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Finite-time consensus of multiple second-order dynamic agents without velocity measurements
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bCenter for Systems and Control, College of Engineering, Peking University, Beijing 100871, China

(Received 25 November 2011; final version received 14 July 2012)

This article considers the finite-time consensus of multiple second-order dynamic agents without velocity
measurements. A feasible protocol under which each agent can only obtain the measurements of its position
relative to its neighbours is proposed. By applying the graph theory, Lyapunov theory and the homogeneous
domination method, some sufficient conditions for finite-time consensus of second-order multi-agent systems are
established under the different kinds of communication topologies. Some examples are presented to illustrate the
effectiveness of the theoretical results.
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1. Introduction

Consensus problem of multi-agent systems has
attracted great attention in many fields, such as
system control theory, statistical physics, biology,
communication, computer science and so on. As a
fundamental of distributed coordination, consensus of
multi-agent systems means that a group of agents
reaches an agreement on a common value by negoti-
ating with their neighbours asymptotically or in a finite
time. Roughly speaking, the main objective of consen-
sus problem is to design an appropriate consensus
protocol such that a group of agents converges to a
consensus state of interest. Up to now, by using the
matrix theory, the graph theory, the frequency-domain
analysis method, the Lyapunov direct method, etc.,
consensus problem of multi-agent systems has been
studied in detail and the consensus criterions have been
obtained for first-order, second-order or high-order
multi-agent systems, many of which have been suc-
cessfully applied in many areas including swarming
(Chu, Wang, Chen, and Mu 2006), flocking (Olfati-
Saber 2006) and formation control (Ji, Wang, Lin, and
Wang 2009; Xiao, Wang, Chen, and Gao 2009) of
social insects, unmanned air vehicles (UAVs), robotic
teams, satellite clusters, and so on.

Consensus of the first-order multi-agent systems is
primarily proposed and extensively explored by many
researchers. Vicsek, Czirok, Jacob, Cohen, and
Schochet (1995) proposed a discrete-time model of n
agents all moving in the plane with the same speed and
demonstrated by simulation that all agents move to

one direction asymptotically. Based on the algebraic

graph theory (Godsil and Royal 2001), Jadbabaie, Lin,

and Morse (2003) provided a theoretical explanation of

the consensus behaviour in Vecsek model, and analysed

the alignment of a network of agents with switching

topologies that are periodically connected. Olfati-Saber

and Murray (2004) discussed consensus problem for

networks of dynamic agents with switching topologies

and time-delays in a continuous-time model by defining

a disagreement function, and obtained some useful

results for solving the average-consensus problem.With

the development of issue, a lot of new consensus results

have been offered with different models and protocols

for first-order multi-agent systems (Ren and Beard

2005; Xiao and Wang 2006, 2008; Sun, Wang, and Xie

2008; Yu and Wang 2012). In recent years, amounting

attentions have been paid to the consensus problem of

second-order multi-agent systems. Xie and coworkers

(Ren and Atkins 2007; Xie and Wang 2007) gave the

sufficient conditions for consensus problem of second-

order multi-agent systems with fixed and switching

topologies. Gao and Wang (2010) investigated the

consensus of second-order multi-agent systems based

on sampled-data control. Other results of consensus

problem have been established for high-order multi-

agent systems (Jiang and Wang 2010) and heteroge-

neous multi-agent systems (Zheng, Zhu, and Wang

2011b).
On the one hand, most consensus protocol of

second-order multi-agent systems rely on the availabil-

ity of the feedback information of the full states in the
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study of consensus problem. However, some informa-
tion is unmeasurable because of technology limitations
or environment disturbances (Gao, Zuo, Jiang, Du,
and Ma 2012). For example, the agents can not obtain
any velocity information in some cases. Hence, it is
realistic and significative to consider the consensus
problem of second-order multi-agent systems without
velocity measurements. However, there are only a few
works on this problem (Ren 2008; Gao, Wang, and Jia
2009; Abdessameud and Tayebi 2010; Zheng and
Wang 2012a). In Ren (2008), the consensus problem
of second-order multi-agent systems without velocity
measurements was considered under fixed undirected
topology. Gao et al. (2009) extended the results in Ren
(2008) to a time-varying topology with/without time-
delays. Abdessameud and Tayebi (2010) proposed the
consensus protocols for second-order multi-agent sys-
tems without velocity measurements and in the pres-
ence of input saturation constraints. Zheng and Wang
2012a) considered the consensus of heterogeneous
multi-agent systems without velocity measurements
under undirected connected and leader-following
networks.

On the other hand, the convergence speed is an
active topic and can reflect the performance of the
proposed consensus protocol in the analysis of con-
sensus problem. Olfati-Saber and Murray (2004)
showed that the second smallest eigenvalue of the
interaction graph Laplacian, called algebraic connec-
tivity of graph, quantifies the convergence speed of the
consensus algorithm. Kim and Mesbahi (2006) con-
sidered the problem of maximising the second smallest
eigenvalues of a state-dependent graph Laplacian.
Xiao and Boyd (2006) considered and solved the
problem of the weight design by using semi-definite
convex programming, so that algebraic connectivity is
increased. Although by maximising the algebraic
connectivity of interaction graph, one can increase
convergence speed with respect to the linear protocol,
the consensus can never be reached in a finite time.
However, in many situations, it is required that the
consensus should be reached in a finite time, such as
when the control accuracy is crucial. Based on the non-
smooth stability analysis, Cortes (2006) discussed the
finite-time consensus problem for multi-agent systems
under some discontinuous consensus protocols. Jiang
and Wang (2009) investigated the finite-time consensus
for multi-agent systems with fixed and switching
topologies. In Wang and Xiao (2010), the authors
showed that the multi-agent systems can solve the
finite-time consensus problem for both the bidirec-
tional and unidirectional interaction cases. Wang and
Hong (2010) considered the finite-time �-consensus of
multi-agent systems with variable coupling topology.
Zheng, Chen, and Wang (2011a) studied the finite-time

consensus of stochastic multi-agent systems with gen-
eral protocol. For second-order multi-agent systems,
Wang and Hong (2008) gave some protocols and
showed that these protocols can reach the finite-time
consensus under undirected connected graph using the
homogeneous method. Sun and Guan (2012) consid-
ered the finite-time consensus of leader-following
multi-agent systems with velocity measurements.
Based on adding a power integrator method, Li, Du,
and Lin (2011) designed a protocol and discussed the
finite-time consensus of leaderless and leader-following
multi-agent systems with external disturbances. Zheng
and Wang (2012b) investigated the finite-time consen-
sus of heterogeneous multi-agent systems with and
without velocity measurements. Cao, Ren, and Meng
(2010) studied finite-time decentralised formation
tracking of second-order multi-agent systems by intro-
ducing the decentralised sliding mode estimators.

Inspired by the recent developments in multi-agent
systems, we try to further investigate the finite-time
consensus of second-order multi-agent systems.
Different from Wang and Hong (2008), we give the
consensus protocol for second-order multi-agent sys-
tems without velocity measurements and consider the
finite-time consensus problem under different commu-
nication topologies. The main contribution of this
article is threefold. First, we propose a continuous
consensus protocol without velocity measurements for
second-order multi-agent systems based on the auxil-
iary system approach. Second, we prove that the
proposed consensus protocol can solve the finite-time
consensus of second-order multi-agent systems under
undirected connected graph and leader-following net-
work by using the graph theory, Lyapunov theory and
the homogeneous domination method. Finally, we
discuss the finite-time consensus problem of second-
order multi-agent systems under some special directed
graphs. It is not only theoretically interesting but also
practically important owing to the fact that many
practical systems need to consider the convergence
speed when the velocity information is unmeasurable.

The rest of this article is organised as follows.
In Section 2, some basic definitions and preliminary
results are assembled. Section 3 sets up the problem
formulation. The main results are established in
Sections 4 and numerical simulations to show the
validity of theoretical results are presented in Section 5.
Finally, the conclusions are provided in Section 6.

Notation: Throughout this article, we let R, R>0 and
R�0 be the set of real number, positive real number and
non-negative real number, R

n is the n-dimensional real
vector space, In¼ {1, 2, . . . , n}. For a given matrix X
(vector x), XT (xT) denotes its transpose, and kXk (kxk)
denotes the Euclidean norm. 1n is a vector with
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elements being all ones. A is said to be non-negative

(resp. positive) if all entries aij are non-negative
(resp. positive), denoted by A� 0 (resp. A> 0).

sig(x)�¼ sign(x)jxj�, where sign(�) is sign function.

2. Preliminaries

The network formed by multi-agent system can always
be represented by a graph. Thus, graph theory is an
important tool to analyse consensus problem for multi-

agent system. First, some basic definitions and results
are presented in matrix theory and graph theory (Horn

and Johnson 1985; Godsil and Royal 2001).
An undirected (directed) graph G¼ (V, E) consists

of a vertex set V ¼ {s1, s2, . . . , sn} and an edge set
E ¼ {eij¼ (si, sj)}�V �V. Denote the set of neighbours

of si by N i¼ {sj : eji¼ (sj, si)2E}. A path that connects
si and sj in the graph G is a sequence of distinct vertices

si0 , si1 , si2 , . . . sim , where si0 ¼ si, sim ¼ sj and ðsir ,
sirþ1Þ 2 E, 0� r�m� 1. An undirected (directed)
graph is said to be connected (strong connected) if

there exists a path between any two distinct vertices of
the graph. Otherwise, the undirected graph can be

partitioned into some subparts, where each part in the
graph is connected and there is no connections between
any part. Here, each part is called the connected

component of undirected graph G. For directed graph,
if (si, sj) is an edge of G, si is called the parent of sj and sj
is called the child of si. A directed tree is a directed
graph, where every vertex, except one special vertex
without any parent, which is called the root, has

exactly one parent, and the root can be connected to
any other vertices through paths. The weighted adja-

cency matrix A¼ [aij]n�n of a graph G is a non-negative
matrix with rows and columns indexed by the vertices,

all entries of which are non-negative, where aij> 0 if
and only if eji¼ (sj, si)2E. The degree matrix
D¼ [dij]n�n is a diagonal matrix with dii ¼

P
sj2N i

aij,

and the Laplacian matrix of the graph is defined as
L¼ [lij]n�n¼D�A. It is easy to see that adjacency

matrix A is symmetric if G is an undirected graph. The
directed graph G is said to satisfy the detailed balance
condition if there exist some scalers !i> 0

(i¼ 1, 2, . . . , n) such that !iaij¼!jaji for all i, j2In
(Chu et al. 2006). For convenience of exposition, the

names, agent and node, network and graph, will be
used interchangeably.

Next, some necessary lemmas are given for analysis
of main results.

Consider the autonomous system

_x ¼ f ðxÞ, ð1Þ

where f: D!R
n is a continuous function with D�R

n.

Lemma 2.1 (Lasalle’s Invariance Principle): Let
��D be a compact set that is positively invariant
with respect to (1). Let V: D!R be a continuously
differentiable function such that _VðxÞ � 0 in �. Let E be
the set of all points in � where _VðxÞ ¼ 0: Let M be the
largest invariant set in E. Then every solution starting in
� approaches M as t!1. œ

A function V(x) is homogeneous of degree � > 0
with dilation (r1, r2, . . . , rn), ri> 0(i2In), if

Vð"r1x1, "
r2x2, . . . , "rnxnÞ ¼ "

�VðxÞ, "4 0:

A vector field f(x)¼ ( f1(x), f2(x), . . . , fn(x)) is homog-
enous of degree � > 0 with dilation (r1, r2, . . . , rn),
ri> 0(i2In), if

fið"
r1x1, "

r2x2, . . . , "rnxnÞ ¼ "
�þri fiðxÞ, i 2 In, "4 0:

Lemma 2.2 (Bhat and Bernstein 2000; Hong
2002): Suppose that the system (1) is homogeneous of
degree � with dilation (r1, r2, . . . , rn), function f(x) is
continuous and x¼ 0 is its asymptotically stable equi-
librium. If homogeneity degree � < 0, the equilibrium of
the system (1) is finite-time stable. œ

3. Problem formulation

In this section, we formulate the problem to be studied
and give some basic definitions and lemmas.

Suppose that the multi-agent system consists of n
agents, e.g. vehicles, robots, etc., labelled 1 through n.
Each agent obeys a double integrator model of the
form: €xiðtÞ ¼ uiðtÞ, or equivalently

_xiðtÞ ¼ viðtÞ,

_viðtÞ ¼ uiðtÞ, i 2 In,

�
ð2Þ

where xi2R, vi2R and ui2R are the position, velocity
and acceleration, respectively, of agent i. The initial
conditions are xi(0)¼ xi0, vi(0)¼ vi0. Let x(0)¼ [x10,
x20, . . . , xn0], v(0)¼ [v10, v20, . . . , vn0].

In order to distinguish the finite-time consensus of
first-order multi-agent systems from the finite-time
consensus of second-order multi-agent systems, we
define the finite-time consensus of second-order multi-
agent systems as second-order finite-time consensus.

Definition 3.1 (SOFTC): The multi-agent system (2)
is said to reach second-order finite-time consensus
(SOFTC for short) if for any initial conditions, there
exists a finite-time T such that

lim
t!T�
kxiðtÞ � xjðtÞk ¼ 0,

lim
t!T�
kviðtÞ � vjðtÞk ¼ 0, and

xiðtÞ ¼ xjðtÞ, viðtÞ ¼ vjðtÞ, if t � T

for any i, j2In. Moreover, if T¼1, then the multi-
agent system (2) is said to reach second-order
consensus.

International Journal of Systems Science 3
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From Lemma 2.2, we get the next lemma. It is
obvious, and the proof is omitted here.

Lemma 3.2: Suppose that, for some given ui(t), i2In,
the system (2) with ðx1, . . . , xn|fflfflfflfflfflffl{zfflfflfflfflfflffl}

n

, , v1, . . . , vn|fflfflfflfflffl{zfflfflfflfflffl}
n

Þ is homoge-

neous of degree � with dilation ðr1, . . . , r1|fflfflfflfflffl{zfflfflfflfflffl}
n

, r2, . . . , r2|fflfflfflfflffl{zfflfflfflfflffl}
n

Þ

and can solve second-order consensus problem. If homo-
geneity degree � < 0, then the system (2) can solve
second-order finite-time consensus problem. œ

Wang and Hong (2008) proposed a finite-time
consensus protocol for second-order multi-agent
system (2) with velocity information as follows:

uiðtÞ ¼
Xn
j¼1

aij

h
 1ðsigðxjðtÞ � xiðtÞÞ

�1Þ

þ  2ðsigðvjðtÞ � viðtÞÞ
2�1
1þ�1 Þ

i
,

where 0<�1< 1,  1 and  2 are continuous odd
functions with z i(z)> 0 (8z 6¼ 0) and  i(z)¼ cizþ o(z)
for some positive numbers ci (i¼ 1, 2).

Different from Wang and Hong (2008), we present
the consensus protocol without velocity measurements
as follows:

uiðtÞ ¼
Xn
j¼1

aijsigðxjðtÞ � xiðtÞÞ
�1 þ k1 _yiðtÞ, i 2 I n,

ð3Þ

where A¼ [aij]n�n is the weighted adjacency matrix,
0<�1< 1, k1> 0 is a feedback gain. yi2R is given by

_yiðtÞ ¼ �k2sigð yiðtÞÞ
2�1
1þ�1 þ k3

Xn
j¼1

aijsigðxjðtÞ � xiðtÞÞ
�1 ,

i 2 In, ð4Þ

where k2> 0, k3> 0 and yi(0)¼ yi0 can be chosen
arbitrarily. Let y(0)¼ [y10, y20, . . . , yn0].

The multi-agent system (2) with consensus protocol
(3–4) can be rewritten as follows:

_xiðtÞ ¼ viðtÞ,

_viðtÞ ¼
Xn
j¼1

aijsigðxjðtÞ � xiðtÞÞ
�1 þ k1 _yiðtÞ,

_yiðtÞ ¼ �k2sigð yiðtÞÞ
2�1
1þ�1 þ k3

Xn
j¼1

aijsigðxjðtÞ � xiðtÞÞ
�1 ,

i 2 I n,

8>>>>>>>><
>>>>>>>>:

ð5Þ

Owing to the fact that

"1þ�1viðtÞ ¼ "
�þ2viðtÞ,

ð1þ k1k3Þ
Xn
j¼1

aijsigð"
2xjðtÞ � "

2xiðtÞÞ
�1

� k1k2sigð"
1þ�1yiðtÞÞ

2�1
1þ�1

¼ "�þð1þ�1Þ
�
ð1þ k1k3Þ

Xn
j¼1

aijsigðxjðtÞ � xiðtÞÞ
�1

� k1k2sigð yiðtÞÞ
2�1
1þ�1

�

and

� k2sigð"
1þ�1yiðtÞÞ

2�1
1þ�1 þ k3

Xn
j¼1

aijsigð"
2xjðtÞ � "

2xiðtÞÞ
�1

¼ "�þð1þ�1Þ
�
� k2sigð yiðtÞÞ

2�1
1þ�1

þ k3
Xn
j¼1

aijsigðxjðtÞ � xiðtÞÞ
�1

�
,

we know that the multi-agent system (5) with variables

ðx1ðtÞ, . . . , xnðtÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
n

, v1ðtÞ, . . . , vnðtÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
n

, , y1ðtÞ, . . . , ynðtÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
n

Þ is a

homogeneous system of degree �¼ �1� 1< 0 with

dilation ð2, . . . , 2|fflfflffl{zfflfflffl}
n

, 1þ �1, . . . , 1þ �1|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
n

, 1þ �1, . . . , 1þ �1|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
n

Þ.

Therefore, the analysis for SOFTC problem of multi-

agent system changes into second-order consensus

problem.

4. Main results

In this section, we will study the second-order finite-

time consensus of multi-agent system (5) under undi-

rected and directed graphs, respectively.

4.1. Undirected graph

For undirected graph, we consider the communication

topology G with two cases, one is the undirected

connected graph, the other is the leader-following

network.

Theorem 4.1: Suppose that the communication topol-

ogy G is an undirected connected graph, i.e. aij¼ aji for

all i, j2In. Then the multi-agent system (5) can achieve

the SOFTC.

Proof: Take a Lyapunov function for (5) as

V1ðtÞ ¼
Xn
i¼1

Xn
j¼1

aij
jxiðtÞ � xjðtÞj

�1þ1

�1 þ 1

þ
Xn
i¼1

ðviðtÞ � k1yiðtÞÞ
2
þ
Xn
i¼1

k1
k3
ð yiðtÞÞ

2,

which is positive definite with respect to xi(t)� xj(t)

(8i 6¼ j, i, j2In), vi(t) (i2In) and yi(t) (i2In).

4 Y. Zheng et al.
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Differentiating V1(t), gives

_V1ðtÞ ¼
Xn
i¼1

Xn
j¼1

aijsigðxjðtÞ � xiðtÞÞ
�1 ð _xjðtÞ � _xiðtÞÞ

þ
Xn
i¼1

2ðviðtÞ � k1yiðtÞÞð _viðtÞ � k1 _yiðtÞÞ

þ
Xn
i¼1

2k1
k3

yiðtÞ _yiðtÞ

¼ �
Xn
i¼1

2viðtÞ
Xn
j¼1

aijsigðxjðtÞ � xiðtÞÞ
�1

þ
Xn
i¼1

2ðviðtÞ � k1yiðtÞÞ
Xn
j¼1

aijsigðxjðtÞ � xiðtÞÞ
�1

þ
Xn
i¼1

2k1
k3

yiðtÞð�k2sigð yiðtÞÞ
2�1
1þ�1

þ k3
Xn
j¼1

aijsigðxjðtÞ � xiðtÞÞ
�1 Þ

¼ �
Xn
i¼1

2k1k2
k3
j yiðtÞj

3�1þ1

1þ�1 � 0

Denote the invariant set S ¼ fðx1, v1, y1, . . . ,

xn, vn, ynÞj _V1 � 0g. Note that _V1 � 0 implies that

yi¼ 0 (i2In). From (4), we have

k3
Pn

j¼1 aijsigðxjðtÞ � xiðtÞÞ
�1 ¼ 0, for i 2 I n:

Because the graph G is undirected, we have

Xn
i¼1

xiðtÞ

�Xn
j¼1

aijsigðxjðtÞ � xiðtÞÞ
�1

�

¼
Xn
i¼1

Xn
j¼1

aijjxjðtÞ � xiðtÞj
�1þ1 ¼ 0

Due to the fact that the graph G is connected, we have

xi¼ xj for all i, j2In. Thus, vi¼ vj for all i, j2In. It

follows Lemma 2.1 that

lim
t!1
kxiðtÞ � xjðtÞk ¼ 0, and

lim
t!1
kviðtÞ � vjðtÞk ¼ 0, for i, j 2 In:

Next, note that the multi-agent system (5) is a

homogeneous system of degree �¼ �1� 1< 0 with

dilation ð2, . . . , 2|fflfflffl{zfflfflffl}
n

, 1þ�1, . . . , 1þ�1|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
n

, 1þ�1, . . . , 1þ�1|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
n

Þ.

Therefore, the multi-agent system (5) achieves the

SOFTC by Lemma 3.2. œ

In the multi-agent system, we refer to the agent as

the leader if it only send the information to other agents

and can’t receive any information form other agents, i.e.

an1¼ an2¼ � � � ¼ ann¼ 0, �a¼ [a1n, a2n, . . . , a(n�1)n]
T
� 0

and �a 6¼ 0 if the agent n is the leader. To some extension,

we consider the multi-agent system has a leader and the

communication topology of the followers is undirected

(leader-following network for short). The leader-

following network is said to be connected if at least

one agent in each component of the followers is

connected to the leader by a directed edge.

Theorem 4.2: Suppose that the communication topol-

ogy G is a connected leader-following network. Then the

multi-agent system (5) can achieve the SOFTC.

Proof: Without loss of generality, we assume the

agents 1, 2, . . . , n� 1 are the followers and n is the

leader. Thus, we have �A ¼ ½aij	1�i,j�n�1 ¼
�AT, an1¼

an2¼ � � � ¼ ann¼ 0, �a� 0, where �a¼ [a1n,

a2n, . . . , a(n�1)n]
T. Then, the dynamics of agent n can

be written as follows:

_xnðtÞ ¼ vnðtÞ,

_vnðtÞ ¼ k1 _ynðtÞ,

_ynðtÞ ¼ �k2sigð ynðtÞÞ
2�1
1þ�1 :

8><
>: ð6Þ

Because of 05 2�1
1þ�1

5 1, it is not difficult to prove

that the auxiliary system _ynðtÞ ¼ �k2sigð ynðtÞÞ
2�1
1þ�1 is

finite-time stable, i.e. there exists a finite-time T1 such

that limt!T�
1
ynðtÞ ¼ 0, and yn(t)¼ 0 when t�T1.

Let �1i ðtÞ ¼ xiðtÞ � xnðtÞ, �
2
i ðtÞ ¼ viðtÞ � vnðtÞ, �

3
i ðtÞ ¼

yiðtÞ � ynðtÞ, i2In. If t�T1, we have

_�1i ðtÞ ¼ �
2
i ðtÞ,

_�2i ðtÞ ¼
Xn�1
j¼1

aijsigð�
1
j ðtÞ � �

1
i ðtÞÞ

�1

�ainsigð�
1
i ðtÞÞ

�1 þ k1 _�3i ðtÞ,

_�3i ðtÞ ¼ �k2sigð�
3
i ðtÞÞ

2�1
1þ�1 þ k3

Xn�1
j¼1

aijsigð�
1
j ðtÞ � �

1
i ðtÞÞ

�1

�k3ainsigð�
1
i ðtÞÞ

�1 ,

i 2 In�1,

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð7Þ

Take a Lyapunov function for (7) as

V2ðtÞ ¼
Xn�1
i¼1

Xn�1
j¼1

aij
j�1i ðtÞ � �

1
j ðtÞj

�1þ1

�1 þ 1
þ
Xn�1
i¼1

2ain
j�1i ðtÞj

�1þ1

�1 þ 1

þ
Xn�1
i¼1

ð�2i ðtÞ � k1�
3
i ðtÞÞ

2
þ
Xn�1
i¼1

k1
k3
ð�3i ðtÞÞ

2,

which is positive definite with respect to �1i ðtÞ, �
2
i ðtÞ and

�3i ðtÞ (i2In�1).
Then,

_V2ðtÞ ¼
Xn�1
i¼1

Xn�1
j¼1

aijsigð�
1
j ðtÞ � �

1
i ðtÞÞ

�1 ð _�1j ðtÞ �
_�1i ðtÞÞ
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þ
Xn�1
i¼1

2ainsigð�
1
i ðtÞÞ

�1 _�1i ðtÞ

þ
Xn�1
i¼1

2ð�2i ðtÞ � k1�
3
i ðtÞÞð

_�2i ðtÞ � k1 _�3i ðtÞÞ

þ
Xn�1
i¼1

2k1
k3
�3i ðtÞ

_�3i ðtÞ

¼ �
Xn�1
i¼1

2�2i ðtÞ
Xn�1
j¼1

aijsigð�
1
j ðtÞ � �

1
i ðtÞÞ

�1

þ
Xn�1
i¼1

2ain�
2
i ðtÞsigð�

1
i ðtÞÞ

�1

þ
Xn�1
i¼1

2ð�2i ðtÞ � k1�
3
i ðtÞÞ

�

�Xn�1
j¼1

aijsigðxjðtÞ � xiðtÞÞ
�1 � ainsigð�

1
i ðtÞÞ

�1

�

þ
Xn�1
i¼1

2k1
k3
�3i ðtÞð�k2sigð�

3
i ðtÞÞ

2�1
1þ�1

þ k3
Xn�1
j¼1

aijsigð�
1
j ðtÞ � �

1
i ðtÞÞ

�1 � k3ainsigð�
1
i ðtÞÞ

�1 Þ

¼ �
Xn�1
i¼1

2k1k2
k3
j�3i ðtÞj

3�1þ1

1þ�1 � 0

Denote the invariant set S ¼ fð�11, �
2
1, �

3
1, . . . ,

�1n�1, �
2
n�1, �

3
n�1Þj

_V2 � 0g. Note that _V2 � 0 implies

that �3i ¼ 0 ði 2 In�1Þ, thus,

Xn�1
j¼1

aijsigð�
1
j ðtÞ � �

1
i ðtÞÞ

�1 � ainsigð�
1
i ðtÞÞ

�1 ¼ 0, i 2 I n�1:

Then, we have

Xn�1
i¼1

�1i ðtÞ

�Xn�1
j¼1

aijsigð�
1
j ðtÞ � �

1
i ðtÞÞ

�1 � ainsigð�
1
i ðtÞÞ

�1

�

¼ �
Xn�1
i¼1

Xn�1
j¼1

aijjð�
1
i ðtÞ � �

1
j ðtÞÞj

�1þ1

�
Xn�1
i¼1

ainj�
1
i ðtÞj

�1þ1 ¼ 0,

which implies that �1i ðtÞ ¼ �
1
j ðtÞ ¼ 0 for all i, j2In�1 by

connectivity of G. Thus, _V2ðtÞ ¼ 0 implies that

�1i ðtÞ ¼ �
2
i ðtÞ ¼ 0, i 2 I n�1: It follows Lemma 2.1 that

�1i ðtÞ ! 0, �2i ðtÞ ! 0, i.e. xi(t)!xn(t), vi(t)! vn(t),

i2In�1, as t!1.
Next, note that the multi-agent system (5) is a

homogeneous system of degree �¼ �1� 1< 0 with

dilation ð2, . . . , 2|fflfflffl{zfflfflffl}
n

, 1þ �1, . . . , 1þ �1|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
n

, 1þ �1, . . . , 1þ �1|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
n

Þ.

Therefore, the multi-agent system (5) achieves the

SOFTC by Lemma 3.2. œ

4.2. Directed graph

For directed graph, we consider the communication

topology G with three cases – the star topology, the

directed tree and the special directed tree.

Theorem 4.3: Suppose that the communication topol-

ogy G is a star topology, i.e. the multi-agent system (5)

has a leader and n� 1 followers, and each follower

receives information only from the leader. Then the

multi-agent system (5) can achieve the SOFTC.

Proof: Analogous to Theorem 4.2’s proof, we assume

the agents 1, 2, . . . , n� 1 are the followers and n is the

leader. Thus, we have [aij]1�i,j�n�1¼ 0 and an1¼ an2¼

� � � ¼ ann¼ 0, �a> 0, where �a¼ [a1n, a2n, . . . , a(n�1)n]
T. We

rewrite the multi-agent system (5) as follows:

_xiðtÞ ¼ viðtÞ,

_viðtÞ ¼ ainsigðxnðtÞ � xiðtÞÞ
�1 þ k1 _yiðtÞ,

_yiðtÞ ¼ �k2sigð yiðtÞÞ
2�1
1þ�1 þ k3ainsigðxnðtÞ � xiðtÞÞ

�1 ,

i 2 I n�1,

8>>>><
>>>>:

ð8Þ

and

_xnðtÞ ¼ vnðtÞ,

_vnðtÞ ¼ k1 _ynðtÞ,

_ynðtÞ ¼ �k2sigð ynðtÞÞ
2�1
1þ�1 :

8><
>: ð9Þ

Because _ynðtÞ ¼ �k2sigð ynðtÞÞ
2�1
1þ�1 is finite-time stable,

i.e. there exists a finite-time T2 such that

limt!T�
2
ynðtÞ ¼ 0, and yn(t)¼ 0 when t�T2.

Let �1i ðtÞ ¼ xiðtÞ � xnðtÞ, �
2
i ðtÞ ¼ viðtÞ � vnðtÞ, �

3
i ðtÞ ¼

yiðtÞ � ynðtÞ, i2In. If t�T2, we have

_�1i ðtÞ ¼ �
2
i ðtÞ,

_�2i ðtÞ ¼ �ainsigð�
1
i ðtÞÞ

�1 þ k1 _�3i ðtÞ,

_�3i ðtÞ ¼ �k2sigð�
3
i ðtÞÞ

2�1
1þ�1 � k3ainsigð�

1
i ðtÞÞ

�1 , i 2 In�1,

8>><
>>:

ð10Þ

Take a Lyapunov function for (10) as

V3ðtÞ ¼
Xn�1
i¼1

2ain
j�1i ðtÞj

�1þ1

�1 þ 1
þ
Xn�1
i¼1

ð�2i ðtÞ � k1�
3
i ðtÞÞ

2

þ
Xn�1
i¼1

k1
k3
ð�3i ðtÞÞ

2,
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which is positive definite with respect to �1i ðtÞ, �
2
i ðtÞ and

�3i ðtÞ (i2In�1). Consider the derivative of V3(t) along

the trajectories of the closed-loop system (10), we have

_V3ðtÞ ¼
Xn�1
i¼1

2ainsigð�
1
i ðtÞÞ

�1 _�1i ðtÞ þ
Xn�1
i¼1

2ð�2i ðtÞ � k1�
3
i ðtÞÞ

� ð _�2i ðtÞ � k1 _�3i ðtÞÞ þ
Xn�1
i¼1

2k1
k3
�3i ðtÞ

_�3i ðtÞ

¼
Xn�1
i¼1

2ain�
2
i ðtÞsigð�

1
i ðtÞÞ

�1 þ
Xn�1
i¼1

2ð�2i ðtÞ � k1�
3
i ðtÞÞ

� ð�ainsigð�
1
i ðtÞÞ

�1 Þ þ
Xn�1
i¼1

2k1
k3
�3i ðtÞ

�

�
� k2sigð�

3
i ðtÞÞ

2�1
1þ�1 � k3ainsigð�

1
i ðtÞÞ

�1
	

¼ �
Xn�1
i¼1

2k1k2
k3
j�3i ðtÞj

3�1þ1

1þ�1 � 0

Denote the invariant set S ¼ fð�11, �
2
1, �

3
1, . . . ,

�1n�1, �
2
n�1, �

3
n�1Þj

_V3 � 0g. Similar to the analysis of

Theorem 4.2, _V3 � 0 implies that �1i ¼ �
2
i ¼

�3i ¼ 0, i 2 I n�1: It follows Lemma 2.1 that

�1i ðtÞ ! 0, �2i ðtÞ ! 0, i.e. xi(t)!xn(t), vi(t)! vn(t),

i2In�1, as t!1.
Next, note that the multi-agent system (5) is a

homogeneous system of degree �¼ �1� 1< 0 with

dilation ð2, . . . , 2|fflfflffl{zfflfflffl}
n

, 1þ �1, . . . , 1þ �1|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
n

, 1þ �1, . . . , 1þ �1|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
n

Þ.

Therefore, the multi-agent system (5) achieves the

SOFTC by Lemma 3.2. œ

Theorem 4.4: Suppose that the communication topol-

ogy G is a directed tree. Then the multi-agent system (5)

can achieve the SOFTC.

Proof: Without loss of generality, we assume the

agent 1 is the leader. All vertices of the directed tree G

can be classified into the following subsets: V0¼ {s1},

V1¼ {sj2V: sj only receives information from s1 at any

time t}, . . . ,Vq¼ {sj2V: sj only receives information

from vertices in Vq�1 at any time t}. Moreover,Sq
p¼0 Vp ¼ V:
From Theorem 4.3, there exists a finite-time T2

such that limt!T�
2
kxiðtÞ � x1ðtÞk ¼ 0, limt!T�

2
�

kviðtÞ � v1ðtÞk ¼ 0, and xi(t)¼ x1(t), vi(t)¼ v1(t), when

t�T2 for all i2 {i : si2V1}. Similarly, there exists a

finite-time T3>T2 such that limt!T�
3
kxiðtÞ�x1ðtÞk¼ 0,

limt!T�
3
kviðtÞ� v1ðtÞk¼ 0, and xi(t)¼ x1(t), vi(t)¼ v1(t),

when t�T3 for all i2 {i : si2V2}. By induction, the

multi-agent system (5) can achieve the SOFTC. œ

Here, we consider another special directed net-

works which are an extension of directed tree. We

assume the agent 1 is the leader and all vertices of the

directed network G can be classified into the following
subsets: V0¼ {s1}, V1¼ {sj2V: sj only receives infor-
mation from s1 at any time t}, . . . ,Vq¼ {sj2V: sj only
receives information from vertex in

Sq�1
p¼0 Vp at any

time t }. Moreover,
Sq

p¼0 Vp ¼ V: Under these directed
networks, similar to the Proof of Theorem 4.4, we get
the following result on SOFTC. For convenience of
exposition, we define these directed networks as the
special directed tree.

Theorem 4.5: Suppose that the communication topol-
ogy G is a special directed tree. Then the multi-agent
system (5) can achieve the SOFTC. œ

Remark 1: Suppose that the communication topology
G is strongly connected and satisfies the detailed
balance condition, i.e. there exists a vector ! ¼
½!1,!2, . . . ,!n	

T
2 R

n
40 such that !iaij¼!jaji for all i,

j2In. Take a Lyapunov function for (5) as

VðtÞ ¼
Xn
i¼1

Xn
j¼1

!iaij
jxiðtÞ � xjðtÞj

�1þ1

�1 þ 1

þ
Xn
i¼1

ð!iviðtÞ � k1yiðtÞÞ
2
þ
Xn
i¼1

k1
k3
ð yiðtÞÞ

2:

Similar to the analysis of Theorem 4.1, the multi-agent
system (5) can achieve the SOFTC. The result can also
be extended to the leader-following network which the
topology of the followers is strongly connected and
satisfies the detailed balance condition.

Remark 2: In this article, we only consider the finite-
time consensus of second-order multi-agent system (5)
under some special directed graphs. Because the
Laplician matrix is asymmetric and it is hard to
select an appropriate Lyapunov function, the finite-
time consensus of second-order multi-agent system (5)
under general directed network is difficult to solve.

5. Simulations

In this section, we first present a numerical simulation
in Example 5.1 to illustrate the effectiveness of
theoretical result when the network is an undirected
connected graph. In Example 5.2, we provide an
illustration of theoretical result when the network is a
special directed tree.

Example 5.1: Consider the communication topology
G shown in Figure 1, where the weight of each edge is 1.
We assume that ki¼ 1 (i¼ 1, 2, 3), �1 ¼

1
5 and the initial

states are x(0)¼[7, 10, �3, �7, �1], v(0)¼[1, �5, 5, 3, 2]
and y(0)¼[0, 0, 0, 0, 0]. Note that the communication
topology G is an undirected connected graph. The
simulation results using (5) are shown in Figure 2.
The position and velocity trajectories of agents reach
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consensus at about t¼ 23 s, which accord with the
results established in Theorem 4.1.

Example 5.2: Consider the communication topology
G shown in Figure 3, where the weight of each edge is 1.
All vertices of the directed network G can be classified
into the following subsets: V0¼ {s1}, V1¼ {s2, s5},
V2¼ {s3} and V3¼ {s4}. We assume that ki¼ 1
(i¼ 1, 2, 3), �1 ¼

1
5 and the initial states are x(0)¼ [7,

�3, �7, �1, 10], v(0)¼ [1, 5, 3, 2, �5] and y(0)¼ [0, 0,
0, 0, 0]. The simulation results using (5) are shown

in Figure 4. Note that the agents 2, 3, 4 and 5 reach the
agent 1’s state at about t¼ 50 s hierarchically, which

accord with the results established in Theorem 4.5.

6. Conclusions

In this article, we consider the second-order finite-time
consensus of multi-agent system without velocity

measurements. Based on the auxiliary system

approach, we first propose a consensus protocol for
second-order multi-agent system. Then, by using the

graph theory, Lyapunov theory and the homogeneous

domination method, we solve the second-order finite-
time consensus (SOFTC) under undirected and direc-

ted graphs, respectively. At last, some examples are

given to illustrate the effectiveness of theoretical
results. Compared to the traditional consensus theo-

ries, the proposed SOFTC of multi-agent system

without velocity measurements in this article is not
only theoretically important but also has wider appli-

cations. The future work will focus on the more

complex communication topology for SOFTC of

multi-agent system with/without velocity measure-
ments, for example, SOFTC of multi-agent system

under switching topologies/random networks.
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Figure 3. The network G in Example 5.2.
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Figure 1. The network G in Example 5.1.
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