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a b s t r a c t 

Winner-take-all competition exists widely in nature and has been applied in many engineering fields. This 

paper mainly investigates a group of heterogeneous dynamic agents, which produce the winner-take-all 

competition. For the heterogeneous system consisting of first- and second-order dynamic agents, we pro- 

pose two different kinds of protocols with and without velocity measurements, respectively. Firstly, we 

employ the Lasalle’s invariant principle to solve the equilibrium points of the proposed system. Secondly, 

we prove that the proposed protocols can solve the winner-take-all problems for the heterogeneous sys- 

tems. The results reveal that winner is independent from the dynamics of agents, but is determined by 

inputs. Finally, some examples are also gave to verify the validity of the proposed protocols. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Swarm behaviour exists widely in nature, such as birds migra-

ion, ants move, the territory rivalry of wolves. Interaction of com-

lex intra-personal and inter-personal forces operating in a swarm

hich determine the swarm’s development, character and long-

erm survival. Inspired by the swarm behavior of biosystem, more

nd more researchers are paying attention to swarm behaviour and

rying to apply it in industry systems. The classical topics of swarm

ehaviour mainly focus on consensus [1] , formation [2] , flocking

3] , containment [4] , winner-take-all [5] , etc. 

Winner-take-all competition [6] is one of the foundational

otka-Volterra models, it is motivated by the competition observed

nd lateral inhibition among neurons in the brain [7] . In nature,

inner-take-all phenomenon can be seen everywhere, for exam-

les, the dominant growth of the central stem over others [8] ,

oraging behavior and mating behavior [9] , competitive decision-

aking behavior in the cerebral cortex [10] . Winner-take-all has

lso been applied in many engineering fields, especially integrated

ircuit [11,12] . Up to now, many models are presented by re-

earchers to explain the winner-take-all phenomenon. Kevin et al.

13] proposed a kind of DNA-based winner-take-all multiple agents

ystem which can scale up molecular pattern recognition. In [14] ,

aski and Kohonen studied a winner-take-all competition with less

han ten neurons. They derived exact formulas for the optimal
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arameters of winner-take-all model, such that their robustness

ith respect to the simplified structure are maximum. By intro-

ucing a clipped total feedback, Andrew [15] improved the robust-

ess of the model in [14] , and it also increased the number of

eurons in the aforesaid model. In [16] , Fukai and Tanaka used

otka–Volterra competitive model to solve winner-take-all prob-

em. In [17] , Zhang et al. considered the stability problem for

otka–Volterra model with delays, and obtained some criteria for

ondivergence of the networks. Moreover, they also studied the

lobal convergence problem for Lotka–Volterra model with vari-

ble delays in [18] . In [19] , Li et al. proposed a cluster of first-order

ontinuous-time agents, and proved the convergence analytically.

inner-take-all competition with discrete-time dynamics was also

onsidered in [20] . 

In the past several years, swarm behaviour with first-order dy-

amic agents [21–26] or second-order dynamic agents [27–29] is

tudied by lots of researchers. However, the agents’ dynamics are

ot necessarily same in actual systems. For instance, in view of un-

ertainty external and dynamic environments to the system which

onsist of many robots, homogeneous systems are not as practi-

al as heterogeneous systems including robots with different abil-

ties and structures in the real world [30] . Hence, many interests

re focusing on heterogeneous dynamic agents. In [31–33] , Zheng

t al. considered the asymptotic/finite-time consensus problem of

eterogeneous dynamic agents, respectively. In [34] , Chen et al.

nvestigated the flocking behavior and targets consensus tracking

roblems of heterogeneous multiple inertial agents with limited

ommunication ranges. In [4] , Zheng and Wang studied the con-

ainment problem for heterogeneous dynamic agents. As is well
ake-all competition with heterogeneous dynamic agents, Neuro- 
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know, heterogeneity means hybrid in natural and artificial systems.

In [35–37] , Zheng et al. presented the hybrid multi-agent sys-

tems which composed of discrete- and continuous-time dynamic

agents. Some meaningful interaction protocols were designed for

the hybrid multi-agent systems. By using the system transforma-

tion method, graph theory, game theory and matrix theory, the

consensus criteria were also obtained respectively. 

Up to now, most of the existing results of winner-take-all were

formulated by first-order dynamic agents [14–20] . However, dif-

ferent types of agents may interact with each other in practice.

For instance, agents with various dynamics can cooperate or com-

pete with each other. Consequently, we consider the winner-take-

all problem for the system with heterogeneous dynamic agents.

In order to solve the winner-take-all problem for the system with

heterogeneous dynamic agents, the protocols with/without velocity

information are proposed, respectively. Owing to the nonlinearity

of designed protocols, it makes the difficulty of convergence anal-

ysis. By using the Lasalle’s invariant principle, we obtain the equi-

librium points of this heterogeneous system. Then, we prove the

stability of winner-take-all solution and the instability of non-

winner-take-all solutions. The main contributions of this paper

concentrate on three aspects. Firstly, we present two types of non-

linear protocols which can solve the winner-take-all problem for

the system with heterogeneous dynamic agents. Secondly, we use

Lasalle’s invariant principle and Lyapunovs indirect method to an-

alyze the stability of the proposed nonlinear system. Last but not

the least, we find that the winner is the agent with the maximal

input. This fact implies that the winner is determined only by the

size of the inputs, not by the dynamic of the agent itself. 

An outline of this paper is shown as follows. We formulate the

heterogeneous dynamic agents to be investigated, and introduce

some related conceptions and key lemma in Section 2 . In Section 3 ,

we propose a kind of protocol with velocity measurements, and

further prove that the heterogeneous dynamic agents can perform

winner-take-all function. In Section 4 , we solve the winner-take-all

problem of heterogeneous dynamic agents without velocity mea-

surements. In Section 5 , some examples are given to verify the ef-

fectiveness of our results. Section 6 is a brief conclusion. 

Notation: Throughout this paper, we let R , R 

n respectively de-

notes the set of real number, the n × n real vector space. I n =
{ 1 , 2 , . . . , n } , and I n / I m 

= { m + 1 , m + 2 , . . . , n } . E n denotes the

n × n identity matrix. For a given matrix or vector X , we write X 

T 

for transpose, || X || for the 2-norm of X . diag( X ) for the diagonal

matrix with the vector X on its diagonal and all non-diagonal el-

ements being zero. Let e i be the canonical vector with a 1 on its

i -th entry and all the other elements being 0. R e z is a real part of

complex variable z . argmax 
x 

( f (x )) stands for the argument of the

maximum, i.e. argmax 
x 

( f (x )) = { x | ∀ y : f (y ) ≤ f (x ) } . 

2. Preliminaries 

We introduce the concept of winner-take-all competition for a

group of heterogeneous dynamic agents and the related theoretical

results which will be used in the proof of winner-take-all compe-

tition problem in this section. 

Firstly, we give the definition of winner-take-all competition. 

Definition 1. The winner is the agent which keep active all the

time, while the remaining agents eventually lose activity to reach

zero. 

Consider a heterogeneous group of agents, which contains

m second-order dynamic agents and n − m first-order dynamic

agents. Without loss of generality, we suppose that agent 1 ~ m

are second-order dynamic agents. Thus, the heterogeneous agents’
Please cite this article as: Q. Zhao, Y. Zheng and J. Ma et al., Winner-

computing, https://doi.org/10.1016/j.neucom.2019.09.038 
ynamics are described as follows 
 

˙ p i = q i , i ∈ I m 

, 

˙ q i = u i , i ∈ I m 

, 

˙ p i = u i , i ∈ I n / I m 

, 

(1)

here p i ∈ R , q i ∈ R and u i ∈ R denotes the position-like, velocity-

ike and protocols of the agent i , respectively. The initial status of

he agent i are p i (0) and q i (0). We let P = (p 1 , p 2 , . . . , p n ) 
T , Q =

(q 1 , q 2 , . . . , q m 

) T . 

Secondly, we introduce the Lasalles invariant principle and Lya-

unovs indirect method. 

Consider the autonomous nonlinear system 

˙ 
 = f (x ) , (2)

here f : S → R 

n is continuously differentiable with S ⊂ R 

n . 

emma 1 [4] . Let � ⊂ S be a positively invariant compact set with

espect to (2) . Let V : S → R 

n be a continuously differentiable function

hich satisfy ˙ V (x ) ≤ 0 in � . Let F be the set of all points in � which

atisfy ˙ V (x ) = 0 . Let K be the largest invariant set in F. Then every

olution starting in � approaches K as t → ∞ . 

emma 2 [38] . Assume that x = x 0 is an equilibrium point of system

2) and S is a neighborhood of this equilibrium point. Let 

 = 

∂ f 

∂x 
(x ) | x = x 0 . 

1) If R e λi < 0 for all eigenvalues of A, then we have the equilibrium

oint x = x 0 is asymptotically stable; 

(2) If R e λi > 0 for one or more of the eigenvalues of A, then we

ave the equilibrium point x = x 0 is unstable. 

. Protocol with velocity measurements 

In this section, we present a kind of protocol for system (1) ,

n which the position-like and velocity-like information can be

btained at the any time. Then we prove that (1) can perform

inner-take-all competition under this protocol, and the agent

ith the maximal input wins the competition. The protocol is

iven as 

u i = (h i − || P || 2 ) p i − k 1 q i , i ∈ I m 

, 

u i = (h i − || P || 2 ) p i , i ∈ I n / I m 

, 
(3)

here h i > 0 is the input of agent i, k 1 > 0 is feedback gain. 

emark 1. According the protocol (3) , we know that every agent

an get its own information of position, input and velocity directly.

owever, || P || 2 = p 1 
2 + p 2 

2 + · · · + p n 
2 needs the information of all

he agents of system (1) at any time t ( Fig. 1 ). Winner-take-all

ompetition among the agents with heterogeneous dynamics can

merge only if every agent i can get it’s own information and the

lobal statistic || P || 2 . 

ssumption A1: Assume that k ∗ = argmax 
i 

(h i ) , and ∀ i 	 = k ∗, i ∈ I n ,

e all have h k ∗ > h i . 

heorem 1. Suppose that A1 holds. Then, the system (1) can achieve

inner-take-all competition with protocol (3) for any initial con-

itions. Moreover, the solution of winner k ∗ approaches (p ∗e , q ∗e ) =
( 
√ 

h k ∗ , 0) or (−
√ 

h k ∗ , 0) and all other agents approaches (p e , q e ) =
(0 , 0) as t → ∞ . 

roof. It follows from (1) and (3) that 
 

˙ p i = q i , i ∈ I m 

, 

˙ q i = (h i − || P || 2 ) p i − k 1 q i , i ∈ I m 

, 

˙ p i = (h i − || P || 2 ) p i , i ∈ I n / I m 

. 

(4)
take-all competition with heterogeneous dynamic agents, Neuro- 
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Fig. 1. Information stream with heterogeneous dynamic agents. 
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We rewrite (4) in matrix form as follows 
 

 

 

˙ P 1 = Q, 

˙ Q = (H 1 − || P || 2 E m 

) P 1 − k 1 Q, 

˙ P 2 = (H 2 − || P || 2 E n −m 

) P 2 , 

(5) 

here P 1 = (p 1 , p 2 , . . . , p m 

) T , P 2 = (p m +1 , p m +2 , . . . , p n ) 
T ,

 = (q 1 , q 2 , . . . , q m 

) T , H 1 = diag (h 1 , h 2 , . . . , h m 

) , and H 2 =
iag (h m +1 , h m +2 , . . . , h n ) . 

We assume that V 1 = − 1 
2 P 

T HP + 

1 
4 || P || 4 + 

1 
2 || Q|| 2 , where H =

iag (h 1 , h 1 , . . . , h n ) . For V 1 , we have 

˙ 
 1 = −P T H 

˙ P + || P || 2 P T ˙ P + Q 

T ˙ Q 

= −P T 1 H 1 
˙ P 1 − P T 2 H 2 

˙ P 2 + || P || 2 P T 1 
˙ P 1 + || P || 2 P T 2 

˙ P 2 + Q 

T ˙ Q 

= −P T 1 H 1 Q + || P || 2 P T 1 Q + Q 

T ((H 1 − || P || 2 E m 

) P 1 − k 1 Q ) 

+ P T 2 (|| P || 2 E n −m 

− H 2 ) ˙ P 2 

= −k 1 Q 

T Q − ˙ P 2 
T 

˙ P 2 ≤ 0 . (6) 

ccording to Lemma 1 , we can know that the solutions of ˙ V 1 = 0

re the equilibrium points of system (1) under protocol (3) . When
˙ 
 1 = 0 , we can get Q = 0 m ×1 and 

˙ P 2 = 0 (n −m ) ×1 . Together with (5) ,

e have 
 

 

 

 

 

˙ P 1 = 0 m ×1 , 

˙ Q = (H 1 − || P || 2 E m 

) P 1 = 0 m ×1 , 

˙ P 2 = (H 2 − || P || 2 E n −m 

) P 2 = 0 (n −m ) ×1 . 

(7) 

The solutions of (7) are 

{
P e = 0 n ×1 

Q e = 0 m ×1 

and 

{
P e = ±

√ 

h i e i 
Q e = 0 m ×1 

, i ∈ I n .

s a result, the equilibrium points of the nonlinear system (5) are

( 
P e 
Q e 

) = ( 
0 n ×1 

0 m ×1 

) and ( 
±
√ 

h i e i 

0 m ×1 

) , i ∈ I n . 

In what follows, we analyze the stability of all equilibrium

oints. According to Lemma 2 , we linearize the system (5) at the

quilibrium point ( 
P e 
Q e 

)= 
(

0 n ×1 

0 m ×1 

)
as ˙ X = A 1 X, where 

 1 = 

( 

0 E m 

0 

H 1 −k 1 E m 

0 
0 0 H 2 

) 

. (8) 

t is easy to known that h m +1 , h m +2 , . . . , h n are positive eigenval-

es of A 1 . Therefore, we have conclude that the equilibrium point

P e 
)

= 

(
0 n ×1 
0 m ×1 

)
is unstable. 
Q e 

Please cite this article as: Q. Zhao, Y. Zheng and J. Ma et al., Winner-t

computing, https://doi.org/10.1016/j.neucom.2019.09.038 
For the equilibrium point 

⎛ ⎜ ⎝ 

P e 
Q e 

⎞ ⎟ ⎠ 

= 
( √ 

h i e i 
0 m ×1 

) 

, i ∈ I n , the lineariza-

ion expression of nonlinear system (5) is ˙ X = A 2 X, where 

 2 = 

( 

0 E m 

0 

B 1 −k 1 E m 

0 
0 0 B 2 

) 

, (9) 

here B 1 = H 1 − 2 P e 1 P 
T 
e 1 − || P e || 2 E m 

, B 2 = H 2 − 2 P e 2 P 
T 
e 2 −| P e || 2 E n −m 

, P e 1 is a vector consisting of the first m elements

f vector P e , P e 2 is a vector consisting of the latter n − m el-

ments of vector P e . Obviously, the eigenvalues of A 2 are all

he eigenvalues of 
( 0 E m 

B 1 −k 1 E m 

)
and the eigenvalues of B 2 . The

igenpolynomial of 
( 0 E m 

B 1 −k 1 E m 

)
is ∣∣∣∣∣λE 2 m 

−
( 

0 E m 

B 1 −k 1 E m 

) 

∣∣∣∣∣ = 

∣∣∣∣λE m 

−E m 

−B 1 (λ + k 1 ) E m 

∣∣∣∣
= | λ2 E m 

+ λk 1 E m 

− B 1 | = 0 . (10) 

ince λ2 E m 

+ λk 1 E m 

− B 1 is a diagnal matrix, all eigenvalues of

0 E m 

B 1 −k 1 E m 

)
are the roots of equations λ2 + k 1 λ − (B 1 ) ii = 0 , i ∈

 m 

, where ( B 1 ) ii is the i th diagonal entry of B 1 . Suppose λ1 i and

2 i are the roots of equation λ2 + k 1 λ − (B 1 ) ii = 0 . The equilibrium

oint 
(P e 

Q e 

)
= 

(√ 

h i e i 
0 m ×1 

)
is stable only if λ1 i < 0 and λ2 i < 0. According

o Vieta’s theorem, we have λ1 i · λ2 i = −(B 1 ) ii , λ1 i + λ2 i = −k 1 . Due

o k 1 > 0, we obtain that λ1 i < 0 and λ2 i < 0 if and only if ( B 1 ) ii < 0

or i ∈ I m 

. 

Because B 2 is a diagonal matrix, elements of main diagonal are

he eigenvalues of B 2 . The equilibrium point 
(P e 

Q e 

)
= 

(√ 

h i e i 

0 m ×1 

)
is stable

nly if the eigenvalues of B 2 are all negative, i.e. ( B 2 ) ii < 0 for i ∈
 n / I m 

. 

From the above analysis, we know that the equilibrium point

P e 

Q e 

)
= 

(√ 

h i e i 

0 m ×1 

)
is stable if and only if the main diagonal entry of

 1 and B 2 are all negative. It is not difficult to find that the main

iagonal entry of B 1 and B 2 are all negative if and only if the main

iagonal entry of H − 2 P e P 
T 
e − || P e || 2 E n are all negative. Since 

 − 2 P e P 
T 
e − || P e || 2 E n 

= 

1 2 · · · i · · · n 

1 

2 

. . . 
i 
. . . 
n 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

h 1 − h i 

0 

. . . 
0 

. . . 
0 

0 

h 2 − h i 

. . . 
0 

. . . 
0 

· · ·
· · ·
. . . 

· · ·

· · ·

0 

0 

. . . 
−2 h i 

. . . 
0 

· · ·
· · ·

· · ·
. . . 

· · ·

0 

0 

. . . 
0 

. . . 
h n − h i 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

(11) 

its j th eigenvalue is h j − h i for i 	 = j , and −2 h i for i = j. It is easy

o figure out that −2 h i < 0 always holds. When i 	 = j , we can figure

ut that h j − h i < 0 holds if and only if i = k ∗. Therefore, we can

onclude that the equilibrium point 
(P e 

Q e 

)
= 

(√ 

h k ∗ e k ∗
0 m ×1 

)
is stable, and

ll other equilibriums are unstable. 

The proof of stability at the equilibrium point 
(P e 

Q e 

)
= 

(−
√ 

h i e i 

0 m ×1 

)
,

 ∈ I n , can be obtained in a similar way. Therefore, we omit it here.

Hence, the evolution of heterogeneous dynamic agents system

1) with protocol (3) is that the k ∗th agent asymptotically reach

(p ∗e , q ∗e ) = ( 
√ 

h k ∗ , 0) or (p ∗e , q ∗e ) = (−
√ 

h k ∗ , 0) , and all other agents

symptotically reach (p e , q e ) = (0 , 0) as t → ∞ . �
ake-all competition with heterogeneous dynamic agents, Neuro- 
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Remark 2. This paper considers the winner-take-all problem for

the system with heterogeneous dynamic agents. The difference be-

tween our paper and [19] is that our system includes both first-

and second-order dynamic agents, while the system in [19] in-

cludes only first-order dynamic agents. For the scenario of m = 0 ,

all agents of this system are first-order dynamics, where our result

in Theorem 1 is consistent with Theorem 1 in [19] . 

Remark 3. By comparing our results with the results in [19] , we

know that the winner is independent from the dynamics of the

agent — the winner is still the largest-input agent. That is to say,

the winner is determined not by dynamic structure, but by the

amount of inputs. 

4. Protocol without velocity measurements 

In this section, a kind of protocol is proposed for the hetero-

geneous dynamic agents (1) without velocity-like measurements.

Consider the following protocol {
u i = (h i − || P || 2 ) p i + k 2 ̂  q i , i ∈ I m 

, 

u i = (h i − || P || 2 ) p i , i ∈ I n / I m 

, 
(12)

where ˙ ̂ q i = (h i − || P || 2 ) p i − k 3 ̂  q i , h i > 0 is the input of agent i, k 2 ,

k 3 > 0 is feedback gains. 

Theorem 2. Suppose that A1 holds. Then, the system (1) with proto-

col (12) can emerge winner-take-all competition for any initial con-

ditions. Moreover, the winner k ∗ approaches (p ∗e , q ∗e ) = ( 
√ 

h k ∗ , 0) or

(−
√ 

h k ∗ , 0) and all other agents reach (p e , q e ) = (0 , 0) as t → ∞ . 

Proof. From (1) and (12) , we get ⎧ ⎪ ⎨ ⎪ ⎩ 

˙ p i = q i , i ∈ I m 

, 

˙ q i = (h i − || P || 2 ) p i + k 2 ˙ ̂ q i , i ∈ I m 

, 

˙ p i = (h i − || P || 2 ) p i , i ∈ I n / I m 

. 

(13)

Let P 1 = (p 1 , p 2 , . . . , p m 

) T , P 2 = (p m +1 , p m +2 , . . . , p n ) 
T , Q =

(q 1 , q 2 , . . . , q m 

) T , ̂ Q = ( ̂  q 1 , ̂  q 2 , . . . , ̂  q m 

) T , H 1 = diag (h 1 , h 2 , . . . , h m 

) ,

H 2 = diag (h m +1 , h m +2 , . . . , h n ) . Then, we can express (13) as the

following matrix form ⎧ ⎪ ⎨ ⎪ ⎩ 

˙ P 1 = Q, 

˙ Q = (H 1 − || P || 2 E m 

) P 1 + k 2 
˙ ̂ Q , 

˙ P 2 = (H 2 − || P || 2 E n −m 

) P 2 , 

(14)

where ˙ ̂ Q = (H 1 − || P || 2 E m 

) P 1 − k 3 ̂
 Q . 

We suppose that V 2 = − 1 
2 P 

T HP + 

1 
4 || P || 4 + 

1 
2 (Q − k 2 ̂

 Q ) 2 +
k 2 
2 

̂ Q 

T ̂ Q , where H = diag (h 1 , h 1 , . . . , h n ) . Then, we have 

˙ 
 2 = −P T H 

˙ P + || P || 2 P T ˙ P + (Q − k 2 ̂  Q ) T ( ˙ Q − k 2 
˙ ̂ Q ) + k 2 ̂  Q 

T ˙ ̂ Q 

= k 2 ̂  Q 

T ((H 1 − || P || 2 E m 

) P 1 − k 3 ̂  Q ) + (Q − k 2 ̂  Q ) T (H 1 P 1 − || P || 2 P 1 ) 
−P T 1 H 1 

˙ P 1 − P T 2 H 2 
˙ P 2 + || P || 2 P T 1 

˙ P 1 + || P || 2 P T 2 
˙ P 2 

= −P T 1 H 1 Q + || P || 2 P T 1 Q + Q 

T H 1 P 1 − Q 

T || P 1 || 2 P 1 − k 2 Q 

T H 1 P 1 

+ k 2 Q 

T || P 1 || 2 P 1 + k 2 Q 

T H 1 P 1 − k 2 Q 

T || P 1 || 2 P 1 
− k 1 k 2 ̂  Q 

T ̂ Q + P T 2 (|| P || 2 E n −m 

− H 2 ) ˙ P 2 

= −k 2 k 3 ̂  Q 

T ̂ Q − ˙ P 2 
T 

˙ P 2 ≤ 0 . (15)

On the basis of Lemma 1 , we can know that the solutions of ˙ V 1 = 0

are the equilibrium points of system (1) with protocol (12) . When
˙ 
 2 = 0 , we can get ̂ Q = 0 m ×1 and 

˙ P 2 = 0 (n −m ) ×1 . Together with (14) ,

we have ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 

˙ P 1 = Q, 

˙ Q = (H 1 − || P || 2 E m 

) P 1 , 

˙ ̂ Q = (H 1 − || P || 2 E m 

) P 1 = 0 m ×1 , 

˙ P 2 = (H 2 − || P || 2 E n −m 

) P 2 = 0 (n −m ) ×1 , 

(16)
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he solution can be solved as 

{
P e = 0 n ×1 

Q e = 0 m ×1 

and 

{
P e = ±

√ 

h i e i 
Q e = 0 m ×1 

, i ∈

 n , i.e. the equilibrium points of this nonlinear system are 
(P e 

Q e 

)
=

0 n ×1 

0 m ×1 

)
and 

(±
√ 

h i e i 

0 m ×1 

)
, i ∈ I n . 

According to Lemma 2 , the system dynamic (14) is linearized

round the equilibrium point 
(P e 

Q e 

)
= 

(0 n ×1 

0 m ×1 

)
. The linearization ex-

ression of nonlinear system (14) is ˙ X = A 3 X, where 

 3 = 

⎛ ⎜ ⎝ 

0 E m 

0 0 

(1 + k 2 ) H 1 0 −k 2 k 3 E m 

0 

H 1 0 −k 3 E m 

0 

0 0 0 H 2 

⎞ ⎟ ⎠ 

. (17)

bviously, h m +1 , h m +2 , . . . , h n are positive eigenvalues of A 3 . There-

ore, we have conclude that the equilibrium point 
(P e 

Q e 

)
= 

(0 n ×1 

0 m ×1 

)
is

nstable. 

For the equilibrium point 
(P e 

Q e 

)
= 

(√ 

h i e i 

0 m ×1 

)
, i ∈ I n , the linearization

xpression of nonlinear system (14) is ˙ X = A 4 X, where 

 4 = 

⎛ ⎜ ⎝ 

0 E m 

0 0 

(1 + k 2 ) B 1 0 −k 2 k 3 E m 

0 

B 1 0 −k 3 E m 

0 

0 0 0 B 2 

⎞ ⎟ ⎠ 

, (18)

here B 1 = H 1 − 2 P e 1 P 
T 
e 1 − || P e || 2 E m 

, B 2 = H 2 − 2 P e 2 P 
T 
e 2 −| P e || 2 E n −m 

, P e 1 is a vector consisting of the first m elements

f vector P e , P e 2 is a vector consisting of the latter n − m elements

f vector P e . It is easy to get that the eigenvalues of A 4 are the

igenvalues of 
( 0 E m 

0 

(1+ k 2 ) B 1 0 −k 2 k 3 E m 

B 1 0 −k 3 E m 

)
and the eigenvalues of

 2 . Then the eigenpolynomial of 
( 0 E m 

0 

(1+ k 2 ) B 1 0 −k 2 k 3 E m 

B 1 0 −k 3 E m 

)
is 

λE 3 m 

−
( 

0 E m 

0 

(1 + k 2 ) B 1 0 −k 2 k 3 E m 

B 1 0 −k 3 E m 

) 

∣∣∣∣∣
= | λ3 E m 

+ λ2 k 3 E m 

− λ(1 + k 2 ) B 1 − k 3 B 1 | = 0 . (19)

ecause λ3 E m 

+ λ2 k 3 E m 

− λ(1 + k 2 ) B 1 − k 3 B 1 is a diagonal ma-

rix, we can get that its i th diagonal element is also its i th

igenvalue of 

( 0 E m 

0 

(1+ k 2 ) B 1 0 −k 2 k 3 E m 

B 1 0 −k 3 E m 

)
. Every eigenvalue of

0 E m 

0 

(1+ k 2 ) B 1 0 −k 2 k 3 E m 

B 1 0 −k 3 E m 

)
can be expressed as λ3 + k 3 λ

2 − (1 +

 2 )(B 1 ) ii λ − k 3 (B 1 ) ii = 0 . Suppose λ1 i , λ2 i and λ3 i are the roots

f equation λ3 + k 3 λ
2 − (1 + k 2 )(B 1 ) ii λ − k 3 (B 1 ) ii = 0 . The equi-

ibrium point 

(
P e 

Q e 

)
= 
(√ 

h i e i 
0 m ×1 

)
is stable only if λ1 i < 0, λ2 i < 0

nd λ3 i < 0. According to Vieta’s theorem, we have λ1 i · λ2 i · λ3 i =
 3 (B 1 ) ii , λ1 i λ2 i + λ1 i λ3 i + λ2 i λ2 i = −(1 + k 2 )(B 1 ) ii , and λ1 i + λ2 i +
3 i = −k 3 . Due to k 2 , k 3 > 0, we can get that λ1 i < 0, λ2 i < 0 and

3 i < 0 if and only if ( B 1 ) ii < 0 for i ∈ I m 

. 

Since B 2 is a diagonal matrix, elements of main diagonal are the

igenvalues of B 2 . Obviously, the equilibrium point 
(P e 

Q e 

)
= 

(√ 

h i e i 

0 m ×1 

)
is

table only if the eigenvalues of B 2 are all negative, i.e. ( B 2 ) ii < 0 for

 ∈ I n / I m 

. 
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Fig. 2. The state trajectories and inputs of all agents with protocol (3) . 

Fig. 3. The state trajectories and inputs of all agents with protocol (12) . 
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From the above analysis, we know that the equilibrium point

P e 

Q e 

)
= 

(√ 

h i e i 

0 m ×1 

)
is stable if and only if the main diagonal elements

f H − 2 P e P 
T 
e − || P e || 2 E n are all negative. According to the proof of

heorem 1 , we can get the main diagonal elements of H − 2 P e P 
T 
e −

| P e || 2 E n are all negative. 

The stability of the equilibrium point 
(P e 

Q e 

)
= 

(−
√ 

h i e i 

0 m ×1 

)
, i ∈ I n ,

an be proved in a similar way. Therefore, we omit it here. 

In summary, by considering the system (1) with protocol (12) ,

he solution of the agent k ∗ approaches (p ∗e , q ∗e ) = ( 
√ 

h k ∗ , 0) or
Please cite this article as: Q. Zhao, Y. Zheng and J. Ma et al., Winner-t
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(p ∗e , q ∗e ) = (−
√ 

h k ∗ , 0) , and all other agents approaches (p e , q e ) =
(0 , 0) as t → ∞ . �

. Simulations 

In this section, we first propose a numerical simulation in

xample 1 to verify the effectiveness of theoretical result in

ection 3 . In Example 2 , we give a numerical simulation to verify

he effectiveness of our result in Section 4 . 

We suppose that the system with heterogeneous dynamic

gents includes 6 agents, where the number of second-order dy-
ake-all competition with heterogeneous dynamic agents, Neuro- 
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namic agents is 3, labelled 1 through 3. The remaining first-order

agents’ labels are from 4 to 6. 

Example 1. Suppose that k 1 = 1 . 1 , P (0) = (−2 , 4 , −1 , 0 , −4 , 1) T ,

Q(0) = (−3 , 2 , 3) T , H(0) = (4 , 5 , 7 , 6 , 3 , 2) T . According to the

system (1) and protocol (3) , we obtain the simulation results and

show them in Fig. 2 . From the bar chart, we can see that the

agent 3 has the largest input 7. In addition, all agents’ velocity-

like values are eventually tend to zero. Only the agent 3 finally

wins the competition and has a non-zero position-like value

( lim t→∞ 

p 3 = 

√ 

h 3 = 

√ 

7 ). While the position-like values of the

remaining agents eventually reach zero. All agents’ velocity-like

values eventually tends to zero. This result is consistent with our

theoretical results of Theorem 1 . 

Example 2. We assume that k 2 = 0 . 9 , k 3 = 1 . 2 , P (0) =
(3 , 2 , −2 , −3 , 1 , 3) T , Q(0) = (1 , −3 , 3) T , ̂ Q (0) = (4 , −1 , 1) T ,

H(0) = (3 , 9 , 6 , 5 , 8 , 1) T . Considering the system (1) and pro-

tocol (12) , we carry out a numerical simulation. Fig. 3 shows

the evolution of the states values along with time for all agents.

We can see that the agent 2 has the largest input 9 by the

bar chart. As well as, only the agent 3 has a non-zero value

( lim t→∞ 

p 2 = 

√ 

h 2 = 3 ) eventually, but the remaining agents’

position-like values are finally suppressed to zero. The velocity-

like values of all agents reach to zero as t → ∞ . This result is

consistent with our theoretical results of Theorem 2 . 

6. Conclusions 

This paper mainly consider the winner-take-all competition for

the system with heterogeneous dynamic agents. Two kinds of

protocols with and without velocity measurements are designed

for heterogeneous dynamic agents, respectively. We prove that

the heterogeneous dynamic agents can all achieve winner-take-all

competition under the proposed protocols. We find that the dy-

namics of agents can not change the producing of the winner,

which means that the agent with the largest input will win the

competition and all others will be deactivated to zero. We find that

the results of winner is independent from the dynamics of agents

and is determined by inputs. In the end, some simulations are pro-

vided to demonstrate the effectiveness of our theoretical results. In

the future, we may further consider the winner-take-all problem

for the system with hybrid dynamic agents. 
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