
Systems & Control Letters 125 (2019) 51–58

Contents lists available at ScienceDirect

Systems & Control Letters

journal homepage: www.elsevier.com/locate/sysconle

Second-order consensus of hybrid multi-agent systems✩

Yuanshi Zheng a,b,∗, Qi Zhao a,b, Jingying Ma c, Long Wang d

a Key Laboratory of Electronic Equipment Structure Design of Ministry of Education, School of Mechano-electronic Engineering, Xidian
University, Xi’an 710071, China
b Center for Complex Systems, School of Mechano-electronic Engineering, Xidian University, Xi’an 710071, China
c School of Mathematics and Statistics, Ningxia University, Yinchuan 750021, China
d Center for Systems and Control, College of Engineering, Peking University, Beijing 100871, China

a r t i c l e i n f o

Article history:
Received 10 December 2017
Received in revised form 17 December 2018
Accepted 25 January 2019
Available online xxxx

Keywords:
Second-order consensus
Hybrid multi-agent system
Discrete-time
Continuous-time

a b s t r a c t

It is well known that heterogeneity is an important feature of multi-agent systems. In this paper, we
consider the second-order consensus of hybrid multi-agent system which is composed of continuous-
time and discrete-time dynamic agents. By analyzing the interactive mode of different dynamic agents,
two kinds of effective consensus protocols are proposed for the hybrid multi-agent system. The analysis
tool developed in this paper is based on algebraic graph theory and system transformationmethod. Some
necessary and sufficient conditions are established for solving the second-order consensus of hybrid
multi-agent system. Two examples are also provided to demonstrate the effectiveness of the theoretical
results.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Multi-agent systems are systemsof interconnected autonomous
agents, in which the dynamics of each agent are influenced by the
behavior of neighboring agents. Examples of multi-agent systems
include social networks, biological networks, sensor networks,
mobile autonomous robots, and cyber–physical systems [1,2]. The
growing importance of multi-agent systems has led to an inter-
est in coordination control to ensure consensus, flocking, con-
tainment, formation, rendezvous, etc. [3–10]. Over the past two
decades, a variety of dynamic models of agents have been devel-
oped to better understand multi-agent coordination. Moreover,
lots ofmathematicalmethods are employed to analysis and control
of multi-agent systems. For more details, one can refer to survey
paper [11] and references therein.

Consensus is a fundamental problem of multi-agent coordina-
tion, which implies that certain quantities of autonomous agents,
such as opinions, positions, velocities, or headings, reach an agree-
ment based on local information. By virtue of graph theory, Jad-
babaie et al. [12] studied the consensus of multi-agent systems
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with discrete-time dynamic agents, which provided a theoretical
explanation for the behavior of the Vicsek model [13]. Following
the work in [12], some realistic and effective protocols have been
designed for discrete-time multi-agent systems. In [14], the au-
thors studied the state consensus of discrete-timemulti-agent sys-
tems with time-delays. Gossip algorithms [15] were employed to
analyze the consensus behavior. Consensus of discrete-timemulti-
agent systems with time-varying topologies and stochastic com-
munication noises was also considered in [16]. On a parallel line
of research, consensus of multi-agent systems with continuous-
time dynamic agents was investigated in [17]. And some criteria
were given for solving the average consensus problem. In [18],
the authors presented somemore relaxable criteria for solving the
consensus of continuous-time multi-agent systems.

Note that the previouslymentioned results focus on the consen-
sus of multi-agent systems with first-order dynamic agents. How-
ever, with the consideration that the motion of robots is governed
by Newton’s laws, the second-order consensus was considered
by lots of researchers [19–26]. The authors in [19,20] studied
the second-order consensus of multiple continuous-time dynamic
agents with fixed and switching topologies. In [21], the authors
considered the second-order consensus of discrete-time multi-
agent systemswith absolute velocity information. Based on infinite
products of stochastic matrices, the authors in [22] considered
the second-order consensus of multiple discrete-time dynamic
agents with switching topologies. Second-order consensus with
nonuniform time-delays was also studied in [23]. Second-order
consensus of sampled-data multi-agent systems was considered
in [24]. Ren [25] investigated the second-order consensus with
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bounded control input, reference velocity and without velocity
measurement.

Heterogeneity is an important feature of multi-agent systems,
especially for cyber–physical systems. The authors in [27] consid-
ered the output consensus of heterogeneous linear multi-agent
systems. Some criteria were given for solving the coordination
control of heterogeneous multi-agent system which is composed
of first-order and second-order dynamic agents [28–31]. Mean-
while, it is well known that hybrid means heterogeneous in na-
ture or composition. The theory of hybrid systems has received
significant attention in the control community for the past decades.
As a special class of hybrid systems, switched systems have been
studied by a large number of researchers [32]. For multi-agent
systems, most of the results concerned with the coordination con-
trol under switching topologies were presented in [16,17,22,33].
Recently, the coordination control of a class ofmulti-agent systems
with switching dynamics was also considered in [34–36]. Some
sufficient and/or necessary conditions were given for solving the
coordination control under arbitrary switching.

Another topic that is closely related to hybrid multi-agent
systems is the coexisting of discrete-time and continuous-time
dynamic agents. For example, in the real world, natural and ar-
tificial individuals can show collective decision-making. Halloy
et al. in [37] used autonomous robots to control self-organized
behavioral patterns in group-living cockroaches. However, it is
difficult to understand the interactive mode of different dynamic
agents and analyze the coordination control of such hybrid multi-
agent system. In [38], the authors designed several consensus
protocols and obtained the consensus criteria for the hybridmulti-
agent system, which is composed of first-order dynamic agents.
The objective of this paper is to extend the results in [38] to
the case of second-order consensus by graph theory and system
transformation method. The main contribution of this paper is
threefold. First, two kinds of consensus protocols are designed
for the hybrid multi-agent system. Second, the necessary and
sufficient conditions are obtained for solving the second-order
consensus. Third, the unified framework is established in second-
order consensus of the discrete-time and the sampled-data multi-
agent system.

The remainder of this paper is organized as follows. In Section 2,
we present some notions and results in graph theory and propose
the hybrid multi-agent system. In Section 3, we present the main
results of this paper. In Section 4, numerical simulations are given
to illustrate the effectiveness of theoretical results. Finally, some
conclusions are drawn in Section 5.

Notation: Throughout this paper, we let R be the set of real
number, Rn denotes the n-dimensional real vector space. Im =

{1, 2, . . . ,m}, In/Im = {m + 1,m + 2, . . . , n}. For a given vector
or matrix X , XT denotes its transpose, ∥X∥ denotes the Euclidean
norm of a vector X . A vector is nonnegative if all its elements
are nonnegative. Denote by 1n (or 0n) the column vector with all
entries equal to one (or all zeros). In is an n-dimensional identity
matrix. diag{a1, a2 · · · , an}defines a diagonalmatrixwith diagonal
elements being a1, a2 · · · , an.

2. Preliminaries

2.1. Algebraic graph theory

The interactions among the agents are described by weighted
directed graphs. We introduce some basic concepts regarding
graphs and their properties. A more detailed exposition can be
found in textbooks on algebraic graph theory [39].

A weighted directed graph G (A ) = (V , E , A ) of order n con-
sists of a vertex set V = {s1, s2, . . . , sn}, an edge set E = {eij =

(si, sj)} ⊂ V × V and a nonnegative matrix A = [aij]n×n. The
neighbor set of the agent i is Ni = {j : aij > 0}. A directed path
between two distinct vertices si and sj is a finite ordered sequence
of distinct edges of G with the form (si, sk1 ), (sk1 , sk2 ), . . . , (skl , sj). A
directed tree is a directed graph, where there exists a vertex called
the root such that there exists a unique directed path from this
vertex to every other vertex. A directed spanning tree is a directed
tree, which consists of all the nodes and some edges in G . A graph is
called undirected if it satisfies (si, sj) ∈ E ⇔ (sj, si) ∈ E for i, j ∈ In.
An undirected graph is said to be connected if there exists a path
between any two distinct vertices of the graph. The degree matrix
D = [dij]n×n is a diagonal matrix with dii =

∑
j:sj∈Ni

aij and the
Laplacian matrix of the graph is defined as L = [lij]n×n = D − A .
It is easy to see that L 1n = 0.

A nonnegative matrix is said to be a (row) stochastic matrix if
all its row sums are 1. A stochastic matrix P = [pij]n×n is called
indecomposable and aperiodic (SIA) if limk→∞ Pk

= 1yT , where y
is some column vector. G is said the graph associated with P when
(si, sj) ∈ E if and only if pji > 0. The following result proposes the
relationship between a stochastic matrix and its associated graph.

Lemma 1 ([38]). Let H = diag{h1, h2, . . . , hn} and 0 < hi < 1
dii
,

i ∈ In. Then, In − HL is SIA, i.e., limk→∞ [In − HL ]k = 1nν
T , if and

only if graph G has a spanning tree. Furthermore, [In − HL ]T ν = ν,
1T
nν = 1 and each element of ν is nonnegative.

Remark 1. In this paper, we suppose that there exists interaction
behavior among the agents. Thus, it is easy to know that hi < 1

dii
is

equivalent to maxi∈In{hidii} < 1 for i ∈ In.

2.2. Hybrid multi-agent system

We consider the hybrid multi-agent system with second-order
dynamics which is composed of continuous-time and discrete-
time agents. The number of agents is n, labeled 1 through n, where
the number of continuous-time agents is m (m ≤ n). Without
loss of generality, we assume that agent 1 through agent m are
continuous-time agents. Each agent has the dynamics as follows:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ẋi(t) = vi(t), v̇i(t) = ui(t),
i ∈ Im,

xi(tk+1) = xi(tk) + hvi(tk), vi(tk+1) = vi(tk) + hui(tk),
tk = kh, k ∈ N,

i ∈ In/Im,

(1)

where h = tk+1 − tk > 0 is the sampling period, xi ∈ R,
vi ∈ R and ui ∈ R are the position-like, velocity-like and control
input of agent i, respectively. The initial conditions of agent i are
xi(0) = xi0, vi(0) = vi0. Let x(0) = [x10, x20, . . . , xn0]T , v(0) =

[v10, v20, . . . , vn0]
T .

Definition 1 (Second-Order Consensus). Hybridmulti-agent system
(1) is said to reach second-order consensus if for any initial condi-
tions, we have

lim
tk→∞

∥xi(tk)−xj(tk)∥ = 0, lim
tk→∞

∥vi(tk)−vj(tk)∥ = 0, for i, j ∈ In,

(2)

and

lim
t→∞

∥xi(t)−xj(t)∥ = 0, lim
t→∞

∥vi(t)−vj(t)∥ = 0, for i, j ∈ Im. (3)
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Next, it is not difficult to verify the following results.

Lemma 2. Let f (x) = ehx, g(x) =
ehx−1

x and h(x) = x − xehx. Then,
for x ∈ (−∞, 0), we have f (x), g(x) and h(x) are increasing functions.

3. Main results

In this section,wewill present two kinds of consensus protocols
(control inputs) for hybrid multi-agent system (1). The consensus
criteria are also established for solving the second-order consen-
sus.

3.1. Case 1

In this subsection, we assume that all agents communicatewith
their neighbors and update their control inputs in the sampling
time tk with absolute velocity information. Then, the consensus
protocol for hybrid multi-agent system (1) is given as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ui(t) =

∑
j∈Ni

aij(xj(tk) − xi(tk)) − k1vi(tk), t ∈ (tk, tk+1],

i ∈ Im,

ui(tk) =

∑
j∈Ni

aij(xj(tk) − xi(tk)) − k1vi(tk),

i ∈ In/Im,

(4)

where A = [aij]n×n is the aforementioned weighted adjacency
matrix associated with graph G , k1 > 0 is the feedback gain.

Theorem 1. Consider a directed communication graph G and sup-
pose that 2

√
maxi∈In{dii} < k1 <

√
5−1
h . Then, hybrid multi-agent

system (1) with protocol (4) reaches second-order consensus if and
only if graph G has a directed spanning tree.

Proof. (Sufficiency) Firstly, we will prove that Eq. (2) holds. From
(1) and (4), we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xi(t) = xi(tk) + vi(tk)(t − tk)

+
(t − tk)2

2

⎛⎝∑
j∈Ni

aij(xj(tk) − xi(tk)) − k1vi(tk)

⎞⎠ ,

vi(t) = vi(tk) + (t − tk)

⎛⎝∑
j∈Ni

aij(xj(tk) − xi(tk)) − k1vi(tk)

⎞⎠ ,

(5)

for t ∈ (tk, tk+1], i ∈ Im and⎧⎪⎪⎨⎪⎪⎩
xi(tk+1) = xi(tk) + hvi(tk),

vi(tk+1) = vi(tk) + h

⎛⎝∑
j∈Ni

aij(xj(tk) − xi(tk)) − k1vi(tk)

⎞⎠ ,
(6)

for i ∈ In/Im. For (5), when t = tk+1, we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

xi(tk+1) = xi(tk) + hvi(tk)

+
h2

2

⎛⎝∑
j∈Ni

aij(xj(tk) − xi(tk)) − k1vi(tk)

⎞⎠ ,

vi(tk+1) = vi(tk) + h

⎛⎝∑
j∈Ni

aij(xj(tk) − xi(tk)) − k1vi(tk)

⎞⎠ .

(7)

Let yi′ (tk) = xi(tk) +
2
k1

vi(tk). Then, vi(tk) =
k1
2 (yi′ (tk) − xi(tk)).

For i ∈ Im and i′ ∈ Im,

xi(tk+1) = xi(tk) + (h −
h2

2
k1)

k1
2
(yi′ (tk) − xi(tk))

+
h2

2

∑
j∈Ni

aij(xj(tk) − xi(tk))

= xi(tk) + (
hk1
2

−
h2k21
4

)(yi′ (tk) − xi(tk))

+
h2

2

∑
j∈Ni

aij(xj(tk) − xi(tk)),

(8)

yi′ (tk+1) = xi(tk+1) +
2
k1

vi(tk+1)

= xi(tk) + hvi(tk) +
h2

2

∑
j∈Ni

aij(xj(tk) − xi(tk)) −
h2k1
2

vi(tk)

+
2
k1

vi(tk) +
2h
k1

∑
j∈Ni

aij(xj(tk) − xi(tk)) − 2hvi(tk)

= yi′ (tk) + (−h −
h2k1
2

)vi(tk)

+ (
h2

2
+

2h
k1

)
∑
j∈Ni

aij(xj(tk) − xi(tk))

= yi′ (tk) + (
hk1
2

+
h2k21
4

)(xi(tk) − yi′ (tk))

+ (
h2

2
+

2h
k1

)

⎡⎣∑
j∈Ni

aij(xj(tk) − yi′ (tk))

+

∑
j∈Ni

aij(yi′ (tk) − xi(tk))

⎤⎦
= yi′ (tk) + (

h2

2
+

2h
k1

)
∑
j∈Ni

aij(xj(tk) − yi′ (tk))

+ (
hk1
2

+
h2k21
4

−
h2

2

∑
j∈Ni

aij

−
2h
k1

∑
j∈Ni

aij)(xi(tk) − yi′ (tk)).

(9)

For i ∈ In/Im and i′ ∈ In/Im,

xi(tk+1) = xi(tk) +
hk1
2

(yi′ (tk) − xi(tk)), (10)

yi′ (tk+1) = xi(tk+1) +
2
k1

vi(tk+1)

= xi(tk) +
hk1
2

(yi′ (tk) − xi(tk))

+
2
k1

vi(tk) +
2h
k1

∑
j∈Ni

aij(xj(tk) − xi(tk))

− hk1(yi′ (tk) − xi(tk))

= yi′ (tk) + (
hk1
2

−
2h
k1

∑
j∈Ni

aij)(xi(tk) − yi′ (tk))

+
2h
k1

∑
j∈Ni

aij(xj(tk) − yi′ (tk)).

(11)
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Let k2 =
hk1
2 −

h2k21
4 , k3 =

hk1
2 +

h2k21
4 −

h2
2

∑
j∈Ni

aij− 2h
k1

∑
j∈Ni

aij
and k4 =

hk1
2 −

2h
k1

∑
j∈Ni

aij. From (8)–(11), we get a first-order
discrete-time multi-agent system with 2n agents as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xi(tk+1) = xi(tk) + k2(yi′ (tk) − xi(tk)) +
h2

2

∑
j∈Ni

aij(xj(tk) − xi(tk)),

i ∈ Im,

yi′ (tk+1) = yi′ (tk) + k3(xi(tk) − yi′ (tk))

+ (
h2

2
+

2h
k1

)
∑
j∈Ni

aij(xj(tk) − yi′ (tk)), i′ ∈ Im,

xi(tk+1) = xi(tk) +
hk1
2

(yi′ (tk) − xi(tk)), i ∈ In/Im,

yi′ (tk+1) = yi′ (tk) + k4(xi(tk) − yi′ (tk))

+
2h
k1

∑
j∈Ni

aij(xj(tk) − yi′ (tk)), i′ ∈ In/Im,

(12)

where xi ∈ R and yi′ ∈ R are the states of ith and i′th agents,
respectively.

Due to 2
√
maxi∈In{dii} < k1 <

√
5−1
h , it is easy to know

that 2
√
maxi∈In{dii} < k1 < 2

h . Thus, k2 =
hk1
2 −

h2k21
4 > 0.

If dii = 0, we have 0 < k2 < k3 =
hk1
2 +

h2k21
4 < 1 and

0 < k4 =
hk1
2 < 1. If dii ̸= 0, we have h2k21

4 −
h2
2 maxi∈In{dii} > 0

and k1h
2 −

2h
k1

maxi∈In{dii} > 0, which implies that k3 > 0 and

k4 > 0. Moreover, k2 +
h2
2

∑
j∈Ni

aij < k3 + ( h
2

2 +
2h
k1
)
∑

j∈Ni
aij =

hk1
2 +

h2k21
4 < 1 and hk1

2 = k4 +
2h
k1

∑
j∈Ni

aij < 1.
Let G ′

= (V ′, E ′) be a directed communication graph of first-
order multi-agent system (12) with a vertex set V ′

= V1 ∪ V2 ∪

V3 ∪ V4, which V1 = {s1, . . . , sm}, V2 = {s1′ , . . . , sm′}, V3 =

{sm+1, . . . , sn} and V4 = {s(m+1)′ , . . . , sn′}. Suppose that graph G

has a directed spanning tree TG . For each edge (sj, si) ∈ TG , we
have (sj′ , sj) ∈ E ′, (sj, si′ ) ∈ E ′, (si′ , si) ∈ E ′. Adding these edges
to TG , we get a directed spanning tree for G ′. Suppose that graph
G ′ has a directed spanning tree TG ′ . For each vertex si ∈ V2 ∪ V4,
if there exist sj, sk ∈ V1 ∪ V3 which make (sj, si), (si, sk) ∈ TG ′ ,
we delete the vertex si and add the edge (sj, sk) ∈ E . Thus, we get
a directed spanning tree for G . Therefore, graph G has a directed
spanning tree if and only if graph G ′ has a directed spanning tree.

By the aforementioned analysis and Lemma 1, since graph G

has a directed spanning tree, it is easy to get that first-order
multi-agent system (12) reaches consensus, i.e. limtk→∞ ∥xi(tk) −

xj(tk)∥ = limtk→∞ ∥xi(tk) − yi′ (tk)∥ = 0 for i, i′, j ∈ In, which
implies that limtk→∞ ∥vi(tk)∥ = 0. Thus, we have that Eq. (2) holds
if graph G has a directed spanning tree.

Next, we will prove that Eq. (3) holds. We have

∥xi(t)− xj(t)∥ ≤ ∥xi(t)− xi(tk)∥+∥xi(tk)− xj(tk)∥+∥xj(tk)− xj(t)∥

and

∥vi(t)−vj(t)∥ ≤ ∥vi(t)−vi(tk)∥+∥vi(tk)−vj(tk)∥+∥vj(tk)−vj(t)∥,

From (5), it is easy to know that

∥xi(t) − xi(tk)∥ ≤ h∥vi(tk)∥

+
h2

2

⎛⎝∑
j∈Ni

aij∥xj(tk) − xi(tk)∥ + k1∥vi(tk)∥

⎞⎠ ,

∥vi(t) − vi(tk)∥ ≤ h

⎛⎝∑
j∈Ni

aij∥xj(tk) − xi(tk)∥ + k1∥vi(tk)∥

⎞⎠ ,

for t ∈ (tk, tk+1], i ∈ Im. When t → ∞, we have tk → ∞.
Therefore,

lim
t→∞

∥xi(t) − xi(tk)∥ = lim
t→∞

∥vi(t) − vi(tk)∥ = 0,

for i ∈ Im, which implies that

lim
t→∞

∥xi(t) − xj(t)∥ = lim
t→∞

∥vi(t) − vj(t)∥ = 0, for i, j ∈ Im.

Thus, hybrid multi-agent system (1) with protocol (4) reaches
second-order consensus.

(Necessity) Suppose that graph G does not have a directed span-
ning tree. It follows from Lemma 1 that limk→∞(In−HL )k ̸= 1nν

T ,
which means that first-order discrete-time multi-agent system
(12) cannot reach consensus. Consequently, hybrid multi-agent
system (1) cannot reach consensus. ■

Remark 2. In this paper, the consensus protocol (4) is designed
for hybrid multi-agent system (1) with absolute velocity informa-
tion, where −k1vi(tk) is the velocity damping term and k1 is the
velocity damping gain. In fact, the results in this paper can also
be extended with relative and absolute velocity information as
ui(t) =

∑
j∈Ni

aij(xj(tk)−xi(tk))+
∑

j∈Ni
aij(vj(tk)−vi(tk))−k1vi(tk).

Remark 3. In fact, the condition 2
√
maxi∈In{dii} < k1 <

√
5−1
h in Theorem 1 can be realized. For a well-connected network

(i.e., the maxi∈In{dii} is large), we can choose a small sampling
period h > 0. Thus, there exists the feedback gain k1 which satisfies
2
√
maxi∈In{dii} < k1 <

√
5−1
h .

Remark 4. From [21,24], it is easy to find that the discrete-
time multi-agent system has the form as (6) and the sampled-data
multi-agent system has the form as (7). Owing to the hybrid fea-
ture of consensus protocol (4), the analysis of hybrid multi-agent
system (1) is more difficult than the discrete-time multi-agent
system. The result in Theorem 1 establishes a unified framework
for the second-order consensus of discrete-time and sampled-data
multi-agent systems, i.e., hybridmulti-agent system (1) becomes a
sampled-datamulti-agent system ifm = n, andhybridmulti-agent
system (1) becomes a discrete-time multi-agent system ifm = 0.

3.2. Case 2

In this subsection, we still assume that the interaction among
agents happens in sampling time tk. However, different from Case
1, we assume that each continuous-time dynamic agent can obtain
its own state in real time. Thus, the consensus protocol for hybrid
multi-agent system (1) is given as⎧⎪⎪⎪⎨⎪⎪⎪⎩

ui(t) =

∑
j∈Ni

aij(xj(tk) − xi(t)) − k1vi(t), t ∈ (tk, tk+1], i ∈ Im,

ui(tk) =

∑
j∈Ni

aij(xj(tk) − xi(tk)) − k1vi(tk), i ∈ In/Im,

(13)

where A = [aij]n×n is the weighted adjacency matrix associated
with graph G , k1 > 0 is the feedback gain.

Theorem 2. Consider a directed communication graph G and sup-
pose that 2

√
maxi∈In{dii} < k1 <

√
5−1
h . Then, hybrid multi-agent

system (1) with protocol (13) reaches second-order consensus if and
only if graph G has a directed spanning tree.
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Proof. (Sufficiency) From (1) and (13), for i ∈ Im and t ∈ (tk, tk+1],
if dii ̸= 0, we have

ẍi(t) = v̇i(t) =

∑
j∈Ni

aij(xj(tk) − xi(t)) − k1ẋi(t),

i.e.,

ẍi(t) + k1ẋi(t) +

⎛⎝∑
j∈Ni

aij

⎞⎠ xi(t) =

∑
j∈Ni

aijxj(tk).

Solving the above second order ordinary differential equation, we
get⎧⎪⎨⎪⎩ xi(t) = c1er1(t−tk) + c2er2(t−tk) +

∑
j∈Ni

aijxj(tk)∑
j∈Ni

aij
,

vi(t) = ẋi(t) = c1r1er1(t−tk) + c2r2er2(t−tk),

(14)

where r1 =
−k1+

√
k21−4

∑
j∈Ni

aij
2 , r2 =

−k1−

√
k21−4

∑
j∈Ni

aij
2 , c1 =

vi(tk)+
r2

∑
j∈Ni

aij(xj(tk)−xi(tk))∑
j∈Ni

aij
r1−r2

and c2 =

vi(tk)+
r1

∑
j∈Ni

aij(xj(tk)−xi(tk))∑
j∈Ni

aij
r2−r1

, for t ∈

(tk, tk+1]. It is easy to find that r1 + r2 = −k1, r1r2 =
∑

j∈Ni
aij.

For i ∈ Im, when t = tk+1, we have

xi(tk+1) = c1er1h + c2er2h +

∑
j∈Ni

aijxj(tk)∑
j∈Ni

aij

=

vi(tk) +
r2·

∑
j∈Ni

aij(xj(tk)−xi(tk))∑
j∈Ni

aij

r1 − r2
· er1h

+

vi(tk) +
r1·

∑
j∈Ni

aij(xj(tk)−xi(tk))∑
j∈Ni

aij

r2 − r1
· er2h +

∑
j∈Ni

aijxj(tk)∑
j∈Ni

aij

=
er1h − er2h

r1 − r2
vi(tk) +

r2er1h−r1er2h∑
j∈Ni

aij

r1 − r2

∑
j∈Ni

aij(xj(tk) − xi(tk))

+

∑
j∈Ni

aijxj(tk)∑
j∈Ni

aij

= xi(tk) +
r2er1h − r1er2h + (r1 − r2)∑

j∈Ni
aij(r1 − r2)

∑
j∈Ni

aij(xj(tk) − xi(tk))

+
er1h − er2h

r1 − r2
vi(tk),

(15)

and

vi(tk+1) = c1r1er1h + c2r2er2h

=
r1vi(tk) +

∑
j∈Ni

aij(xj(tk) − xi(tk))

r1 − r2
· er1h

+
r2vi(tk) +

∑
j∈Ni

aij(xj(tk) − xi(tk))

r2 − r1
· er2h

=
r1er1h − r2er2h

r1 − r2
vi(tk) +

er1h − er2h

r1 − r2

∑
j∈Ni

aij(xj(tk) − xi(tk))

= vi(tk) +
er1h − er2h

r1 − r2

∑
j∈Ni

aij(xj(tk) − xi(tk))

+
r1er1h − r2er2h − (r1 − r2)

r1 − r2
vi(tk).

(16)

Let yi′ (tk) = xi(tk) +
2
k1

vi(tk). Then, vi(tk) =
k1
2 (yi′ (tk) − xi(tk)).

For i ∈ Im and i′ ∈ Im,

xi(tk+1) = xi(tk) +

er1h−1
r1

−
er2h−1

r2

r1 − r2

∑
j∈Ni

aij(xj(tk) − xi(tk))

+
k1
2

er1h − er2h

r1 − r2
(yi′ (tk) − xi(tk))

= xi(tk) +
k1k5
2

(yi′ (tk) − xi(tk)) + k6
∑
j∈Ni

aij(xj(tk) − xi(tk)),

(17)

yi′ (tk+1) = xi(tk) + k6
∑
j∈Ni

aij(xj(tk) − xi(tk)) +
k1k5
2

(yi′ (tk) − xi(tk))

+
2
k1

⎛⎝vi(tk) + k5
∑
j∈Ni

aij(xj(tk) − xi(tk)) + k7vi(tk)

⎞⎠
= yi′ (tk) + (

k1k5
2

+ k7)(yi′ (tk) − xi(tk))

+ (
2k5
k1

+ k6)
( ∑

j∈Ni

aij(xj(tk) − yi′ (tk))

+

∑
j∈Ni

aij(yi′ (tk) − xi(tk))
)

= yi′ (tk) +

⎛⎝−
k1k5
2

− k7 −

∑
j∈Ni

aij(
2k5
k1

+ k6)

⎞⎠
× (xi(tk) − yi′ (tk)) + (

2k5
k1

+ k6)
∑
j∈Ni

aij(xj(tk) − yi′ (tk)),

(18)

where k5 =
er1h−er2h
r1−r2

, k6 =

er1h−1
r1

−
er2h−1

r2
r1−r2

and k7 =
r1er1h−r2er2h−(r1−r2)

r1−r2
.

Due to r2 < r1 < 0, from Lemma 2, we have k5 > 0, k6 > 0
and k7 < 0. In addition, we know k1 > 2

√
maxi∈In{dii}, which

implies that ( k12 −
2
k1

∑
j∈Ni

aij) > 0. See the equation in Box I.
Thus, k1k5

2 + k6
∑

j∈Ni
aij = (− k1k5

2 − k7 −
∑

j∈Ni
aij(

2k5
k1

+ k6)) +

( 2k5k1
+ k6)

∑
j∈Ni

aij. Owing to r1 + r2 = −k1,

k1k5
2

+ k6
∑
j∈Ni

aij = −
k1k5
2

− k7

= −

k1
2 (er1h − er2h) +

(
(r1er1h − r1) − (r2er2h − r2)

)
r1 − r2

= −
er1h + er2h

2
+ 1 < 1.

For i ∈ Im and t ∈ (tk, tk+1], if dii = 0, (14) can be replaced by{
xi(t) = c3 + c4e−k1(t−tk),

vi(t) = −k1c4e−k1(t−tk),
(19)

where c3 = xi(tk)+
vi(tk)
k1

and c4 = −
vi(tk)
k1

. Thus, it is easy to get that⎧⎪⎪⎨⎪⎪⎩
xi(tk+1) = xi(tk) +

1 − e−k1h

2
(yi′ (tk) − xi(tk)),

yi′ (tk+1) = yi′ (tk) +
1 − e−k1h

2
(xi(tk) − yi′ (tk)),

(20)

where i ∈ Im, i′ ∈ Im and 0 < 1−e−k1h

2 < 1.
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Moreover

−
k1k5
2

− k7 −

∑
j∈Ni

aij(
2k5
k1

+ k6)

=

k1
2 (er1h − er2h) + [(r1er1h − r1) − (r2er2h − r2)] +

∑
j∈Ni

aij( e
r1h−1
r1

−
er2h−1

r2
) +

2
k1

∑
j∈Ni

aij(er1h − er2h)

r2 − r1

=

⎛⎝k1
2

+ r1 + r2 +
2
k1

∑
j∈Ni

aij

⎞⎠ (er1h − er2h)
r2 − r1

=

⎛⎝k1
2

−
2
k1

∑
j∈Ni

aij

⎞⎠ (er1h − er2h)
r1 − r2

= k5

⎛⎝k1
2

−
2
k1

∑
j∈Ni

aij

⎞⎠ > 0.

Box I.

For i ∈ In/Im and i′ ∈ In/Im, similar to the analysis of
Theorem 1,

xi(tk+1) = xi(tk) +
hk1
2

(yi′ (tk) − xi(tk)) (21)

and

yi′ (tk+1) = yi′ (tk) + k4(xi(tk) − yi′ (tk)) +
2h
k1

∑
j∈Ni

aij(xj(tk) − yi′ (tk)).

(22)

From (17), (18) (or (20)) and (21), (22), we get a first-order
discrete-time multi-agent system as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xi(tk+1) = xi(tk) +
k1k5
2

(yi′ (tk) − xi(tk)) + k6
∑
j∈Ni

aij

× (xj(tk) − xi(tk)), i ∈ Im,

yi′ (tk+1) = yi′ (tk) + k5

⎛⎝k1
2

−
2
k1

∑
j∈Ni

aij

⎞⎠ (xi(tk) − yi′ (tk))

+ (
2k5
k1

+ k6)
∑
j∈Ni

aij(xj(tk) − yi′ (tk)), i′ ∈ Im,

xi(tk+1) = xi(tk) +
hk1
2

(yi′ (tk) − xi(tk)), i ∈ In/Im,

yi′ (tk+1) = yi′ (tk) + k4(xi(tk) − yi′ (tk))

+
2h
k1

∑
j∈Ni

aij(xj(tk) − yi′ (tk)), i′ ∈ In/Im.

(23)

By the aforementioned analysis and Lemma 1, since graph G

has a directed spanning tree, it is easy to get that first-order
multi-agent system (23) reaches consensus, which implies that
limtk→∞ ∥xi(tk) − xj(tk)∥ = 0, limtk→∞ ∥vi(tk)∥ = 0 for i, j ∈ In.

For i, j ∈ Im, we have

∥xi(t)− xj(t)∥ ≤ ∥xi(t)− xi(tk)∥+∥xi(tk)− xj(tk)∥+∥xj(tk)− xj(t)∥

and

∥vi(t)−vj(t)∥ ≤ ∥vi(t)−vi(tk)∥+∥vi(tk)−vj(tk)∥+∥vj(tk)−vj(t)∥.

If dii ̸= 0, from (14), we know that

∥xi(t) − xi(tk)∥

= ∥c1er1(t−tk) + c2er2(t−tk) +

∑
j∈Ni

aij(xj(tk) − xi(tk))∑
j∈Ni

aij
∥

=

 r2er1(t−tk) − r1er2(t−tk) + (r1 − r2)∑
j∈Ni

aij(r1 − r2)

∑
j∈Ni

aij(xj(tk) − xi(tk))

+
er1(t−tk) − er2(t−tk)

r1 − r2
vi(tk)


≤

er1(t−tk)−1
r1

−
er2(t−tk)−1

r2

r1 − r2

∑
j∈Ni

aij
(xj(tk) − xi(tk))


+

er1(t−tk) − er2(t−tk)

r1 − r2
∥vi(tk)∥

≤
1∑

j∈Ni
aij

⎛⎝∑
j∈Ni

aij
(xj(tk) − xi(tk))

⎞⎠ +
2
k1

∥vi(tk)∥ ,

∥vi(t) − vi(tk)∥ =

 er1(t−tk) − er2(t−tk)

r1 − r2

∑
j∈Ni

aij(xj(tk) − xi(tk))

+
r1er1(t−tk) − r2er2(t−tk) − (r1 − r2)

r1 − r2
vi(tk)


≤

er1(t−tk) − er2(t−tk)

r1 − r2

∑
j∈Ni

aij∥(xj(tk) − xi(tk))∥

+
(r1 − r1er1(t−tk)) − (r2 − r2er2(t−tk))

r1 − r2
∥vi(tk)∥

≤
2
k1

∑
j∈Ni

aij∥(xj(tk) − xi(tk))∥ + 2∥vi(tk)∥.

If dii = 0, it follows from (19) that

∥xi(t) − xi(tk)∥ =

vi(tk)
k1

−
vi(tk)
k1

e−k1(t−tk)


≤
1
k1

(1 − e−k1(t−tk))∥vi(tk)∥ ≤
1
k1

∥vi(tk)∥,

∥vi(t) − vi(tk)∥ = ∥vi(tk)e−k1(t−tk) − vi(tk)∥

≤ (1 − e−k1(t−tk))∥vi(tk)∥ ≤ ∥vi(tk)∥.

When t → ∞, we have tk → ∞. Therefore,

lim
t→∞

∥xi(t) − xi(tk)∥ = lim
t→∞

∥vi(t) − vi(tk)∥ = 0,
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Fig. 1. A directed graph G .

for i ∈ Im, which implies that

lim
t→∞

∥xi(t) − xj(t)∥ = lim
t→∞

∥vi(t) − vj(t)∥ = 0, for i, j ∈ Im.

Thus, hybrid multi-agent system (1) with protocol (13) reaches
second-order consensus.

(Necessity) Similar to the proof of necessity in Theorem 1, we
know that if the directed communication graph G does not have a
directed spanning tree, then hybrid multi-agent system (1) cannot
achieve consensus. ■

Remark 5. In consensus protocol (13), we assume that the inter-
action among agents happens in sampling time tk for t ∈ (tk, tk+1].
However, each continuous-time dynamic agent can obtain its own
state in real time. Thus, the continuous-time dynamic agent i
uses its own continuous information xi(t) (vi(t)) and transfers the
information xi(t) by network. Nevertheless, the neighbor agent j
can only receive information in sampling time.

Remark 6. Note that hybrid multi-agent system (1) presents a
unified viewpoint for both the discrete-time multi-agent system
and the continuous-time multi-agent system. In other words, if
m = 0, hybrid multi-agent system (1) becomes a discrete-time
multi-agent system. And if m = n, hybrid multi-agent system (1)
becomes a continuous-time multi-agent system.

4. Simulations

In this section, we provided two examples to demonstrate the
effectiveness of our theoretical results.

Suppose that there are 6 agents. The continuous-time dynamic
agents and the discrete-time dynamic agents are denoted by 1–3
and 4–6, respectively. The dynamics of the agents are described
in (1). The communication graph G is shown in Fig. 1 with 0–1
weights. It can be noted that G has a directed spanning tree and
maxi∈I6{dii} = 2. Let x(0) = [−13, 14, 3, −9, 20, 6]T and v(0) =

[−7, 10, −2, 6, 15, −12]T .

Example 1. Let the sampling period h = 0.3 and the feedback
gain k1 = 3.8. It is easy to calculate that 2

√
maxi∈In{dii} < k1 <

√
5−1
h holds. By using consensus protocol (4), the state trajectories

of all the agents are shown in Fig. 2, which is consistent with
Theorem 1.

Example 2. Let the sampling period h = 0.35 and the feedback
gain k1 = 3.5. It is easy to calculate that 2

√
maxi∈In{dii} < k1 <

√
5−1
h holds. By using consensus protocol (13), the state trajectories

of all the agents are shown in Fig. 3, which is consistent with
Theorem 2.

5. Conclusions

In this paper, we studied the second-order consensus of hybrid
multi-agent system which is composed of continuous-time and
discrete-time dynamic agents. Two effective consensus protocols
were presented. First, we assumed that all agents update their
strategies in the sampling timewith absolute velocity information.
Then, we assumed that each continuous-time agent can observe
its own state in real time. When 2

√
maxi∈In{dii} < k1 <

√
5−1
h ,

we proved that the hybridmulti-agent system reaches the second-
order consensus if and only if the communication graph has a
directed spanning tree. In the future, we may consider the second-
order consensus of hybrid multi-agent systems with only relative
velocity information and time-delays, etc. ■

Fig. 2. The state trajectories of all agents with consensus protocol (4) and communication graph G .
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Fig. 3. The state trajectories of all agents with consensus protocol (13) and communication graph G .
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