all the
players’ actions. Hence, (4) might be unsuitable for games in
distributed networks (see also [13]). Therefore, similar to [13],
we further adapt the gradient search algorithm for games under
distributed networks in the upcoming section.

C. Leader-Following Consensus-Based Gradient Search
Algorithm

The exploitation of the distributed Nash equilibrium learn-
ing strategy will be investigated for hybrid games in this sec-
tion. To address hybrid games, the gradient search algorithm
in [13] is adapted as

ẋi(t) = −δᾱi
∂fi
∂xi

(xi(tk), y−i(tk))

ẏij(t) = −
(

N∑

l=1

ail
(
yij(tk) − ylj(tk)

)+ aij
(
yij(tk) − xj(tk)

)
)

(6)

for i ∈ C, j ∈ N , and t ∈ (tk, tk+1], where δ denotes a small
positive control gain to be determined, ᾱi is a fixed positive
parameter, and y−i = [yi1, yi2, . . . , yi,i−1, yi,i+1, . . . , yiN]T . In
addition, the discrete-time players learn the Nash equilibrium
by utilizing

xi(tk+1) = xi(tk) − δαi
∂fi
∂xi

(xi(tk), y−i(tk))

yij(tk+1) = yij(tk) − h

(
N∑

l=1

ail
(
yij(tk) − ylj(tk)

)

+ aij
(
yij(tk) − xj(tk)

)
)

, i ∈ D, j ∈ N

(7)

where αi is a fixed positive constant.
Let H = IN2×N2 − h(L ⊗ IN×N + A0), where A0 =

diag{aij}, i, j ∈ N and n be a positive integer. Then, by fol-
lowing the proof of [21, Lemma 3.1], the following supportive
lemma can be obtained.

Lemma 1: Suppose that

h < min
i,j∈N

1
∑N

l=1 ail + aij
. (8)
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Then, ‖Hn‖∞ < 1 and all eigenvalues of H are within the
unit circle if Assumption 3 holds.

By utilizing Lemma 1, the upcoming result can be
established.

Theorem 2: Given that

h < min
i,j∈N

1
∑N

l=1 ail + aij
(9)

there exists a positive constant δ∗(h) so that for any δ ∈
(0, δ∗), x(tk) → x∗ and y(tk) → 1N ⊗ x(tk) → 1N ⊗ x∗
as k → ∞ under (6) and (7) if Assumptions 1–3 hold.

Proof: See Appendix A for the proof.
Remark 2: The learning strategy in (6) and (7) is adapted

from the learning strategy in [13]. Nevertheless, unlike the
strategy in [13] in which the players require continuous-
time communication, only discrete-time communication is
utilized in (6) and (7). Hence, the proposed strategy is suit-
able for systems where continuous-time communication is not
available.

In this section, the gradient play and the Nash equilibrium
computation strategy in [13] are adapted to accommodate the
considered hybrid games. In the subsequent section, some new
ideas will be investigated to provide more insights on how to
solve the Nash equilibrium learning problems for continuous-
time games.

IV. CONSENSUS-TRACKING PERSPECTIVES FOR

DISTRIBUTED NASH EQUILIBRIUM LEARNING

The core idea of many existing distributed Nash equilib-
rium seeking strategies can be summarized as follows. First,
a consensus protocol is included to estimate the required
information by utilizing local communication among the play-
ers. Then, based on the estimated values, gradient-like algo-
rithms are implemented to learn the Nash equilibrium in a
distributed way (see [2], [13], [14], [18], [19], and the ref-
erences therein). This idea is relatively simple and might be
restrictive to some extent. Hence, we ask the following ques-
tion: are there any other perspectives to distributively solve
noncooperative games? To answer this question, we take a
continuous-time game (i.e., all players are continuous-time
players) as an example and further propose consensus-tracking
perspectives for distributed Nash equilibrium computation
problems in this section. To be more clear, the following
problem is formulated.

A. Problem Statement

Assume that in game �, the dynamics of player i can be
described by

ẋi = ui ∀i ∈ N (10)

in which xi ∈ R and ui denote the player i’s action and con-
trol input, respectively. This session aims to propose novel
consensus-tracking perspectives for the design of the control
inputs such that x(t) → x∗ as t → ∞.

The main principle of achieving distributed Nash equilib-
rium computation lies in developing a method that drives the
players’ estimates on the Nash equilibrium to the actual Nash

equilibrium point. Moreover, the Nash equilibrium is stable by
utilizing the gradient play under certain conditions (see [13]).
Hence, it can be formulated as a tracking problem in which
each player generates an estimation vector yi that tracks a
reference signal s(t) produced by

ṡ(t) = −P(s(t)). (11)

In the following, we present two new consensus-tracking-
based Nash equilibrium learning strategies based on this
idea.

B. Consensus-Tracking-Based Nash Equilibrium Learning
Algorithms

Consensus-Tracking-based Nash Equilibrium Learning
Algorithm 1: Motivated by the consensus-tracking proto-
col in [29], the new Nash equilibrium learning strategy is
designed as

ẋi(t) = −δαi
∂fi
∂xi

(xi, y−i)

ẏij(t) = 1
∑N

k=1 aik + aij

N∑

k=1

aik
(
ẏkj − γ

(
yij − ykj

))

+ aij
∑N

k=1 aik + aij

(
ẋj − γ

(
yij − xj

))
(12)

for i, j ∈ N , where γ is a fixed positive constant, αi for i ∈ N
are fixed positive constants, and δ is a small positive parameter.

The upcoming theorem illustrates the convergence result for
the method in (12).

Theorem 3: There exists a positive constant δ∗ such that
for each δ ∈ (0, δ∗), the equilibrium (x∗, 1N ⊗ x∗) is globally
exponentially stable under (12) if Assumptions 1–3 hold.

Proof: See Appendix B for the proof.
Alternatively, one can treat γ in (12) as a positive constant to

be further determined and define δ as a fixed positive constant
to derive the following corollary.

Corollary 1: There exists a positive constant γ ∗ so that for
γ > γ ∗, the equilibrium (x∗, 1N⊗x∗) is globally exponentially
stable under (12) if Assumptions 1–3 hold.

Consensus-Tracking-Based Nash Equilibrium Learning
Algorithm 2: The Nash equilibrium seeking strategy can also
be designed as

ẋi = −δαi
∂fi
∂xi

(xi, y−i)

ẏij = 1
∑N

k=1 aik

N∑

k=1

aik
(
ẏkj − γ

(
yij − ykj

)) ∀j �= i

yii = xi (13)

where γ is a positive constant, αi for i ∈ N are fixed positive
constants, and δ is a small positive parameter.

The upcoming theorem illustrates the convergence result for
the method in (13).

Theorem 4: There exists a positive constant δ∗ such that
for δ ∈ (0, δ∗), the equilibrium (x∗, 1N ⊗ x∗) is globally
exponentially stable under (13) if Assumptions 1–3 hold.

Proof: See Appendix C for the proof.
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Similar to Corollary 1, one can treat γ in (13) as a posi-
tive constant to be further determined and define δ as a fixed
positive constant to derive the following corollary.

Corollary 2: There exists a positive constant γ ∗ so that for
γ > γ ∗, the equilibrium (x∗, 1N⊗x∗) is globally exponentially
stable under (12) if Assumptions 1–3 hold.

Remark 3: This section provides two novel methods that
achieve distributed Nash equilibrium learning in continuous-
time games. In the proposed methods, the trajectories gener-
ated by the gradient play are treated as time-varying reference
signals and two consensus-tracking protocols are adopted to
achieve the objective. It is worth noting that the proposed
algorithms are nontrivial compared with related works.

1) As the information available for each player is restricted,
the estimated gradients, which are functions of all the
players’ estimates, are utilized in the proposed methods.
Hence, the time-varying reference signals are trajec-
tories depending on the players’ estimates. This is a
core difference between the proposed methods and the
consensus-tracking protocols studied in [29] in which
the reference trajectory does not depend on the agents’
states. Moreover, in (12) and (13), the consensus-
tracking part cannot be independently analyzed from the
gradient search part as they are interacting with each
other.

2) Compared with the distributed Nash equilibrium learn-
ing algorithm in [13] and [14], the newly developed
algorithms in (12) and (13) have advantages in the sense
that they have great potential to be adapted to deal with
quadratic time-varying objective functions (see [33]).
Moreover, they lay solid foundations for the accom-
modations of games under time-varying communication
topologies, especially for jointly connected topologies,
which are still open questions to be addressed. Last
but not least, the novel consensus-tracking-based algo-
rithms bridge the gaps between distributed Nash equi-
librium seeking problems and consensus-tracking prob-
lems. They open the door toward the distributed Nash
equilibrium seeking for more complex games by tak-
ing the advantages of the existing consensus-tracking
algorithms.

Remark 4: Theorems 3 and 4 indicate that δ should be
selected to be sufficiently small to ensure the stabilities of the
proposed learning strategies in (12) and (13). Alternatively,
the stability results can be obtained by selecting γ to be suf-
ficiently large as illustrated in Corollaries 1 and 2. Note that
the quantifications of δ∗ can be found in the proofs of the the-
orems. In addition, the quantifications of γ ∗ in Corollaries 1
and 2 can be obtained in a similar way. From the proofs, it
can be seen that the determinations of δ∗ or γ ∗ depend on the
communication topology, the Lipschitz constants of players’
objective functions, the number of the players, and the strong
monotonicity constant L.

Remark 5: In this article, we consider the Nash equilibrium
seeking under Assumption 2, which ensures the uniqueness of
the Nash equilibrium. Note that if there are multiple Nash
equilibria, it can still be obtained that the Nash equilibrium
that satisfies [13, Assumptions 3 and 4] is exponentially stable.

Fig. 1. Illustration of the communication topology for the players.

Moreover, it is worth mentioning that the presented results can
be directly adapted to the case in which xi ∈ R

m, where m > 1
is an integer, though we suppose that xi ∈ R for presentation
simplicity.

Remark 6: Though the method in (6) and (7) and the
consensus-tracking-based algorithms in (12) and (13) are all
developed based on the gradient play, the ideas behind the
designs are different. The seeking strategy in (6) and (7)
is designed based on the idea that a leader-following con-
sensus protocol can be included to estimate x such that the
gradient play can be implemented in a distributed fashion
(see [13] and [14]). Differently, the consensus-tracking-based
algorithms in (12) and (13) are designed based on the idea
that each player i can generate a local estimate yi(t) to track
a time-varying trajectory that would converge to the Nash
equilibrium.

V. NUMERICAL SIMULATIONS

In this section, a 5-player game is considered. The cost
functions associated with the players are

f1(x) = 1

12
x4

1 + 5x2
1 − 5x1x2 + 10

f2(x) = 5x2
2 − 5x1x2 + x2x3 − 4

5
x2 + 5

f3(x) = 5

4
x2

3 − x3(x1 + x2 + x4 + x5) − 7

3
x3 + 2

f4(x) = x2
4 + x4x5 + x4 + 1

f5(x) = x2
5 + x4x5 + 5 (14)

respectively.
Setting the pseudogradient vector P(x) to 0 gives the unique

Nash equilibrium, which is x∗ = [0, 0, (4/5),−(2/3), (1/3)]T .

In the following simulations for the hybrid games, we assume
that the dynamics of players 1 and 2 are in discrete time
while the dynamics of players 3–5 are in continuous time.
Moreover, in Section V-C, all players are considered to be
continuous-time players for the verification of consensus-
tracking-based Nash equilibrium seeking strategies. In the
subsequent simulations, the communication graph is depicted
in Fig. 1. The hybrid gradient search algorithm, the hybrid
leader-following consensus-based gradient-like algorithm, and
the consensus-tracking-based methods will be numerically
verified successively.

A. Hybrid Gradient Search Algorithm

This section conducts numerical simulations for the hybrid
gradient search algorithm in (4). In the simulation, the ini-
tial value of x is selected as x(0) = [3,−4,−5,−2, 2]T .
Moreover, the sampling period is selected as h = 0.1.
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Fig. 2. Trajectories of the players’ actions xi(t), i ∈ {1, 2, . . . , 5}, produced
by the hybrid gradient search algorithm in (4).

Fig. 3. Trajectories of the players’ cost functions produced by the hybrid
gradient search algorithm in (4).

Generated by the method in (4), the simulation results are
plotted in Figs. 2 and 3 in which Fig. 2 illustrates the players’
actions and Fig. 3 shows the trajectories of the players’ costs.

Fig. 2 demonstrates that actuated by the gradient search
algorithm in (4), the players’ actions would converge to the
Nash equilibrium of the hybrid game thus providing numerical
verification for the result in Theorem 1.

B. Leader-Following Consensus-Based Hybrid Gradient
Search Algorithm

This section simulates the hybrid leader-following
consensus-based gradient search algorithm. In the simulation,
we set x(0) to 0. The trajectories of the players’ actions and
their cost functions produced by (6) and (7) are illustrated in
Figs. 4 and 5, respectively.

Fig. 4 illustrates that driven by the algorithm in (6) and (7),
x(t) → x∗ as t → ∞ thus verifying the convergence result in
Theorem 2.

C. Consensus-Tracking-Based Algorithms

This section simulates the consensus-tracking-based strate-
gies in (12) and (13). Initializing x at [3,−4,−5,−2, 2]T , the
players’ actions generated by (12) are given in Fig. 6 and the
output values of their cost functions are plotted in Fig. 7. Fig. 6

Fig. 4. Trajectories of the players’ actions xi(t), i ∈ {1, 2, . . . , 5}, produced by
the leader-following consensus-based hybrid gradient search algorithm in (6)
and (7).

Fig. 5. Trajectories of the players’ cost functions produced by the leader-
following consensus-based hybrid gradient search algorithm in (6) and (7).

Fig. 6. Trajectories of the players’ actions xi(t), i ∈ {1, 2, . . . , 5}, generated
by the consensus-tracking-based method in (12).

demonstrates that by adopting (12), x(t) → x∗ as t → ∞.
Hence, Theorem 3 is numerically verified.

Likewise, with the same initial conditions, the trajectories of
the players’ actions and their costs produced by (13) are given
in Figs. 8 and 9, from which we see that the players’ actions
are driven to the Nash equilibrium asymptotically. Therefore,
Theorem 4 is numerically validated.
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Fig. 7. Trajectories of the players’ cost functions generated by the consensus-
tracking-based method in (12).

Fig. 8. Trajectories of the players’ actions xi(t), i ∈ {1, 2, . . . , 5}, generated,
by the consensus-tracking-based method in (13).

Fig. 9. Trajectories of the players’ cost functions generated by the consensus-
tracking-based method in (13).

VI. CONCLUSION

Two Nash equilibrium computation problems were investi-
gated in this article. In the first problem, the considered game
was hybrid in the sense that some engaged players were of
discrete-time dynamics while the rest were of continuous-time
dynamics. Correspondingly, we proposed a hybrid gradient

search algorithm and a consensus-based hybrid gradient search
algorithm to accommodate the hybrid games. Moreover, this
article proposed a novel design perspective for distributed
Nash equilibrium computation under distributed communica-
tion networks by utilizing the ideas from consensus tracking.
In particular, the distributed Nash equilibrium seeking problem
was formulated as a consensus-tracking problem in which the
players’ estimates on the other players’ actions were driven
to time-varying reference states, which are the trajectories of
the gradient play. This provided a linkage between consensus-
tracking problems and distributed Nash equilibrium seeking
problems for noncooperative games. Under the given condi-
tions, the convergence results of the hybrid seeking strategies
and the consensus-tracking-based algorithms were theoreti-
cally analyzed. It would be interesting future works to consider
games with more general dynamics (e.g., [35]).

APPENDIX A
PROOF OF THEOREM 2

Taking integrations on both sides of (6) over (tk, t], where
t ∈ (tk, tk+1], we obtain that

∫ t

tk
ẋi(τ )dτ = −

∫ t

tk
δᾱi

∂fi
∂xi

(xi(tk), y−i(tk))dτ

∫ t

tk
ẏij(τ )dτ = −

∫ t

tk

(
N∑

l=1

ail
(
yij(tk) − ylj(tk)

)

+ aij
(
yij(tk) − xj(tk)

)
)

dτ (15)

for i ∈ C, j ∈ N , and t ∈ (tk, tk+1].
Hence, for the continuous-time players, it can be derived

that for t ∈ (t, tk+1]

yij(t) = yij(tk) −
(

N∑

l=1

ail
(
yij(tk) − ylj(tk)

)

+ aij
(
yij(tk) − xj(tk)

)
)

(t − tk)

xi(t) = xi(tk) − δᾱi
∂fi
∂xi

(xi(tk), y−i(tk)))(t − tk). (16)

Therefore, for t = tk+1

yij(tk+1) = yij(tk) − h

(
N∑

l=1

ail
(
yij(tk) − ylj(tk)

)

+ aij
(
yij(tk) − xj(tk)

)
)

xi(tk+1) = xi(tk) − hᾱiδ
∂fi
∂xi

(xi(tk), y−i(tk))), i ∈ C. (17)

Let hᾱi = αi ∀i ∈ C. Then, it can be derived that

yij(tk+1) = yij(tk) − h

(
N∑

l=1

ail
(
yij(tk) − ylj(tk)

)

+ aij
(
yij(tk) − xj(tk)

)
)

xi(tk+1) = xi(tk) − αiδ
∂fi
∂xi

(xi(tk), y−i(tk))), i ∈ N . (18)
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Define y(tk) = [y11(tk), y12(tk), . . . , y1N(tk), y2N(tk), . . . ,
yNN(tk)]T and ȳ(tk) = y(tk) − 1N ⊗ x(tk). Then

ȳ(tk+1) = y(tk+1) − 1N ⊗ x(tk+1)

= y(tk) − h(L ⊗ IN×N + A0)ȳ(tk) − 1N ⊗ x(tk+1)

= y(tk) − (1N ⊗ (x(tk) − δαP(η(tk))))

− h(L ⊗ IN×N + A0)ȳ(tk)

= (
IN2×N2 − h(L × IN×N + A0)

)
ȳ(tk)

+ δ1N ⊗ (αP(η(tk)))

= Hȳ(tk) + δ1N ⊗ (αP(η(tk))) (19)

where

P(η(tk)) =
[

∂f1
∂x1

(x1(tk), y−1(tk)),
∂f2
∂x2

(x2(tk), y−2(tk)), . . .

∂fN
∂xN

(xN(tk), y−N(tk))

]T

.

By Lemma 1, one can obtain that there are symmetric
positive-definite matrices P̃ and Q̃ such that

HP̃H − P̃ = −Q̃. (20)

Motivated by [13], define

V(ξ(tk)) = c

2

(
x(tk) − x∗)Tα−1(x(tk) − x∗)

+ (1 − c)ȳ(tk)
TP̃ȳ(tk) (21)

where c ∈ (0, 1) is a constant and ξ(tk) = [(x(tk) −
x∗)T , ȳ(tk)T ]T as the Lyapunov candidate function.

Then

�V(ξ(tk)) = V(ξ(tk+1)) − V(ξ(tk))

= c

2

(
x(tk+1) − x∗)Tα−1(x(tk+1) − x∗)

− c

2

(
x(tk) − x∗)Tα−1(x(tk) − x∗)

+ (1 − c)ȳ(tk+1)
TP̃ȳ(tk+1)

− (1 − c)ȳ(tk)
TP̃ȳ(tk). (22)

By Assumption 2, we have P(x∗) = 0N and hence
(
x(tk) − x∗)TP(x(tk)) ≥ L

∥
∥x(tk) − x∗∥∥2

. (23)

Therefore

1

2

(
x(tk+1) − x∗)Tα−1(x(tk+1) − x∗)

− 1

2

(
x(tk) − x∗)Tα−1(x(tk) − x∗)

= 1

2

(
x(tk) − x∗ − δαP(η(tk))

)T
α−1

× (
x(tk) − x∗ − δαP(η(tk))

)

− 1

2

(
x(tk) − x∗)Tα−1(x(tk) − x∗)

≤ −δL
∥
∥x(tk) − x∗∥∥2 + δl1

∥
∥x(tk) − x∗∥∥‖ȳ(tk)‖

+ δ2

2

(P(η(tk)) − P(x(tk)) + P(x(tk)) − P(x∗))T

× α
(P(η(tk)) − P(x(tk)) + P(x(tk)) − P(x∗))

≤ −δL
∥
∥x(tk) − x∗∥∥2 + δl1

∥
∥x(tk) − x∗∥∥‖ȳ(tk)‖

+ 1

2
δ2 max

i∈N
{αi}

(
l1‖ȳ(tk)‖ + l2

∥
∥x(tk) − x∗∥∥)2 (24)

where l1 = maxi∈N {l̄i} and l2 = √
N maxi∈N {l̄i} by noticing

that ‖P(η(tk)) −P(x(tk))‖ ≤ maxi∈N {l̄i}‖y(tk) − 1N ⊗ x(tk)‖
and ‖P(x(tk)) − P(x∗)‖ ≤ √

N maxi∈N {l̄i}‖x(tk) − x∗‖ based
on Assumption 1.

Moreover

ȳ(tk+1)
TP̃ȳ(tk+1) − ȳ(tk)

TP̃ȳ(tk)

= (Hȳ(tk) + δ1N ⊗ (αP(η(tk))))
TP̃(Hȳ(tk)

+ δ1N ⊗ (αP(η(tk)))) − ȳ(tk)
TP̃ȳ(tk)

= ȳ(tk)
THP̃Hȳ(tk) − ȳ(tk)

TP̃ȳ(tk)

+ 2δȳ(tk)
THP̃(1N ⊗ (αP(η(tk))))

+ (δ1N ⊗ (αP(η(tk))))
TP̃δ(1N ⊗ (αP(η(tk))))

= −ȳ(tk)
TQ̃ȳ(tk) + 2δȳ(tk)

THP̃(1N ⊗ αP(η(tk)))

+ δ2(1N ⊗ (αP(η(tk))))
TP̃(1N ⊗ (αP(η(tk))))

≤ −λmin

(
Q̃
)
‖ȳ(tk)‖2

+ 2δ max
i∈N

{αi}‖ȳ(tk)‖
(
l3‖ȳ(tk)‖ + l4

∥
∥x(tk) − x∗∥∥)

+ δ2
∥
∥P̃
∥
∥max

i∈N

{
α2

i

}(
l5‖ȳ(tk)‖ + l6

∥
∥x(tk) − x∗∥∥)2 (25)

where l3 = ‖HP̃‖√N maxi∈N {l̄i}, l4 = ‖HP̃‖N maxi∈N {l̄i},
l5 = √

N maxi∈N {l̄i}, and l6 = N maxi∈N {l̄i}.
Hence

�V(ξ(tk)) ≤ −
(

λmin

(
Q̃
)
(1 − c) − 2δ max

i∈N
{αi}(1 − c)l3

− δ2‖P̃‖ max
i∈N

{
α2

i

}
l25(1 − c)

− 1

2
δ2 max

i∈N
{αi}cl21

)

‖ȳ(tk)‖2

−
(

δLc − δ2‖P̃‖ max
i∈N

{
α2

i

}

× (1 − c)l26 − δ2

2
max
i∈N

{αi}l22c

)
∥
∥x(tk) − x∗∥∥2

+
(

2δ(1 − c)l4 max
i∈N

{αi} + 2δ2 max
i∈N

{
α2

i

}
‖P̃‖l5l6(1 − c)

+ δl1c + δ2c max
i∈N

{αi}l1l2

)

‖ȳ(tk)‖
∥
∥x(tk) − x∗∥∥. (26)

In addition, for any positive constant d1, it can be derived
that

‖ȳ(tk)‖
∥
∥x(tk) − x∗∥∥ ≤ 1

2

(
‖ȳ(tk)‖2

d1
+ d1

∥
∥x(tk) − x∗∥∥2

)

. (27)

Define

β1 = λmin

(
Q̃
)
(1 − c) − 2δ max

i∈N
{αi}(1 − c)l3

− δ2‖P̃‖ max
i∈N

{
α2

i

}
l25(1 − c) − 1

2
δ2 max

i∈N
{αi}cl21

− 1

2d1

(

2δ(1 − c)l4 max
i∈N

{αi} + δl1c + 2δ2‖P̃‖

× max
i∈N

{
α2

i

}
l5l6(1 − c) + δ2c max

i∈N
{αi}l1l2

)

(28)
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and

β2 = δLc − δ2‖P̃‖ max
i∈N

{
α2

i

}
(1 − c)l26 − δ2

2
max
i∈N

{αi}l22c

− d1

2

(

2δ(1 − c)l4 max
i∈N

{αi} + δl1c + 2δ2‖P̃‖

× max
i∈N

{
α2

i

}
l5l6(1 − c) + δ2c max

i∈N
{αi}l1l2

)

.

(29)

Let d1 < (2Lc/[2(1 − c)l4 maxi∈N {αi} + l1c]). Then, it can
be derived that there exists δ∗ > 0 such that for each δ ∈
(0, δ∗), β1 > 0, and β2 > 0. If this is the case

�V(ξ(tk)) ≤ −l̄‖ξ(tk)‖2 (30)

where l̄ = min{β1, β2}, thus arriving at the conclusion.

APPENDIX B
PROOF OF THEOREM 3

Define a new vector

 = (L ⊗ IN×N + A0)y − A01N ⊗ x (31)

where A0 = diag{aij}. Note that as the communication graph is
undirected and connected, L⊗IN×N +A0 is symmetric positive
definite and hence invertible [13].

Then, by (12), it can be derived that

̇ = −γ . (32)

Recalling that

ẋi = −δαi
∂fi
∂xi

(xi, y−i) (33)

for i ∈ N , define

V = 1

2
T + 1

2

(
x − x∗)Tα−1(x − x∗) (34)

where α = diag{αi} as the Lyapunov candidate function.
According to Assumption 2, we obtain that −(x −

x∗)T [(∂fi/∂xi)(x)]vec ≤ −L‖x − x∗‖2. Therefore

V̇ = T(−γ ) − δ
(
x − x∗)T

[
∂fi
∂xi

(xi, y−i)

]

vec

= −γ ‖‖2 − δ
(
x − x∗)T

[
∂fi
∂xi

(x)

]

vec

− δ
(
x − x∗)T

[
∂fi
∂xi

(xi, y−i) − ∂fi
∂xi

(x)

]

vec

≤ −γ ‖‖2 − δL
∥
∥x − x∗∥∥2 + δl1

∥
∥x − x∗∥∥‖‖ (35)

where l1 = maxi∈N {l̄i}‖(L ⊗ IN×N + A0)
−1‖. Note that the

last term in the last inequality is obtained by the Lipschitz
condition of the gradient vectors and

y − 1N ⊗ x = (L ⊗ IN×N + A0)
−1(ρ + A01N ⊗ x) − 1N ⊗ x

= (L ⊗ IN×N + A0)
−1. (36)

Define δ∗ = [(4γ L)/l21]. Then, for each δ ∈ (0, δ∗)

V̇ ≤ −λmin(�)

∥
∥
∥
∥

[
T ,

(
x − x∗)T]T

∥
∥
∥
∥

2

(37)

where � =
[

γ − δl1
2

− δl1
2 δL

]

and λmin(�) > 0. Recalling the

definition of the Lyapunov candidate function, we conclude
that ‖[T(t), (x(t) − x∗)T ]T‖ → 0 as t → ∞, exponentially.
By further recalling the definition of , the conclusion can be
derived.

APPENDIX C
PROOF OF THEOREM 4

By the second equation in (13), we obtain that

N∑

k=1

aik
(
ẏij − ẏkj

) = −γ

N∑

k=1

aik
(
yij − ykj

) ∀i �= j. (38)

Moreover,
∑N

k=1 aik(yij − ykj), where i �= j, can be written as
∑N

k=1,k �=j aik(yij − ykj) + aij(yij − yjj), for all i �= j. Note that
yjj = xj by the third equation in (13).

Let G−i be the subgraph of G by removing node i and the
corresponding edges from G. Denote the Laplacian matrix
of G−i as L−i. Let Ls be a matrix whose diagonal blocks
successively are L−i, for i ∈ N (the other blocks are 0).
Moreover, let ȳ−i = [y1i, y2i, . . . , yi−1,i, yi+1,i, . . . , yNi]T and
define ys = [ȳT−1, ȳT−2, . . . , ȳT−N]T . Correspondingly, define As

as a diagonal matrix with its diagonal blocks successively
being Ai i ∈ N , in which Ai is a diagonal matrix whose diago-
nal entries are a1i, a2i, . . . , ai−1,i, ai+1,i, . . . , aNi, successively.
Then, the concatenated vector form of

∑N
k=1 aik(yij − ykj),

where i �= j, i ∈ N can be written as (Ls + As)(ys − xs),

where xs = [1T
N−1 ⊗ x1, 1T

N−1 ⊗ x2, . . . , 1T
N−1 ⊗ xN]T .

To establish the stability of the equilibrium under the closed-
loop system, define

V = 1

2
φTφ + 1

2

(
x − x∗)Tα−1(x − x∗) (39)

where φ = (Ls + As)(ys − xs). Then

V̇ = −γ ‖φ‖2 − δ
(
x − x∗)T

[
∂fi(x)

∂xi

]

vec

+ δ
(
x − x∗)T

[
∂fi(x)

∂xi
− ∂fi

∂xi
(xi, y−i)

]

vec
. (40)

By the Lipschitz condition in Assumption 1 and the strong
monotonicity condition in Assumption 2, we obtain that there
exists a positive constant l1 = maxi∈N {l̄i} such that

V̇ ≤ −γ ‖φ‖2 − δL
∥
∥x − x∗∥∥2 + δl1

∥
∥x − x∗∥∥‖y − 1N ⊗ x‖.

(41)

Noticing that from the third equation of (13) as well as the
definitions of ys and xs, we obtain that ‖y − 1N ⊗ x‖ = ‖ys −
xs‖. Therefore

V̇ ≤ −γ ‖φ‖2 − δL
∥
∥x − x∗∥∥2 + l1δ

∥
∥x − x∗∥∥‖ys − xs‖. (42)

Recalling the definition of φ, we obtain that

ys − xs = (Ls + As)
−1φ (43)

where we have utilized the conclusion that Ls+As is invertible
by Assumption 3 and [32, Lemma 4].
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Hence

‖ys − xs‖ ≤
∥
∥
∥(Ls + As)

−1
∥
∥
∥‖φ‖ (44)

and

V̇ ≤ −γ ‖φ‖2 − Lδ
∥
∥x − x∗∥∥2

+ l1δ
∥
∥
∥(Ls + As)

−1
∥
∥
∥
∥
∥x − x∗∥∥‖φ‖. (45)

Let δ∗ = ([4γ L]/[l21‖(Ls + As)
−1‖2]), then, for each δ ∈

(0, δ∗)

V̇ ≤ −λmin(B)‖[φT , x − x∗]T‖2 (46)

where

B =
⎡

⎣
γ − δl1‖(Ls+As)

−1‖
2

− δl1
∥
∥
∥(Ls+As)

−1
∥
∥
∥

2 δL

⎤

⎦

and λmin(B) > 0. Hence, ‖[φ(t)T , x(t)−x∗]T‖ → 0 as t → ∞,
exponentially thus arriving at the conclusion.
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