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Abstract
This paper studies the fixed-time stability problem for positive nonlinear systems defined by cooperative vector fields. A criterion is derived to ensure

fixed-time stabilization of the positive nonlinear systems using Lyapunov method. In addition, a sufficient condition is also presented for fixed-time stabi-

lity of switched positive nonlinear systems under arbitrary switching. Simulation examples are provided to demonstrate the obtained results.
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Introduction

Many real-world systems in areas such as biology, physiol-

ogy, ecology, economics, population dynamics and communi-

cations involve physical quantities that stay within the

positive orthant. Such systems whose states should be always

nonnegative, if started from nonnegative initial conditions,

are commonly referred to positive systems. Multi-agent sys-

tems of single or double integrators are good examples of

positive systems (Ma et al., 2019; Ren et al., 2007; Valcher

and Misra, 2014; Zhu et al., 2018). Stability is an important

property of positive systems and has been extensively investi-

gated. There are abundant results available in the literatures

for the stability of positive linear systems (Farina and

Rinaldi, 2011; Liu et al., 2010; Sun, 2016; Sun et al., 2017). It

is well known that nonlinearity is ubiquitous in many practi-

cal systems and the nonlinearity makes system analysis more

difficult (Chang et al., 2018, 2019; Xia et al., 2018b, 2019). It

is natural to extend the properties of positive linear systems

to positive nonlinear systems. In Mason and Verwoerd

(2009), the authors extended two fundamental properties to

homogeneous cooperative positive nonlinear systems. In

Feyzmahdavian et al. (2014b), a necessary and sufficient con-

dition was obtained for exponential stability of homogeneous

cooperative positive systems composed of two homogeneous

nonlinear parts of degree one. In Feyzmahdavian et al.

(2014a) and Dong (2015), the authors extended the work in

Feyzmahdavian et al. (2014b) to homogeneous cooperative

systems with any homogeneous degree. In Bokharaie et al.

(2011), some results on stability of homogeneous systems

were extended to subhomogeneous systems. In reality, many

dynamic systems can be modeled as switched systems (Li

et al., 2018; Liu et al., 2018 ; Xie et al., 2019; Zheng et al.,

2018). Thus, stability of positive switched nonlinear systems

also attracts a lot of attention. In Liu (2015), the author

investigated the stability problem for nonlinear positive

switched systems with delays. In Dong (2016), a sufficient

and necessary condition was derived for exponential stability

of switched homogeneous cooperative systems with degree

one under the average dwell time switching.
Finite-time stability means that the system trajectories con-

verge to the equilibrium within finite time, which has been

extensively studied (Bhat and Bernstein, 2000; Gao et al.,

2015; Liu et al., 2019; Qi and Gao, 2016; Shen and Wang,

2017; Xia et al., 2018a; Zheng and Wang, 2012; Zheng et al.,

2014). In Qi and Gao (2016), by using a co-positive Lyapunov

function method, sufficient conditions were obtained for

finite-time stability of positive switched systems with time

delays. In Shen and Wang (2017), finite-time L1 control was

investigated for positive Markovian jump systems. In Liu

et al. (2019), finite-time stability was studied for nonlinear

impulsive positive switched systems in use of average dwell

time technique. For a finite-time stable system, if the conver-

gence time of the system is independent of the initial states,

the system is said to be fixed-time stable. So, when the initial

state of a fixed-time stable system is unknown, the conver-

gence time can be obtained in advance. Actually, in many

practical applications, it is often hard for us to get the initial

states of systems. Thus, compared with the finite-time stabi-

lity, the fixed-time stability is more meaningful. Fixed-time
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stability was first discovered in Andrieu et al. (2008). In

Polyakov (2012), the authors obtained a Lyapunov sufficient

condition for fixed-time stability of nonlinear systems. In

Polyakov et al., (2015), Implicit Lyapunov Function method

was developed for fixed-time stability analysis. In Yu et al.

(2019), the authors extended some results of fixed-time stabi-

lity for deterministic systems to stochastic systems. However,

to the best of our knowledge, there are no literature consider-

ing the fixed-time stability of positive systems, which will be

the subject of this paper. Different from the positive systems

in Feyzmahdavian et al. (2014a, 2014b) and Dong (2015), the

system in this paper is composed of two homogeneous non-

linear parts of different degree. Thus, the system is nonhomo-

geneous, which undoubtedly increases the difficulty of

analysis. Using Lyapunov function method, we derive a suffi-

cient condition for fixed-time stability. In addition, we con-

sider the fixed-time stability of switched positive nonlinear

systems under arbitrary switching. The numerical simulations

are given to demonstrate the obtained results.
The rest of this paper is organized as follows. First, some

mathematical preliminaries are presented. Some sufficient

conditions on fixed-time stability are next established. Two

examples are then given to demonstrated the obtained results.

Finally, a conclusion is given.

Notation

Let R and Rn denote the set of real numbers and n-dimen-

sional real vectors, respectively, In = f1, 2, . . . , ng . For a

vector x 2 Rn, xi denotes the i th coordinate of x . Rn
þ

denotes the set of all vectors in Rn with nonnegative entries,

i.e., Rn
þ= x 2 Rn : xi ø 0, i 2 Inf g. For vectors x, y 2 Rn,

x ø y(x?y) means xi ø yi xi . yið Þ for i 2 In; x . y means that

x ø y and x 6¼ y. For a matrix A= aij

� �
n 3 n

, if aij ø 0 for every

i 6¼ j, the matrix A is said to be Metzler. For a continuous

function f : R! R, the upper-right Dini derivative of is

defined as D+f (t)jt= t0
= lim sup

D!0+

f t0 +Dð Þ�f t0ð Þ
D

.

Preliminaries

Consider the system

_x(t)= f (x(t)) ð1Þ

where x(t) 2 Rn is the system state and f (�) : Rn ! Rn is a non-

linear function. For convenience, we use 0 and x0 to denote

the initial time and the initial state of system (1), respectively.

X t, x0ð Þ denotes the solution of system (1) with the initial state

x0 . We say that system (1) is positive if for 8x0 2 Rn
þ, the cor-

responding solution X t, x0ð Þ 2 Rn
þ, 8t ø 0.

In the following, some definitions and a lemma to be used

are listed:

Definition 1: (Bhat and Bernstein, 2000) The origin of the sys-

tem (1) is globally finite-time stable if it is globally asymptoti-

cally stable and there exists a function T x0ð Þ : Rn
þ ! Rþ such

that X t, x0ð Þ= 0,8t ø T x0ð Þ . The function T x0ð Þ is called the

settling time function.

Definition 2. (Polyakov et al., 2015) The origin of the system
(1) is globally fixed-time stable if it is globally finite-time sta-

ble and there exists a constant Tmax . 0 such that
T x0ð Þł Tmax for all x0 2 Rn

þ.

Definition 3. (Smith, 2008) A vector field f : Rn ! Rn, which
is continuously differentiable on Rnnf0g, is said to be coop-
erative if the Jacobian matrix (∂f =∂x)(a) is Metzler for all
a 2 Rn

þnf0g.

Lemma 1. (Smith, 2008) Let f be a cooperative vector field.
For 8x, y 2 Rn

þnf0g satisfying x ø y and xi = yi, it has
fi(x)ø fi(y).

Definition 4: (Feyzmahdavian et al., 2014a) A vector field
f : Rn ! Rn is homogeneous of degree a . 0 if f (lx)= laf (x)
for 8x 2 Rn and 8l . 0.

Main results

In this paper, we first consider the following nonlinear system

_x(t)= f (x(t))+ g(x(t)) ð2Þ

where x(t) 2 Rn is the system state, nonlinear functions
f (�), g(�) : Rn ! Rn are continuous on Rn and continuous differ-
entiable on Rnnf0g, which implies that there exists a unique

solution of system (2) for any x0 2 Rn
þ . In addition, we

assume that f (�) and g(�) satisfy the following assumption.

Assumption 1: The following properties hold:

(1) f (�) and g(�) are cooperative;
(2) f (�) is homogeneous of degree a and g is homogeneous

of degree b.

Remark 1: It is shown in Smith (2008) that cooperative sys-
tems are monotone. Formally, for system (1), if f is coopera-
tive on Rn, then x0 ł y0, x0, y0 2 Rn

þ, implies X t, x0ð Þł X t, y0ð Þ
for all t ø 0. Since f and g are cooperative, it is easy to have
that system (2) is a cooperative system. The homogeneity of f
and g implies that f (0)= 0 and g(0)= 0 . Hence, it has
X (t, 0)= 0 in system (2). Using the monotonicity of the coop-
erative system, it follows that the solutions of system (2) sat-

isfy that X (t, 0)ł X t, x0ð Þ for 8x0 2 Rn
þ, that is system (2) is

positive. Throughout this paper, we always assume that the
initial conditions of system (2) are nonnegative.

Theorem 1: Consider the system (2) under Assumption 1. If
0\a\1, b > 1 and 9v� 0 such that f ðvÞ � 0 and
gðvÞ � 0, the system (2) is globally fixed-time stable.

Proof: Take the Lyapunov function

V (x(t))= max
i2I n

xi(t)

vi

,

where vi is the ith coordinate of v.
Let the index s 2 In be such that V (x(t))= xs(t)

vs
.

Obviously, s can be the function of t. Note that x(t)ł V (x(t))v
and xs(t)=V (x(t))vs.

From Assumption 1 and Lemma 1, we have

fs(x(t))ł fs(V (x(t))v)=V a(x(t))fs(v),
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and

gs(x(t))ł gs(V (x(t))v)=V b(x(t))gs(v):

It follows from the above two inequalities that

_xs(t)

vs

=
fs(x(t))+ gs(x(t))

vs

n ł
fs(v)

vs

V a(x(t))+
gs(v)

vs

V b(x(t)):

Since f ðvÞ � 0 and gðvÞ � 0, it has

_xs(t)

vs

ł � hV a(x(t))� gV b(x(t)),

where h= �max
i2I n

fi(v)
vi

. 0 and g = �max
i2In

gi(v)
vi

. 0:

Thus, we obtain that

D+V (x(t))ł � hV a(x(t))� gV b(x(t)):

From the above inequality, it is obvious that

D+V (x(t))ł � hV a(x(t)) and D+V (x(t))ł � gV b(x(t)).

Hence, V (x(0))ø 1, from D+V (x(t))ł � gV b(x(t)), it has

V (x(t))= 1 for t ø
Ð V (x(0))

1
1

gV b(x(t)) dV = 1
g(b�1)�

V 1�b(x(0))
g(b�1) ø

1
g(b�1) : If V (x(0))ł 1, from D+V (x(t))ł � hV a(x(t)), we have

V (x(t))= 0 for t ø
Ð V (x(0))

0
1

hV a(t)dV = V 1�a(x(0))
h(1�a) .

It follows from V (x(0))ł 1 that V 1�a(x(0))
h(1�a) ł 1

h(1�a). Thus, we

have that V (x(t))= 0 for t ø 1
h(1�a) +

1
g(b�1), that is the system

(2) is globally fixed-time stable with Tmax =
1

h(1�a) +
1

g(b�1).

Remark 2: Since 0 \ a \ 1 and b ø 1 in Theorem 1, system

(2) is nonhomogeneous. Except this case, similar to the

deduce in Theorem 1, we can get that if a, b ø 1, system (2)

is globally asymptotically stable and if 0 \ a, b \ 1, system

(2) is globally stable in finite time.

Remark 3: Note that if a = b, system (2) is a homogeneous

cooperative system. Thus, according to Theorem 3.3 in

Feyzmahdavian et al. (2014b), the positive system (2) is

asymptotically stable if and only if there exists a vector v?0

such that f ðvÞ þ gðvÞ � 0. However, this condition is not

sufficient for f and g of different homogeneity degree, which

is demonstrated in Example 2.
Next, we will consider the fixed-time stability problem for the

following switched positive nonlinear system

_x(t)= fs(t)(x(t))+ gs(t)(x(t)), ð3Þ

where x(t) 2 Rn is the system state and s(t) : ½0, +‘)! IN is

the switching signal, which is a piecewise constant and right

continuous function. IN is an index set and stands for the col-

lection of subsystems. We denote the switching times by

0= t0\t1\t2\ � � �\tk\ � � � . To avoid Zeno phenomena,

we assume that there exists a constant t . 0, such that

ts+ 1 � ts . t . For every p 2 IN , fp(�) and gp(�) are assumed to

be continuous on Rn and continuous differentiable on Rnnf0g.
We further assume that fp(�) and gp(�) satisfy the following

condition.

Assumption 2: The following properties hold:

(1) fp(�) and gp(�) are cooperative;
(2) fp(�) is homogeneous of degree ap and gp(�) is homoge-

neous of degree bp.

Theorem 2: Consider the switched system (3) under assump-
tion 2. If 0\ap\1,bp . 1 for 8p 2 IN and 9v?0 such that

f pðvÞ � 0 and gpðvÞ � 0, the switched system (3) is globally
fixed-time stable under arbitrary switching.

Proof: Take V (x(t))= max
i2I n

xi(t)
vi

as the common Lyapunov

function. Consider an interval ½tk , tk + 1), k ø 0, on which
s(t)= p. Similar to the deduce in Theorem 1, we have

D+VðtÞł � hðVðtÞÞap � gðV ðtÞÞbp ; where h= � max
p2IN , i2I n

fpi(v)

vi
and g = � max

p2IN , i2In

gpi(vp)

vi
. Thus, we can obtain that

V (x(t))= 0 for t ø 1
h(1�amax)

+ 1
h(bmin�1), where amax = max

p2IN

ap

and bmin = min
p2IN

bp, that is the system (3) is globally fixed-

time stable at the origin.

Numerical simulations

In this section, three examples are given to demonstrate the
obtained results in this paper.

Example 1: Consider the system (2) with the following non-
linear functions

f (x)=
(x2

1 + x2
2)

1
4 � (3x2

1 + x2
2)

1
4

(x2
1 + x2

2)
1
4 � (x2

1 + 2x2
2)

1
4

" #
,

g(x)=
�2x2

1 + x2
2

2x2
1 � 3x2

2

� �
:

We can see f and g are homogeneous with degree

a= 1
2

and b= 2: Note that

∂f =∂x= 1
2

� x2(x
2
1 + x2

2)
�3

4 � x2(3x2
1 + x2

2)
�3

4

x1(x
2
1 + x2

2)
�3

4 � x1(x
2
1 + 2x2

2)
�3

4 �

 !

and ∂g=∂x=
� 2x2

4x1 �

� �
: According to Definition 3, f and g

are also cooperative. Since a 6¼ b, system (2) is nonhomoge-

neous. Moreover, there exists a vector s= ½1, 1�T such that

f (s)= ½�0:4142, � 0:3161�T and g(s)= ½�1, � 1�T . Thus, we
get h= 0:1269 and g = 1. Then, it follows from Theorem 1
that the positive system (2) is fixed-time stable with
Tmax = 16:7604 . Figure 1 shows the simulation results.

Example 2: If g(x) in Example 1 is as follows

g(x)= 0:1
x3

2

x3
1

" #
:

We can see f and g are cooperative and homogeneous. Note
the function g is also nondecreasing, that is g(x)ø g(y) for
8x, y 2 Rn

þ such that x ø y . If g has the same homogeneity

Zhu et al. 3



degree with f, the authors in Feyzmahdavian et al. (2014a)
pointed out that the system is stable if and only if there exists
a vector v� 0 such that f (v)+ g(v)� 0 . In this example,

there exists a vector s= ½1, 1�T such that
f (s)+ g(s)= ½�0:1250, � 0:0269�T , but f and g are of differ-
ent homogeneity degree. Take the initial condition
x0 = ½1, 2�T and the simulation result is shown in Figure 2.
We can see that the system is unstable. Thus, the condition
f ðvÞ þ gðvÞ � 0 is not sufficient when f and g are of differ-
ent homogeneity degree.

Example 3: Consider the switched system (3) with the follow-
ing nonlinear functions

f1(x)=
(x2

1 + x2
2)

1
4 � (5x2

1 + x2
2)

1
4

(x2
1 + x2

2)
1
4 � (x2

1 + 2x2
2)

1
4

" #
,

g1(x)=
�2x2

1 + x2
2

2x2
1 � 3x2

2

� �
,

f2(x)=
(2x2

1 + x2
2)

1
3 � (4x2

1 + x2
2)

1
3

(x2
1 + x2

2)
1
3 � (x2

1 + 2x2
2)

1
3

" #
,

and

g2(x)=
�2x3

1 + x3
2

x3
1 � 3x3

2

� �
:

It is easy to verify that f1, g1, f2 and g2 are cooperative

and homogeneous with degrees a1 =
1
2
,

b1 = 2,a2 =
2
3
,b2 = 3, respectively. Thus, amax =

2
3

and

bmin = 2 . Moreover, there exists a vector s= ½1, 1�T such that

f1(s)= ½�0:2250, � 0:1269�T , g1(s)= ½�1, � 1�T , f2(s)=

½�0:3759, � 0:1823�T and g2(s)= ½�1, � 2�T . By simple cal-
culation, we get h= 0:1269 and g = 1 . According to
Theorem 2, the positive system (3) is fixed-time stable with
Tmax = 24:6407 . For simplicity, we assume the two subsys-
tems are switched alternately with the same duration time.

The state trajectories of the system with x0 = ½1, 2�T are
depicted in Figure 3.

Conclusions

This paper derives a fixed-time stability condition for positive
nonlinear systems. Different from existing works, the non-

linear system is composed of two parts of different homogene-

ity degree. In addition, a sufficient condition is presented for
the fixed-time stability of switched positive systems. We also

give some examples to demonstrate the results obtained in this

paper. It will be interesting to consider the stability conditions
for the positive systems proposed here with time delays.
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