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Summary

This paper considers a consensus problem for hybrid multiagent systems, which
comprise two groups of agents: a group of continuous-time dynamic agents and
a group of discrete-time dynamic agents. Firstly, a game-theoretic approach is
adopted to model the interactions between the two groups of agents. To achieve
consensus for the considered hybrid multiagent systems, the cost functions are
designed. Moreover, it is shown that the designed game admits a unique Nash
equilibrium. Secondly, sufficient/necessary conditions of solving consensus are
established. Thirdly, we find that the convergence speed of the system depends
on the game. By the mechanism design of the game, the convergence speed is
increased. Finally, simulation examples are given to validate the effectiveness of
the theoretical results.

KEYWORDS

consensus, convergence speed, hybrid multiagent systems, Nash equilibrium

1 INTRODUCTION

Multiagent systems (MASs) (eg, sensor networks,1 multirobot systems2) have attracted much attention from both the
industry and academia in the past two decades due to their wide applications.3 Among the various research topics for
MASs (see, eg, containment control,4,5 formation,6,7 flocking,8 controllability,9,10 and coverage control11), consensus is one
of the main lines of research.12,13

Consensus means that a group of agents reach an agreement upon certain quantities of interest. DeGroot14 proposed a
model to describe how a group of individuals reach consensus on estimating some unknown parameters. Vicsek et al12

investigated a discrete-time model of n agents all moving in the plane with the same speed. It appears that, based on local
interaction rules, all agents eventually move in the same direction. By virtue of graph theory, Jadbabaie et al15 gave a theo-
retical explanation for the consensus behavior of the Vicsek model. Olfati-Saber and Murray16 established some necessary
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https://doi.org/10.1002/rnc.4462
https://orcid.org/0000-0003-2014-5509
https://orcid.org/0000-0001-5553-9124
https://orcid.org/0000-0002-1143-2509
http://crossmark.crossref.org/dialog/?doi=10.1002%2Frnc.4462&domain=pdf&date_stamp=2019-01-13


MA ET AL. 1841

and/or sufficient conditions for achieving the average consensus for multiagent systems under switching topologies and
time delays. For multiagent systems under directed communication topologies, Ren and Beard17 proved that consensus
is achievable if and only if the directed communication graph has a spanning tree. The consensus of multiagent systems
with double-integrator agents was also investigated.18,19 Zheng et al considered distributed coordination of heterogeneous
MASs which consist of both single- and double-integrators. They studied consensus problem and containment control
of heterogeneous MASs,20-22 respectively. Moreover, fast consensus was considered in other works16,23-25 and optimal con-
sensus was investigated in the works of Cao and Ren26 and Ma et al.27 In particular, Olfati-Saber and Murray16 found that
the convergence rate of the consensus algorithm can be quantified by the algebraic connectivity of the communication
graph (ie, the second smallest eigenvalue of the Laplacian matrix). Moreover, the algebraic connectivity of the graph can
be increased by designing weights based on semi-definite convex programming.23 In the works of Cao and Ren26 and
Ma et al,27 LQR-based optimal communication graph for solving consensus problems were considered.

The agents considered in the aforementioned works are either discrete-time agents or continuous-time agents. However,
different types of agents might work together in multiagent systems. For example, autonomous robots and natural critters
can interact as a group,28 and different types of mobile autonomous robots (eg, unmanned ground vehicles and unmanned
air vehicles) need to cooperate.29 Actually, many practical systems are hybrid systems, which contain two distinct types of
interacting components: subsystems with continuous dynamics and subsystems with discrete dynamics.30 Applications
of such systems arise in various fields including cyber-physical systems,31 multicell wireless data networks,32 power grid,33

among others. Along with this fact, consensus problems of hybrid multiagent systems, in which continuous-time dynamic
agents (CT-agents) and discrete-time agents (DT-agents) coexist, were explored in the works of Zheng et al.34,35 Inspired
by Zheng et al,34,35 this paper intends to propose a new consensus protocol for hybrid multiagent systems, which contain
two groups of agents: a group of CT-agents and a group of DT-agents. Different from the works of Zheng et al,34,35 a
game-theoretic model is adopted in this paper to describe the interactions among the agents in distinct groups.

Game theoretical approaches have been leveraged for distributed control of multiagent systems. Cooperative game
theory was used to solve optimal control of multiagent systems. To ensure consensus seeking, Semsar-Kazerooni and
Khorasani36 considered a combination of the individual cost as the team cost, and the minimization of this cost func-
tion results in a set of Pareto-efficient solutions. In the work of Vamvoudakis et al,37 a cooperative multiplayer game
was formulated for solving tracking problem. Noncooperation game theory is utilized to depict the competitive inter-
actions in multiagent systems. In the works of Altafini38 and Zhu et al,39 signed graphs were employed to model the
social networks, where negative edges demonstrate antagonistic relationships, and bipartite consensus problems were
investigated. Qin et al40 investigated group synchronization problems for multiagent systems with competitive interac-
tions. Ma et al studied the competition of the leaders.41,42 They43 considered noncooperation phenomena between two
competitive groups. Mei and Bullo44 considered competitive propagation models over a social network. Motivated by the
aforementioned works, we design a game to depict the interacting behaviors among the agents and propose a new con-
sensus protocol based on the designed game. Compared with the existing works, the main contributions of this paper are
summarized as follows.

1. The cost functions for the players in the interaction game between the two groups are designed based on a tradeoff
between the intergroup consensus and the intragroup consensus. Based on the designed costs, the uniqueness of
the Nash equilibrium is proven.

2. Based on the designed game, sufficient/necessary conditions to ensure the consensus of the hybrid multiagent
system are provided.

3. The linkage between the convergence speed and the mechanism of the game is established.

The rest of this paper is organized as follows. Section 2 presents the preliminaries on the graphs and the system model.
Section 3 shows our main results. Numerical simulations are given in Section 4 to illustrate the effectiveness of theoretical
results. Some conclusions are drawn in Section 5.

Throughout this paper, the following notations will be used. Let N, N+, R, and C be the sets of nonnegative integral
numbers, positive integral numbers, real numbers, and complex numbers, respectively. For x ∈ C, |x| is magnitude of
x. Rn×m is the set of n × m real matrices. The column vector with all entries equal to one (to zero) is denoted as 1n
(or 0n). Moreover, er is the canonical vector with a 1 in the rth entry and 0's elsewhere. In denotes an n-dimensional identity
matrix. n = {1, … ,n} is an index set. A matrix is said to be nonnegative if all its entries are nonnegative. Nonnegative
matrix S ∈ Rn×n is said to be a stochastic matrix if its all row sums are 1. A stochastic matrix S is called indecomposable
and aperiodic (SIA) if limk→∞ Sk = 1pT , where p is a column vector.
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2 PRELIMINARIES

2.1 Graph theory
Let  = { , } be a weighted directed graph consisting of a vertex set  = {v1, v2, … , vn} and an edge set  ⊂  ×  . In
this paper, we suppose that there is no self-loop in a graph. An edge of  is denoted by (vj, vi), where vj is called the parent
vertex. The in-neighbor set of vertex i is i = {v𝑗 ∈  |(v𝑗 , vi) ∈ }. A directed tree is a directed graph, where every vertex
has exactly one parent, except that the root is without any parent. A spanning tree of  is a directed tree, which consists of
all the vertices and a subset of edges in . For a graph  with spanning trees, the root of a spanning tree is called the root
vertex. A = [ai j]n×n is the adjacency matrix of  with ai j > 0 if (v𝑗 , vi) ∈  and ai j = 0 otherwise. The Laplacian matrix
of  is  = [li𝑗]n×n, where lii =

∑n
𝑗=1 ai𝑗 and li j = −ai j if i ≠ j. It is well known that e−t is a (row) stochastic matrix.

Let S is an n × n-dimensional nonnegative matrix. Graph S with n vertexes is called the graph associated with S, such
that there is a directed edge in S from vj to vi if the (i, j)-entry of S is positive.

Lemma 1 (See the work of Ren and Beard17).
Let S be a stochastic matrix with positive diagonal entries, and S be the associated graph of S.  is the Laplacian matrix
of S. Then,

• S is SIA, that is, limm→∞ Sm = 1𝜈T, if and only if the graph S has a spanning tree. Moreover, 𝜈 is a nonnegative vector
and ST𝜈 = 𝜈 and 1T𝜈 = 1.

• e−t(t > 0) is SIA if and only if S has a spanning tree.

Lemma 2 (See the work of Ren and Beard17).
Let S1, S2, … Sk be a finite set of SIA matrices with positive diagonal entries. Then, for each infinite sequence Si1 , Si2 , … ,
there exists a column vector y such that lim𝑗→∞ Si𝑗 Si𝑗−1 , … Si1 = 1𝑦T.

Suppose that S has a spanning tree and all diagonal entries of S are positive. It is easy to know that the convergence
speed of limk→∞ Sk is dependent on |𝜆2|, the second largest eigenvalue magnitude of S.24 Therefore, we define 𝜌(S) = |𝜆2|
as the convergence speed of the discrete system x(k + 1) = Sx(k), k ∈ N, where x(k) ∈ Rn is the state of the system. The
smaller 𝜌(S) means the faster asymptotic convergence.

2.2 System model
Consider a multiagent system consisting of n CT-agents and m DT-agents. Let c = {v c

1 , v c
2 , … , v c

n} and d =
{v d

1 , v d
2 , … , v d

m} be the group of CT-agents and the group of DT-agents, respectively.

2.2.1 The dynamics of group Vc
Agents of group c are continuous-time agents. The interaction among agents of c is modeled by a directed graph c =
(c, c). Each agent of c represents a vertex in c and (v c

i , v c
𝑗
) ∈ c if and only if agent v c

𝑗
can receive information of v c

i .
Denote c = [ai𝑗]n×n as the adjacent matrices of c. Suppose that xi ∈ R is the state of agent vc

i ∈ c. The dynamics of
CT-agent vc

i can be described as follows:

ẋi(t) =
∑
𝑗∈ c

i

ai𝑗(x𝑗(t) − xi(t)), i ∈ n,

where  c
i is the neighbor set of v c

i in c. Let x(t) = [x1(t), x2(t), … , xn(t)]T. The evolution of group c can be described in
vector form as

ẋ(t) = −c x(t), (1)

where c is the Laplacian matrix of c.

2.2.2 The dynamics of group Vd
Agents of group d are discrete-time dynamic agents. Let directed graph d = (d, d) indicate interaction relationship
among agents of d, where each agent is a vertex in d and (v d

i , v d
𝑗
) ∈ d if and only if agent v d

𝑗
can receive information

of v d
i . Denote by 𝑦i(tk) ∈ R the state of DT-agent v d

i ∈ d at time tk = kh(k ∈ N, h > 0), where h is the update period of
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DT-agents. The dynamics of agent v d
i is

𝑦i(tk+1) =
m∑
𝑗=1

wi𝑗𝑦𝑗(tk), i ∈ m,

where
∑m

𝑗=1 wi𝑗 = 1,

wi𝑗 =

{
> 0 i = 𝑗 orv d

𝑗
∈  d

i ,

= 0 otherwise,

and  d
i is the neighbor set of v d

i in d. Let  = [wi𝑗]m×m. It follows that  is a (row) stochastic matrix with positive
diagonals. Denote y(tk) = [y1(tk), y2(tk), … , ym(tk)]T. The dynamics of group d can be written in vector form as

𝑦(tk+1) = 𝑦(tk), k ∈ N. (2)

2.2.3 The interaction between groups Vc and Vd
In what follows, we will model the interaction between c and d as a game. Let H = rh, where r ∈ N+. At time
t = tk = sH, s ∈ N+, a CT-agent vc

p1
and a DT-agent vd

p2
are chosen to exchange their states. Define xp1((sH)−) and 𝑦p2((sH)−)

as the states of v c
p1

and v d
p2

before their interaction, respectively. After their communication, players will update their states
independently. Let xp1 (sH) and 𝑦p2(sH) be states of v c

p1
and v d

p2
after updating, respectively. The interaction between v c

p1

and v d
p2

can be modeled as the following game.

Definition 1. Game G is a two-person infinite game played by the CT-agent vc
p1

and the DT-agent vd
p2

. The strategy
of v c

p1
is xp1(sH). Player v c

p1
decides xp1 (sH) to minimize its cost

Pc
(

xp1(sH), 𝑦p2(sH)
)
= 𝛼c

[
xp1(sH) − xp1((sH)−)

]2 + 𝛽c
[
xp1(sH) − 𝑦p2(sH)

]2
, (3)

where 0 < 𝛽min ≤ 𝛽c ≤ 𝛽max < 1, 𝛼c = 1− 𝛽c, 𝛽min and 𝛽max are two constants. The strategy of v d
p2

is 𝑦p2 (sH). Player v d
p2

updates its state 𝑦p2(sH) to minimize its cost

Pd
(

xp1(sH), 𝑦p2(sH)
)
= 𝛼d

[
𝑦p2(sH) − 𝑦p2((sH)−)

]2 + 𝛽d
[
𝑦p2(sH) − xp1(sH)

]2
, (4)

where 0 < 𝛽min ≤ 𝛽d ≤ 𝛽max < 1 and 𝛼d = 1 − 𝛽d. Moreover, (xp1(sH), 𝑦p2(sH)) is called the strategy pair of the game.

Definition 2. For players v c
p1

and v d
p2

, a strategy pair (x∗p1
(sH), 𝑦∗p2

(sH)) is called the Nash equilibrium solution of the
game if it satisfies ⎧⎪⎨⎪⎩

Pc
(

x∗p1
(sH), 𝑦∗p2

(sH)
)
= min

xp1 (sH)
Pc

(
xp1 (sH), 𝑦∗p2

(sH)
)
,

Pd
(

x∗p1
(sH), 𝑦∗p2

(sH)
)
= min

𝑦p2 (sH)
Pd

(
x∗p1

(sH), 𝑦p2(sH)
)
.

(5)

Remark 1. We assume that the two players are self-interested and rational. On the one hand, achieving consensus
would decrease their costs of disagreement, ie, 𝛽c[xp1(sH) − 𝑦p2(sH)]2 for v c

p1
and 𝛽d[𝑦p2(sH) − xp1 (sH)]2 for v d

p2
, which

indicates that cooperation is necessary. On the other hand, cooperation leads to the cost of changing their states,
ie, 𝛼c[xp1 (sH) − xp1 ((sH)−)]2 for v c

p1
and 𝛼d[𝑦p2(sH) − 𝑦p2((sH)−)]2 for v d

p2
. Therefore, they have different interests but

are self-motivated to cooperate. To achieve consensus, each player has to compromise and make a trade-off between
keeping the states and narrowing the gap of disagreement.

Remark 2. Actually, 𝛽c and 𝛽d are the weights for the disagreement costs between the two players. A higher 𝛽c (𝛽d)
means that the cost of disagreement is more important for the player. Moreover, 𝛽min and 𝛽max is the lower and the
upper bound of 𝛽c and 𝛽d, respectively.

We have the following results.

Theorem 1. Game G has a unique Nash equilibrium solution given by

((1 − 𝜆)xp1((sH)−) + 𝜆𝑦p2((sH)−), 𝜇xp1 ((sH)−) + (1 − 𝜇)𝑦p2((sH)−), (6)
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where
𝜆 = 𝛼d𝛽c

𝛼c + 𝛼d𝛽c
and𝜇 = 𝛼c𝛽d

𝛼d + 𝛼c𝛽d
. (7)

Proof. For a fixed 𝑦∗p2
(sH)), it follows from (3) that Pc(xp1(sH), 𝑦∗p2

(sH)) is a quadratic function of xp1 (sH). Therefore,
Pc(xp1(sH), 𝑦∗p2

(sH)) has only one global minimum x∗p1
(sH), which satisfies

⎧⎪⎪⎨⎪⎪⎩

𝜕Pc

(
xp1 (sH),𝑦p2 (sH)

)
𝜕xp1 (sH)

|||||(x∗p1
(sH),𝑦∗p2

(sH)
) = 0,

𝜕2Pc

(
xp1 (sH),𝑦p2 (sH)

)
𝜕x2

p1
(sH)

|||||(x∗p1
(sH),𝑦∗p2

(sH)
) > 0.

(8)

Likewise, Pd(x∗p1
(sH), 𝑦∗p2

(sH)) has only one global minimum 𝑦∗p2
(sH)), which satisfies

⎧⎪⎪⎨⎪⎪⎩

𝜕Pd

(
xp1 (sH),𝑦p2 (sH)

)
𝜕𝑦p2 (sH)

|||||(x∗p1
(sH),𝑦∗p2

(sH)
) = 0,

𝜕2Pd

(
xp1 (sH),𝑦p2 (sH)

)
𝜕𝑦2

p2
(sH)

|||||(x∗p1
(sH),𝑦∗p2

(sH)
) > 0.

(9)

According to Definitions 1 and 2, (x∗p1
(sH), 𝑦∗p2

(sH)) is the Nash equilibrium solution if and only if (5) holds. By (8) and
(9), we can conclude that Game G has a unique Nash equilibrium solution. Moreover, (x∗p1

(sH), 𝑦∗p2
(sH)) is the Nash

equilibrium solution if and only if ⎧⎪⎪⎨⎪⎪⎩

𝜕Pc

(
xp1 (sH),𝑦p2 (sH)

)
𝜕xp1 (sH)

|||||(x∗p1
(sH),𝑦∗p2

(sH)
) = 0,

𝜕Pd

(
xp1 (sH),𝑦p2 (sH)

)
𝜕𝑦p2 (sH)

|||||(x∗p1
(sH),𝑦∗p2

(sH)
) = 0.

(10)

By solving (10), we get {
x∗p1

(sH) − 𝛽c𝑦
∗
p2
(sH) = 𝛼cxp1((sH)−),

−𝛽dx∗p1
(sH) + 𝑦∗p2

(sH) = 𝛼d𝑦p2((sH)−).
(11)

Since 1 − 𝛽c𝛽d > 0, it follows from (11) that⎧⎪⎨⎪⎩
x∗p1

(sH) = 𝛼c
1−𝛽c𝛽d

xp1((sH)−) + 𝛼d𝛽c
1−𝛽c𝛽d

𝑦p2((sH)−),

𝑦∗p2
(sH) = 𝛼c𝛽d

1−𝛽c𝛽d
xp1((sH)−) + 𝛼d

1−𝛽c𝛽d
𝑦p2 ((sH)−).

Considering
1 − 𝛽c𝛽d = (𝛼c + 𝛽c)(𝛼d + 𝛽d) − 𝛽c𝛽d = 𝛼c + 𝛼d𝛽c = 𝛼d + 𝛼c𝛽d, (12)

we have the game G has the unique Nash equilibrium solution (6).

Theorem 2. If 𝛼d and 𝛽d are fixed, then an increase of 𝛽c would lead to an increase of 𝜆 and a decrease of 𝜇. If 𝛼c and
𝛽c are fixed, then an increase of 𝛽d would lead to an increase of 𝜇 and a decrease of 𝜆.

Proof. By (6) and (12), we have 𝜆 = 𝛼d𝛽c
1−𝛽c𝛽d

and 𝜇 = 1 − 𝛼d
1−𝛽c𝛽d

. Thus, it is easy to find that an increase of 𝛽c leads to an

increase of 𝜆 and a decrease of 𝜇. Likewise, we can prove that an increase of 𝛽d would lead to an increase of 𝜇 and a
decrease of 𝜆.

Remark 3. Theorem 1 reveals that, in order to minimize its cost, each player would make a balance between its own
state and other player's state. By Theorem 2, it can be concluded that an increase of 𝜆 and a decrease of 𝜇 mean
a higher weight of 𝑦p2((sH)−) in both x ∗

p1
(sH) and 𝑦∗

p2
(sH). This result can be reasoned as follows: a higher weight

of disagreement punishment for vc
p1

would motivate v c
p1

to cooperate, and thereby to accept the state of player v d
p2

.
Moreover, since v c

p1
tends to cooperate, player v d

p2
would tend to keep its own state 𝑦p1((sH)−).
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Remark 4. At playing time sH, it follows from Theorem 1 that there exists information flow between groups c and
d. Thus, we denote  by the interaction graph of system. Easy to find that  = {c ∪ d, }, where  = c ∪ d ∪
(v c

p1
, v d

p2
) ∪ (v d

p2
, v c

p1
).

2.2.4 The dynamics of the system
Let s ∈ N+. The dynamics of the system can be described as follows.

• For t ∈ [(s − 1)H, sH), agents of c update their states according to (1). We have⎧⎪⎨⎪⎩
x(t) = e−c(t−(s−1)H)x((s − 1)H), t ∈ [(s − 1)H, sH),
x((sH)−) = lim

t→(sH)−
x(t), (13)

where x((sH)−) denotes the state vector of group c at time sH before game G.
• For tk ∈ {(s − 1)H, (s − 1)H + h, … , sH − h}, agents of d update their states by (2). We get{

𝑦(tk) = k−(s−1)r𝑦((s − 1)H), tk ∈ {(s − 1)H, (s − 1)H + h, … , sH − h},
𝑦((sH)−) =  r𝑦((s − 1)H),

(14)

where y((sH)−) denotes the state vector of group d at time sH before the game G.
• At time t = tk = sH, CT-agent v c

p1
and DT-agent v d

p2
play game G. They update their states according to Nash equilib-

rium solution (6). As a result, the state of v c
p1

has a jump from xp1 ((sH)−) to xp1(sH). Meanwhile, the state of v d
p2

also has
a jump from 𝑦p2((sH)−) to 𝑦p2(sH). The process can be written as⎧⎪⎨⎪⎩

xi(sH) = xi((sH)−), 𝑦𝑗(sH) = 𝑦𝑗((sH)−), i ≠ p1, 𝑗 ≠ p2,

xp1(sH) = (1 − 𝜆)xp1((sH)−) + 𝜆𝑦p2((sH)−),
𝑦p2(sH) = 𝜇xp1((sH)−) + (1 − 𝜇)𝑦p2((sH)−.

(15)

Let Ei𝑗 = eieT
𝑗

. The matrix-form of (15) is (
x(sH)
𝑦(sH)

)
= Φ

(
x((sH)−)
𝑦((sH)−)

)
,

where

Φ =

( Inr − 𝜆Ep1p1 0 𝜆Ep1p2
0 In−nr 0

𝜇ET
p1p2

0 Im − 𝜇Ep2p2

)
. (16)

System (13)-(15) has a global task, reaching consensus. Therefore, we propose the definition of consensus for
system (13)-(15).

Definition 3. System (13)-(15) is said to reach consensus if, for any initial conditions,

lim
t→+∞

xi(t) = lim
tk→+∞

𝑦𝑗(tk) (17)

holds for all i ∈ m, 𝑗 ∈ n.

3 MAIN RESULTS

3.1 Consensus of hybrid multiagent systems
In what follows, we will develop some conditions of solving consensus for system (13)-(15).

We assume the following.

A1 Players of game G are unchangeable at each time.
A2 c and d have a spanning tree.
A3 At least one player of game G is the root vertex of c or d.
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Let c and d be sets of the root vertexes in c and d, respectively. Without loss of generality, let c = {v c
1 , … , v c

nr
}

and d = {v d
1 , … , v d

mr
}.

Theorem 3. Suppose that A1 holds. Then, system (13)-(15) can reach consensus if and only if A2 and A3 hold. Moreover,
the consensus state is qT[xT(0), yT(0)]T, where q satisfies Tq = q and

 = Φ
(

e−cH 0
0  r

)
.

Proof. (Sufficiency) For all x(sH), y(sH), s ∈ N+, it follows from (13)-(15) that(
x(sH)
𝑦(sH)

)
= 

(
x((s − 1)H)
𝑦((s − 1)H)

)
. (18)

It follows from A2 that c and  have the structure as

c =
(

L11 0
L21 L22

)
and  =

(
W11 0
W21 W22

)
.

Thus, we have

e−cH =
(

P11 0
P21 P22

)
and  r =

(
Q11 0
Q21 Q22

)
,

where P11 is a nr × nr-dimensional row stochastic matrix and Q11 is a mr × mr-dimensional row stochastic matrix.
Since A3 holds, we have vc

p1
∈ c or v d

p2
∈ d, ie, p1 ∈ nr or p2 ∈ mr .

Firstly, we suppose v c
p1
∈ c. By (16), we have

 =

( (Inr − 𝜆Ep1p1)P11 0 𝜆Ep1p2
r

P21 P22 0
𝜇ET

p1p2
P11 0 (Im − 𝜇Ep2p2 )

r

)
. (19)

From Lemma 1, we have e−cH and  r are (row) stochastic matrixes with positive diagonals. Together with the fact
that Φ is a (row) stochastic matrix with positive diagonals, we know that  is a (row) stochastic matrix with positive
diagonals. Let u = (u, u) be a graph associated with , where u = c ∪ d. Clearly, c and d are two subgraphs
of u. Because v c

p1
is the root vertexes in c, c has a spanning tree c with the root vertex v c

p1
. It follows from A2 that

d has a spanning tree d. Since the ( p1, p2)-entry of Ep1p2
r equals the ( p2, p2)-entry of  r, ( p1,n + p2)-entry of 

is positive. Consequently, (v d
p2
, v c

p1
) is an edge of u. Easy to find that (v d

p2
, v c

p1
) ∪ c ∪ d is a spanning tree of u.

Likewise, for the case of v d
p2

∈ d, we can also prove that u has a spanning tree. By Lemma 1, we get  is an SIA
matrix, ie,

lim
s→+∞

s = 1qT . (20)

Then, it follows from (18) and (20) that

lim
s→+∞

xi(sH) = lim
s→+∞

𝑦𝑗(sH) = qT
(

x(0)
𝑦(0)

)
. (21)

Because e−c(t−(s−1)H) and  are row stochastic matrixes, we have

min
𝑗∈n

x𝑗((s − 1)H) ≤ xi(t) ≤ max
𝑗∈n

x𝑗((s − 1)H), i ∈ n, t ∈ [(s − 1)H, sH) (22)

and
min
𝑗∈m

𝑦𝑗((s − 1)H) ≤ 𝑦i(tk) ≤ max
𝑗∈m

𝑦𝑗((s − 1)H), i ∈ m, tk ∈ {(s − 1)H, (s − 1)H + h, … , sH − h}. (23)

Consequently, we get

lim
t→+∞

xi(t) = lim
tk→+∞

𝑦𝑗(tk) = qT
(

x(0)
𝑦(0)

)
, (24)

which means that system (13)-(15) achieves consensus.
(Necessity) Suppose that A2 or A3 does not hold. Then, u has not a spanning tree, which means that  is not

SIA. Therefore, we have that (20) does not hold and system (13)-(15) cannot reach consensus.
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Theorem 3 gives a sufficient and necessary condition of achieving consensus for system (13)-(15). Now, we will give
a sufficient condition for reaching consensus under the scenario where players of game G are not fixed. We assume the
following.

A4 Players of game G are time-variant.
A5 At each time sH, at least one player is root vertexes of c or d.

Theorem 4. Suppose that A4 holds. Then, system (13)-(15) can reach consensus if A2 and A5 hold.

Proof. Since players of the game are time-variant, we let v c
p1(s)

and v d
p2(s)

be two players at time sH. Then, it follows that
(18) can be written as (

x(sH)
𝑦(sH)

)
= (sH)

(
x((s − 1)H)
𝑦((s − 1)H)

)
, (25)

where

(sH) = Φ(sH)
(

e−cH 0
0  r

)
,

Φ(sH) = In+m − 𝜆ep1(s)(ep1(s) − en+p2(s))
T − 𝜇en+p2(s)(en+p2(s) − ep1(s))

T .

Then, by a similar proof for Theorem 3, we know that(sH) is an SIA matrix with positive diagonal entries. Moreover,
all possible (sH) can compose of a finite set of SIA matrixes. By Lemma 2, we know that there exist a column vector
q such that lims→∞(sH)((s − 1)H)…(H) = 1qT . Therefore, we have

lim
s→+∞

xi(sH) = lim
s→+∞

𝑦𝑗(sH) = qT
(

x(0)
𝑦(0)

)
.

Then, similar with the proof of Theorem 3, we can prove that system (13)-(15) will solve consensus problem.

Remark 5. According to Remark 4, the interaction graph  has a spanning tree when A2 and A3 hold. Theorems 3-4
indicate that the consensus of the agents can be achieved if  has a spanning tree.

Remark 6. By using the tool of matrix Kronecker products, the results of Theorems 3 and 4 can be extended into
high-dimension space.

3.2 Fast consensus by mechanism design
In this section, the convergence speed of system (13)-(15) will be investigated. By Theorem 3, the sates of the agents at
time t = tk = sH is decided by (18). Moreover, the states at other time satisfy inequations (22) and (23). Therefore, the
convergence speed of system (13)-(15) is decided by that of the system (18). Since update period of system (18) is H, 𝜌()
denotes the convergence efficiency at each period [sH, (s + 1)H]. Considering that the update period of DT-agents equals
h = H

r
, we define [𝜌()]

1
r as the convergence speed of system (13)-(15), a smaller [𝜌()]

1
r indicates a faster convergence

speed. Thus, in order to accelerate the convergence of system (13)-(15), we consider to minimize [𝜌()]
1
r by

min
r,𝛽c,𝛽d

[𝜌()]
1
r

s.t. r ∈ N
+, 𝛽min ≤ 𝛽c ≤ 𝛽max, 𝛽min ≤ 𝛽d ≤ 𝛽max,

(26)

or
min
p1,p2

𝜌()

s.t. vc
p1
∈ c or vd

p2
∈ d.

(27)

Remark 7. Since 𝜌() is the second largest eigenvalue magnitude of , it is the second largest solution magnitude
of |In+mz − | = 0. By (7) and (19), we know that |In+mz − | = zn+m +

∑n+m
l=1 al(𝛽c, 𝛽d)zn+m−l, where al(𝛽c, 𝛽d), is a

nonlinear and nonconvex function of 𝛽c and 𝛽d.

Remark 8. According to (19), computing the eigenvalues of (n × mr + nr × m − nr × mr) matrixes is required to
solve (27).
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It follows from Remarks 7 and 8 that it is difficult to solve (26) and (27) efficiently, especially for large n and m. In the
following context, we will analyze the convergence speed of system (13)-(15) from a new perspective.

The goal of system (13)-(15) is to make two groups reach consensus. In order to perform this global task, two groups c
and d influence each other via game G. Therefore, we consider to measure the consensus error by the difference of states
between two groups. Considering that c and d are directed graphs with a spanning tree, we define the weighted average
states for groups c and d. Denote x̄(t) = gTx(t) be the weighted average state of group c, where g = [g1, g2, … , gn]T

is a n-dimensional vector satisfying 
c g = 0. Let 𝑦̄(tk) = fT𝑦(tk) be the weighted average state of group d, where f =

[ f1, f2, … , fm]T is an m-dimensional vector satisfying Tf = f . Let the consensus error of system (13)-(15) be 𝜎(t) =|𝑦̄(tk) − x̄(t)| for t ∈ [kh, (k + 1)h), k ∈ N. We have limt→∞𝜎(t) = 0 if and only if system (13)-(15) reaches consensus.
Moreover, we have the following.

Theorem 5. The consensus error of system (13)-(15) is invariant for t ∈ [(s − 1)H, sH). Moreover,

𝜎(sH) = 𝜎((s − 1)H) −
(
𝜆gp1 + 𝜇𝑓p2

) |𝑦p2((sH)−) − xp1((sH)−)| (28)

if
[𝑦̄((sH)−) − x̄((sH)−)][𝑦p2((sH)−) − xp1 ((sH)−)] ≥ 0, (29)

holds.

Proof. For t ∈ [((s − 1)H), sH), we know that x(t) = e−tx((s − 1)H). Because gTe−t = gT , we get⎧⎪⎨⎪⎩
x̄(t) = gTx((s − 1)H) = x̄((s − 1)H), t ∈ [((s − 1)H), sH),
x̄((sH)−) = gT lim

t→(sH)−
x(t) = lim

t→(sH)−
gTx(t) = x̄((s − 1)H).

Since fTk = fT and (14), we obtain{
𝑦̄(tk) = 𝑦̄((s − 1)H), tk ∈ {(s − 1)H, (s − 1)H + h, … , sH − h},
𝑦̄((sH)−) = fT𝑦(sH − h) = 𝑦̄((s − 1)H).

Thus, 𝜎(t) = 𝜎((s − 1)H) for all t ∈ [((s − 1)H), sH). By Theorem 1, we have

𝑦̄(sH) − x̄(sH) = 𝑦̄((sH)−) − x̄((sH)−) − (𝜆gp1 + 𝜇𝑓p2 )[𝑦p2((sH)−) − xp1 ((sH)−)],

where gp1 is the p1th entry of g and 𝑓p2 is the p2-entry of f. Therefore, we get

𝑦̄(sH) − x̄(sH) = [𝑦̄((s − 1)H) − x̄((s − 1)H)] − (𝜆gp1 + 𝜇𝑓p2)[𝑦p2((sH)−) − xp1((sH)−)].

By Lemma 1 and Theorem 1, we know 𝜆gp1 + 𝜇𝑓p2 > 0. Thus, (28) holds.

Remark 9. Theorem 5 reveals that 𝜎(t) cannot be decreased without game G. When system (13)-(15) reaches consen-
sus, we have limt→∞𝜎(t) = 0. This means that 𝜎(t) is decreased innumerable times when t → ∞. At time sH, if 𝜎(t) is
declined, it will be decreased by (𝜆gp1 + 𝜇𝑓p2 )|𝑦p2((sH)−) − xp1 ((sH)−)|. Therefore, the greater 𝜆gp1 + 𝜇𝑓p2 is, the faster
system (13)-(15) converge.

Remark 10. Suppose that 𝜎(t) decreases at t = s1H, and the next decrease of 𝜎(t) occurs at t′ = s2H. It follows that
t′ − t ≥ H. Recalling H = rh, we can conclude that the smaller r is, the faster 𝜎(t) converges to 0.

From Remarks 9 and 10, we find that the convergence speed of system (13)-(15) depends on r and 𝜆gp1 + 𝜇𝑓p2 .
Denote F(p1, p2, 𝛽c, 𝛽d) = 𝜆gp1 + 𝜇𝑓p2 =

gp1𝛽c+𝑓p2𝛽d−(gp1+𝑓p2 )𝛽c𝛽d

1−𝛽c𝛽d
. We can accelerate the convergence speed by designing the

mechanism of game G:

• decrease r;
• for the scenario, where 𝛽c, 𝛽d are fixed, choose players of game G by solving the following optimization problem:

max
p1,p2

F(p1, p2, 𝛽c, 𝛽d)

s.t. vc
p1
∈ c, or v d

p2
∈ d.

(30)
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• For the scenario where p1, p2 are fixed, arrange parameters of G by solving the following optimization problem:
max
𝛽c,𝛽d

F(p1, p2, 𝛽c, 𝛽d)

s.t. 𝛽min ≤ 𝛽c ≤ 𝛽max, 𝛽min ≤ 𝛽d ≤ 𝛽max.
(31)

Compared with (26) and (27), optimization problems (30) and (31) are much easier to solve. Firstly, the solution of
problem (30) is p1 = argmaxi∈n

gi and p2 = argmax𝑗∈m
𝑓𝑗 . Secondly, it is obvious that F( p1, p2, 𝛽c, 𝛽d) is a continuously

differentiable function in {(𝛽c, 𝛽d)|𝛽min ≤ 𝛽c ≤ 𝛽max, 𝛽min ≤ 𝛽d ≤ 𝛽max} when p1, p2 are fixed. We have

𝜕F
𝜕𝛽c

=
(gp1 − 𝑓p2𝛽d)(1 − 𝛽d)

(1 − 𝛽c𝛽d)2 and 𝜕F
𝜕𝛽d

=
(𝑓p2 − gp1𝛽c)(1 − 𝛽c)

(1 − 𝛽c𝛽d)2 ,

which means all critical points satisfy 𝛽c = 1
𝛽d

. Therefore, all critical points of F(p1, p2, 𝛽c, 𝛽d) are not in {(𝛽c, 𝛽d)|𝛽min ≤

𝛽c ≤ 𝛽max, 𝛽min ≤ 𝛽d ≤ 𝛽max}. As a result, problem (31) is equivalent with

max
𝛽c,𝛽d

gp1𝛽c + 𝑓p2𝛽d − (gp1 + 𝑓p2)𝛽c𝛽d

1 − 𝛽c𝛽d

s.t. 𝛽c, 𝛽d ∈ {𝛽min, 𝛽max}.
(32)

4 SIMULATIONS

Suppose that there are 10 CT-agents and 7 DT-agents, ie, c = {v c
1 , … , v c

10} and d = {v d
1 , … , v d

7 }. Interaction graphs c
and d are presented in Figure 1. Let

c =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.5 0 0 0 0 −0.5 0 0 0 0
−2 3.3 0 0 0 −1.3 0 0 0 0
0 −1.5 1.5 0 0 0 0 0 0 0
0 −1 −2 3 0 0 0 0 0 0
0 0 −1.5 −2 3.5 0 0 0 0 0
0 0 0 0 −1.2 1.2 0 0 0 0
0 0 −2 −2 0 0 4 0 0 0
0 0 0 0 0 0 −1 1 0 0
0 0 −1 0 0 0 0 0 2 −1
0 0 0 0 0 0 0 0 −1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

 =

⎛⎜⎜⎜⎜⎜⎜⎝

0.5 0.2 0 0.3 0 0 0
0.4 0.6 0 0 0 0 0
0.5 0.2 0.3 0 0 0 0
0 0 0.7 0.3 0 0 0
0 0.2 0.3 0 0.5 0 0
0 0 0 0 0.5 0.5 0
0 0 0.4 0 0.2 0 0.4

⎞⎟⎟⎟⎟⎟⎟⎠
,

𝛽min = 0.2, 𝛽max = 0.8, and h = 1.

Example 1. Figure 2 A, B, and C show the state trajectories of all the agents under the following three cases: (a)
r = 4, 𝛽c = 0.8, 𝛽d = 0.5, and v c

3 and v d
3 are players; (b) r = 2, 𝛽c = 0.8, 𝛽d = 0.5, and v c

3 and v d
3 are players;

and (c) r = 2, 𝛽c = 0.8, 𝛽d = 0.8, and v c
1 and v d

1 are players. Firstly, the state trajectories of the two players have a
jump at the playing time instants H, 2H, … , which are marked by + and * in Figure 2, respectively. This is consistent
with the system dynamics in (13)-(15). Secondly, we can observe that consensus among the agents is achieved, which
manifests the effectiveness of theoretical results in Theorem 3. Thirdly, we can compare the convergence speed under
three cases: (i) let a and b and c be matrix  in (18) for cases (a)-(c), respectively. Since 𝜌(a)1∕4 = 0.9725 >

𝜌(b)1∕2 = 0.9483 > 𝜌(c)1∕2 = 0.821, we can conclude that case (a) is the slowest and case (c) is the fastest, which

FIGURE 1 Two interaction graphs: A, c; B, d
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FIGURE 2 State trajectories of all the agents for Example 1. A, State trajectories of all agents (r = 4, p1 = v c
3 , p2 = v d

3 , 𝛽c = 0.8, 𝛽d = 0.5);
B, State trajectories of all agents (r = 2, p1 = v c

3 , p2 = v d
3 , 𝛽c = 0.8, 𝛽d = 0.5); C, State trajectories of all

agents(r = 2, p1 = v c
1 , p2 = v d

1 , 𝛽c = 0.8, 𝛽d = 0.5) [Colour figure can be viewed at wileyonlinelibrary.com]

is manifested in Figure 2; (ii) according to Remark 10, system (13)-(15) would reach consensus more quickly when
r = 2. The numerical result of Figure 2 also illustrates that cases (b) and (c) (r = 2) are faster than case (c) (r = 4);
(iii) by solving problems (30) and (31), we obtain that the optimal solutions are p1 = 1, p2 = 1 and 𝛽c = 0.8, 𝛽d = 0.8,
respectively. It follows that F1,1(0.8, 0.8) > F1,1(0.5, 0.3) > F3,3(0.8, 0.5). Thus, among cases (a)-(c), the system would
converge fastest under case (c).

Example 2. Suppose that players of game G are time-variant and r = 2, 𝛽c = 0.8, 𝛽d = 0.5. Figure 3A illustrates
the state trajectories of all agents and Figure 3B shows the players of game G at time H, 2H, … . By Figure 3, it can
be concluded that (i) at least one player is root vertex of c or d at H, 2H, … ; and (ii) the system achieves consensus.
The simulation results are consistent with the theoretical result in Theorem 4.
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FIGURE 3 State trajectories and players for Example 2. A, State trajectories of all agents; B, Players at time t= tk = sH [Colour figure can
be viewed at wileyonlinelibrary.com]

5 CONCLUSION

In this paper, consensus problem of hybrid multiagent systems was considered. Agents are categorized into two groups
by their dynamics: a group of the CT-agents and a group of the DT-agents. They need to achieve a global task, reaching
consensus, by collaboration. However, different dynamics might lead to difference in interests. Therefore, they need to
negotiate with each other and make a balance between the global task and the individual interests. This process was
modeled by a game. Firstly, we proved that this game has a unique Nash equilibrium solution. Secondly, we obtained
that the system can reach consensus if the interaction graph of the system has a spanning tree. Thirdly, we analyzed the
convergence speed for the system. We found that the convergence speed depends on the mechanism of game. Therefore,
some methods of improving the convergence speed were proposed. In the future, we might consider the containment
control and formation control for hybrid systems based on game theory.
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