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Abstract: In this study, the consensus problem of heterogeneous multi-agent systems with quantised interactions is inves-
tigated. Distributed control laws are proposed for heterogeneous multi-agent systems by using uniform and logarithmic
quantisers, respectively. Based on graph theory and non-smooth analysis, it is shown that the heterogeneous multi-agent
system can reach consensus with logarithmic quantisers. For uniform quantisers, some convergence results are also
derived. Simulation examples are presented to illustrate the effectiveness of the theoretical results.
1 Introduction

In recent years, distributed cooperative control of multi-agent sys-
tems has attracted considerable attentions of researchers from
various disciplines due to its wide applications, including coop-
erative control of multiple robots, formation control of unmanned
aerial vehicles, target tracking of sensor networks and so on. The
consensus problem, which is a fundamental problem in cooper-
ative control, aims at designing distributed algorithm to make a
group of agents reach an agreement upon some quantities of inter-
est asymptotically or in a finite time. Specifically, Jadbabaie et al.
[1] provided a theoretical explanation for the consensus behaviour
of the Vicsek model [2] based on graph theory. A theoretical
framework for the consensus problem of continuous-time multi-
agent systems was presented in [3]. Ren and Beard [4] extended
the results in [1, 3] to the case of directed graphs with dynam-
ically changing interaction topologies. With the development of
issue, lots of works have been done for the consensus problem
of multi-agent systems under different contexts by virtue of matrix
theory, graph theory, frequency-domain analysis method, Lyapunov
method and so on [5–9].

In the existing literatures on the consensus problem, the precise
information of neighbours is often needed to implement the control
input. However, digital communication channel is widely exploited
to realise the information exchange among agents in reality. Due
to finite memories capacity and limited communication channels in
practical applications, the quantisation effects have to be considered
in consensus problems. As a result, there have been many results
for the quantised consensus problem of discrete-time multi-agent
systems [10–15]. In [12], dynamic coding/decoding digital channels
with finite-level uniform symmetric quantisers were employed. By
a symmetry error-compensation mechanism, quantised consensus
of first-order discrete-time multi-agent systems was achieved under
undirected switching networks. Li et al. [14] extended the results
in [12] to the case with directed switching communication graphs.
Based on the notion of input-to-output stability theorem, the authors
showed that consensus can be achieved under unidirectional and
unbalanced communication networks. For continuous-time multi-
agent systems, the quantised consensus problem has attracted more
and more attention [16–22]. Dimarogonas and Johansson [16] stud-
ied the consensus problem of first-order multi-agent systems under
the distributed consensus protocol using the quantised values of
the relative states in the case of a tree topology. Based on non-
smooth analysis, some convergence results were established in
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[17] for both first-order and second-order multi-agent systems with
quantised information and the results for first-order multi-agent sys-
tems were derived under undirected connected graph, which was
less conservative than that in [16]. By constructing a novel Lya-
punov function, Liu et al. [18] improved the results in [17] for
second-order multi-agent systems and proved that the consensus
can been achieved for any quantiser accuracy under undirected
connected graph. Zhu et al. [19] considered the quantised con-
sensus problem of multi-agent systems with non-linear dynamics
under continuous-time and impulsive control laws, respectively.
In [20], the authors dealt with the adaptive coordinated track-
ing problem for continuous-time first-order multi-agent systems in
the presence of quantised information under switching undirected
and fixed directed communication graphs, respectively. Recently,
the quantised consensus problem of continuous-time multi-agent
systems via sampled-data also began to attract much attention.
Sampled-data consensus of second-order multi-agent systems was
studied in [21], where the consensus protocols were based on the
relative quantised states measurements. Wu and Wang [22] consid-
ered sampled-data consensus of multi-agent systems with quantised
relative states measurements.

However, most work on the consensus problem considered the
case where agents have the same dynamics. Owing to various
restrictions or the common goals with mixed agents, the dynamics
of the agents coupled with each others are really different [23].
Therefore, it is more practical to study the consensus problem of
heterogeneous multi-agent systems. The output consensus prob-
lem for heterogeneous uncertain linear multi-agent systems was
investigated in [24]. By using Lyapunov method, we proposed
the heterogeneous multi-agent system composed of first-order and
second-order agents and discussed the consensus problem under
undirected network in [23]. Zheng and Wang [25] improved the
results in [23] to directed network. Based on homogeneous method,
the finite-time consensus problem of heterogeneous multi-agent
systems was also considered in [26]. Inspired by the work above,
we investigate the consensus problem of heterogeneous multi-agent
systems involving quantised information. Due to the heterogeneous
feature and the discontinuity on the right-hand side of the con-
trol input, it is difficult to analyse the quantised consensus of
heterogeneous multi-agent systems. We use the tool of from non-
smooth analysis to discuss the quantised consensus problem of
heterogeneous multi-agent systems under undirected connected and
leader-following networks, respectively. We prove that when loga-
rithmic quantisers are used, the heterogeneous multi-agent system
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can reach consensus asymptotically under the given distributed pro-
tocols. We also show that when uniform quantisers are chosen, due
to the constraint of uniform quantisation, the differences on their
positions just converge to a bounded set asymptotically.

This paper is organised as follows. In Section 2, we provide
some definitions and results in graph theory and non-smooth anal-
ysis. The consensus problem of heterogeneous multi-agent systems
with logarithmic and uniform quantisers are, respectively, discussed
in Section 3. In Section 4, the simulation results are also given to
show the effectiveness of the obtained results. Section 5 is a brief
conclusion.

Notation: Throughout this paper, we let R be the set of real number
and Z be the set of integers. Im = {1, 2, . . . , m}, In/Im = {m +
1, m + 2, . . . , n}. The superscript ‘T’ represents the transpose. Let
B(x, δ) be the open ball of radius δ centred at x, B(Rd) be the
collection of all subsets of Rd , μ(S) be the Lebesgue measure of
set S, co be the convex hull and co be the convex closure. For a set
S, S ≤ 0(S < 0) means that v ≤ 0(v < 0) for all v ∈ S. For a ∈ R,
�a� denotes the greatest integer that is less than or equal to a.

2 Preliminaries

In this section, we first present some basic concepts and results in
graph theory and non-smooth analysis used in the sequel. For more
detailed, see [27–31].

2.1 Graph theory

Let G(A) = (V , E, A) be a weighted undirected graph of order
n, with a set of vertices V = {s1, s2, . . . , sn}, a set of edges
E ⊂ V × V , and a weighted adjacency matrix A = (aij) ∈ Rn×n.
If (si, sj) ∈ E, then vertices si and sj can exchange information,
namely, they are adjacent. The adjacency matrix A is a symmetric
matrix with adjacency element aij > 0 if si, sj are adjacent, and
aij = 0 otherwise. A path from si to sj is a sequence of distinct
vertices starting with si and ending with sj such that any two con-
secutive vertices are adjacent. For si = sj , the path is a cycle. An
undirected graph G is called connected if between any two distinct
vertices, there is a path between them. A connected graph is a tree
if it contains no cycles. An orientation on G is the assignment of
an arbitrary direction to each edge to make it have a head and tail.
We make use of |V| × |E| the incidence matrix B for an arbitrary
oriented graph. The columns of B are then indexed by the edge
set, and the ith row entry takes the value ‘1’ if it is the head of
the corresponding edge, ‘−1’ if it is the tail, and zero otherwise.
The weighting matrix W is a |E| × |E| diagonal matrix and the
ith entry on the diagonal is the adjacency element associated with
corresponding edge. For an n-agent system, an agent is called a
leader if it only sends the information to other agents and can-
not receive any information, that is, when agent n is the leader,
ani = 0, ∀i ∈ In and ∃j ∈ In−1, ajn > 0.

2.2 Non-smooth analysis

Consider the vector differential equation given by

ẋ(t) = f (x(t)), (1)

where x ∈ Rm, f : Rm → Rm is measurable and locally essentially
bounded. A Filippov solution of (1) on [t0, t1] is defined to
be an absolutely continuous function x : [t0, t1] → Rm such that
ẋ ∈ K[f ](x), where the Filippov set-valued map

K[f ](x) �
⋂
δ>0

⋂
μ(S)=0

co{f (B(x, δ))\S}.

The Filippov set-valued map obeys the following lemma.
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Lemma 1 [29]: i. Assume that f , g : Rm → Rn are locally bounded,
then

K[f + g](x) ⊆ K[f ](x) + K[g](x).
ii. Let f : Rm → Rn be continuous, then

K[f ](x) = {f (x)}.

Let �V be the set of measure zero where the gradient of V with
respect to x is not defined. The generalised gradient of V at x is
defined by ∂V (x) � co{limi→∞ �V (xi)|xi → x, xi /∈ �V }. In addi-
tion, the set-valued Lie derivative of V with respect to f at x is
defined as ˙̃V (x) � ⋂

ξ∈∂V (x) ξTK[f ](x). We can use ˙̃V to study
the evolution of V along the Filippov solution of (1), which is
guaranteed by the following lemma.

Lemma 2 [31]: Let x(·) be a Filippov solution to (1) on an interval
containing t, and V : Rm → R be a Lipschitz and regular function.
Then, V (x(t)) is absolutely continuous, (d/dt)V (x(t)) exists almost
everywhere and

d

dt
V (x(t)) ∈ ˙̃V (x), for a.e.t ≥ 0.

Lemma 3 [31] (LaSalle’s invariance principle): Let � be a com-
pact set such that every Filippov solution to the autonomous system
ẋ = f (x), x(0) = x(t0), starting in � is unique and remains in � for
all t ≥ t0. Let V : � → R be a time independent regular function
such that v ≤ 0 for all v ∈ ˙̃V (if v ∈ ˙̃V is the empty set then this
is trivially satisfied). Let S = {x ∈ �|0 ∈ ˙̃V }. Then every trajectory
in � converges to the largest invariant set, M , in the closure of S.

3 Main results

Consider a heterogeneous multi-agent system composed of first-
order and second-order integrator agents. Without loss of gener-
ality, we assume the first m agents are second-order integrator
agents while the rest n − m (n > m) agents are first-order integrator
agents. The dynamics of agent is described as below

{
ẋi(t) = vi(t), v̇i(t) = ui(t), i ∈ Im,
ẋi(t) = ui(t), i ∈ In/Im,

(2)

where xi, vi ∈ R are the position and velocity states of agent i,
respectively, and ui ∈ R is the input of agent i. All results in this
paper still hold for xi, vi, ui ∈ Rm by using the Kronecker product
operations.

Definition 1 [23]: The multi-agent system (2) is said to reach
consensus asymptotically if for any initial conditions, we have
limt→∞ |xi(t) − xj(t)| = 0, i, j ∈ In and limt→∞ |vi(t) − vj(t)| =
0, i, j ∈ Im.

In this paper, we consider two types of quantisers [18]. A uniform
quantiser is a map qu : R → R such that

qu(x) = δ

(⌊ x

δ

⌋
+ 1

2

)
(3)

where δ is a positive number.
A logarithmic quantiser is a map ql : R → R such that

ql(x) =

⎧⎪⎨
⎪⎩

equ(ln x), x > 0,
0, x = 0,
−equ(ln(−x)), x < 0.

(4)
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Remark 1: From the definitions above, we know the uniform and
logarithmic quantisers have a countable number of levels. A uni-
form quantiser has equally spaced quantisation levels. Due to the
constraint of uniform quantisation, multi-agent systems usually
cannot reach exact consensus, but only finite quantisation levels are
needed if the quantised variable is bounded. Compared with uni-
form quantiser, the logarithmic quantiser is capable of adjusting the
size of the quantisation step according to the input value. It is pos-
sible for multi-agent systems to reach consensus with logarithmic
quantisers in certain conditions. However, countable quantisation
levels are needed even if the quantised variable is bounded.

We present the protocol for the heterogeneous multi-agent
system as follows:

ui(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−
n∑

j=1

aijq(xi − xj) − p1q(vi), i ∈ Im,

−p2

n∑
j=1

aijq(xi − xj), i ∈ In/Im,

(5)

where q(•) is a uniform quantiser or logarithmic qiantiser, A =
(aij)n×n is the weighted adjacency matrix of the communication
graph and p1, p2 > 0 are control gains.

Owing to the discontinuity of the quantised signals, the solutions
in this paper are understood in Filippov sense. A Filippov solution
of (2) under protocol (5) is defined as an absolutely continuous
solution of the differential inclusion

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋi(t) = vi(t),

v̇i(t) ∈ K[ui] ⊆ −K

⎡
⎣ n∑

j=1

aijq(xi − xj)

⎤
⎦ − p1K[q(vi)], i ∈ Im,

(6)
and

ẋi(t) ∈ K[ui] = −p2K

⎡
⎣ n∑

j=1

aijq(xi − xj)

⎤
⎦ , i ∈ In/Im. (7)

In the case of uniform quantiser, the Filippov set-valued
map for qu(x) is given as K[qu(x)] = qu(x), when x =
kδ, k ∈ Z ; K[qu(x)] = [kδ − (1/2)δ, kδ + (1/2)δ], otherwise. In
the case of logarithmic quantiser, for x ≥ 0, the Filippov set-
valued map for ql(x) is given as K[ql(x)] = ql(x), when x =
ekδ , k ∈ Z ; K[ql(x)] = [ekδ−(1/2)δ , ekδ+(1/2)δ], otherwise. More-
over, K[ql(−x)] = −K[ql(x)]. Note that aK[q(a)] ≥ 0, ∀a ∈ R and
the equality holds if and only if a = 0.
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3.1 Consensus with logarithmic quantisation

First, we consider the consensus problem in the case that the log-
arithmic quantised information are available and show that the
consensus can be achieved.

Theorem 1: Suppose that G(A) is undirected and connected. Then
the heterogeneous multi-agent system (2) with protocol (5) can
reach consensus under logarithmic quantisers.

Proof: Let e and v, respectively, denote the column vector formed
by all xi − xj � eij , (i, j) ∈ E and all vi, i ∈ Im. Take a Lyapunov
function for (6) and (7) as

V1(e, v) = 1

2

n∑
i=1

n∑
j=1

aij

∫ eij

0
ql(s) ds + 1

2

m∑
i=1

v2
i

= 1

2

n∑
i=1

n∑
j=1

aij

∫ xi−xj

0
ql(s) ds + 1

2

m∑
i=1

v2
i .

Because ql(t) is non-smooth, the time derivative of V1(e, v) is
not defined at some time instants. The function V1(e, v) is regu-
lar because the integral term

∫x
0 ql(s) ds is regular everywhere [18,

Lemma 6]. Let (∂V1)i denotes the generalised gradient of V1 with
respect to xi. Using definition of generalised gradient, one obtains

(∂V1)i = K

⎡
⎣ n∑

j=1

aijql(xi − xj)

⎤
⎦ � [ai, bi] and

∂V1

∂vi
= vi.

Then, ∂V1 = [(∂V1)1, (∂V1)2, . . . , (∂V1)n, v1, v2, . . . , vm]T. Thus
(see equation at the bottom of the page)

Note that for arbitrary region [ai, bi], there always exists ξ ′
i ∈

[ai, bi] such that −ξ ′
i [ai, bi] ≤ 0, where the equality holds if and

only if 0 ∈ [ai, bi]. Thus, one has

˙̃V1 ⊆
⋂

ξi∈[ai ,bi]

m∑
i=1

vi[ξi − bi, ξi − ai] − p2

n∑
i=m+1

ξ ′
i [ai, bi]

− p1

m∑
i=1

viK[ql(vi)].

Hence
⋂

ξi∈[ai ,bi][ξi − bi, ξi − ai] = {0} and −viK[ql(vi)] ≤ 0, we

get ˙̃V1 ≤ 0.
From Lemma 2, we have d

dt V1(e, v) ≤ 0. It follows that
V1(e, v) ≤ V1(e(0), v(0)), which implies that e(t) and v(t)
are bounded. Thus, we can apply the non-smooth ver-
sion of the Lasalle’s invariance principle. Define � � {(e, v) |
V1(e, v) ≤ V1(e(0), v(0))} and S � {(e, v) | 0 ∈ ˙̃V1}. The solu-
tions converge to the largest weakly invariant set contained
˙̃V1 =
⋂

ξ∈∂V1

ξT [K[ẋ1], K[ẋ2], . . . , K[ẋn], K[v̇1], K[v̇2], . . . , K[v̇m]]T

=
⋂

ξi∈(∂V1)i

(
n∑

i=1

ξiK[ẋi] +
m∑

i=1

viK[v̇i]
)

⊆
⋂

ξi∈(∂V1)i

⎛
⎝ m∑

i=1

ξivi − p2

n∑
i=m+1

ξiK

⎡
⎣ n∑

j=1

aijql(xi − xj)

⎤
⎦ −

m∑
i=1

vi

⎛
⎝K

⎡
⎣ n∑

j=1

aijql(xi − xj)

⎤
⎦ + p1K[ql(vi)]

⎞
⎠

⎞
⎠

=
⋂

ξi∈[ai ,bi]

⎛
⎝ m∑

i=1

vi[ξi − bi, ξi − ai] − p2

n∑
i=m+1

ξi[ai, bi]
⎞
⎠ − p1

m∑
i=1

viK[ql(vi)].
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in � ∩ S. From 0 ∈ ˙̃V1, we have 0 ∈ −p2
∑n

i=m+1 ξ ′
i [ai, bi] −

p1
∑m

i=1 viK[ql(vi)]. Note that 0 ∈ viK[ql(vi)] if and only if vi =
0 and 0 ∈ ξ ′

i [ai, bi] if and only if 0 ∈ [ai, bi]. Thus, we get

that vi = 0, i ∈ Im, and 0 ∈ [ai, bi] = K
[∑n

j=1 aijql(xi − xj)
]

⊆∑n
j=1 aijK[ql(xi − xj)], i ∈ In/Im. From vi = 0, i ∈ Im, we have

0 ∈ ∑n
j=1 aijK[ql(xi − xj)], i ∈ Im according to (6). Thus, the solu-

tions on the invariant set must satisfy the differential inclusion
0 ∈ ∑n

j=1 aijK[ql(xi − xj)], i ∈ In. Then, it can be obtained that
0 ∈ ∑n

i=1 xi
∑n

j=1 aijK[ql(xi − xj)]. Note that

0 ∈
n∑

i=1

n∑
j=1

aijxiK[ql(xi − xj)]

= 1

2

n∑
i=1

n∑
j=1

aijxiK[ql(xi − xj)] + 1

2

n∑
j=1

n∑
i=1

ajixjK[ql(xj − xi)]

= 1

2

n∑
i=1

n∑
j=1

aijxiK[ql(xi − xj)] − 1

2

n∑
i=1

n∑
j=1

aijxjK[ql(xi − xj)]

= 1

2

n∑
i=1

n∑
j=1

aij(xi − xj)K[ql(xi − xj)].

Since the communication graph is connected, one has xi = xj
for all i, j ∈ In. Therefore, according to Lemma 3, we get
that limt→∞ |xi − xj| = 0 for i, j ∈ In and limt→∞ vi(t) = 0 for
i ∈ Im. �

We consider the consensus problem for a group of agents with-
out any leader in Theorem 1. However, one leader might exist in
multi-agent systems in some practical applications. Therefore, we
consider consensus problem in the leader-following network.

Theorem 2: Suppose that the heterogeneous multi-agent system (2)
has a leader and n − 1 followers, and the communication topol-
ogy among the followers is undirected and connected. Then, the
heterogeneous multi-agent system (2) with protocol (5) can reach
consensus under logarithmic quantisers if the leader is a first-order
integrator agent.

Proof: Without loss of generality, we assume agent n is the leader.
To analyse the leader-following consensus problem, we denote the
2556
state error between agent i and the leader as x̂i(t) = xi(t) − xn(t),
i ∈ In−1. Then, the dynamics of x̂i can be described as (see (8))

and

˙̂xi(t) ∈ K[ui] = −p2K

⎡
⎣n−1∑

j=1

aijq(x̂i − x̂j) + ainq(x̂i)

⎤
⎦ , i ∈ In/Im.

(9)

Consider the Lyapunov function

V2(x̂, v) = 1

2

n−1∑
i=1

n−1∑
j=1

aij

∫ x̂i−x̂j

0
ql(s) ds

+
n−1∑
i=1

ain

∫ x̂i

0
ql(s) ds + 1

2

m∑
i=1

v2
i ,

where x̂ = [x̂1, x̂2, . . . , x̂n−1]T and v = [v1, v2, . . . , vm]T.
Let (∂V2)i denotes the generalised gradient of V2 with respect

to x̂i and (∂V2)i = K[∑n−1
j=1 aijql(x̂i − x̂j) + ainql(x̂i)] � [ai, bi].

Then, ∂V2 = [(∂V2)1, (∂V2)2, . . . , (∂V2)n−1, v1, v2, . . . , vm]T. Thus
(see equation at the bottom of the page)

Since (d/dt)V2(x̂, v) ≤ 0 from Lemma 2, we obtain V2(x̂, v) ≤
V2(x̂(0), v(0)) which implies that x̂(t) and v(t) are bounded
when the communication topology among followers are connected.
Define � � {(x̂, v) | V2(x̂, v) ≤ V2(x̂(0), v(0)} and S � {(x̂, v) | 0 ∈˙̃V2}. According to Lemma 3, the trajectory of (2) under pro-
tocol (4) converges to the largest invariant set contained in
� ∩ S. Note that 0 ∈ ˙̃V2 implies that vi = 0, i ∈ Im and 0 ∈
[ai, bi] ⊆ ∑n−1

j=1 aijK[ql(x̂i − x̂j)] + ainK[ql(x̂i)], i ∈ In/Im, which
in turn implies that the solutions on the invariant set must
satisfy the differential inclusion 0 ∈ ∑n−1

j=1 aijK[ql(x̂i − x̂j)] +
ainK[ql(x̂i)], i ∈ In−1. Note that

0 ∈
n−1∑
i=1

x̂i

⎛
⎝n−1∑

j=1

aijK[ql(x̂i − x̂j)] + ainK[ql(x̂i)]
⎞
⎠

= 1

2

n−1∑
i=1

n−1∑
j=1

aij(x̂i − x̂j)K[ql(x̂i − x̂j)] +
n−1∑
i=1

ainx̂iK[ql(x̂i)].
⎧⎪⎪⎨
⎪⎪⎩

˙̂xi(t) = vi(t),

v̇i(t) ∈ K[ui] ⊆ −K

⎡
⎣n−1∑

j=1

aijq(x̂i − x̂j) + ainq(x̂i)

⎤
⎦ − p1K[q](vi), i ∈ Im,

(8)

˙̃V2 =
⋂

ξ∈∂V2

ξT
[
K[˙̂x1], K[˙̂x2], . . . , K[˙̂xn−1], K[v̇1], K[v̇2], . . . , K[v̇m]

]T

=
⋂

ξi∈(∂V2)i

(
n−1∑
i=1

ξiK[˙̂xi] +
m∑

i=1

viK[v̇i]
)

⊆
⋂

ξi∈[ai ,bi]

⎛
⎝ m∑

i=1

ξivi − p2

n−1∑
i=m+1

ξiK

⎡
⎣n−1∑

j=1

aijql(x̂i − x̂j) + ainql(x̂i)

⎤
⎦ −

m∑
i=1

vi

⎛
⎝K

⎡
⎣n−1∑

j=1

aijql(x̂i − x̂j) + ainql(x̂i)

⎤
⎦ + p1K[ql(vi)]

⎞
⎠

⎞
⎠

=
⋂

ξi∈[ai ,bi]

⎛
⎝ m∑

i=1

vi (ξi − [ai, bi]) − p2

n−1∑
i=m+1

ξi[ai, bi] − p1

m∑
i=1

viK[ql(vi)]
⎞
⎠

≤ 0.
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Since the communication topology among followers is con-
nected, one has x̂i = x̂j ∀i, j ∈ In−1, and x̂i = 0 if ain > 0. Hence,
x̂i = 0 for all i ∈ In−1. According to Lemma 3, we conclude
that limt→∞ |xi − xn| = 0 for i ∈ In−1 and limt→∞ vi(t) = 0 for
i ∈ Im. �

If agents can get quantised relative velocity measurements, we
use G(A) and G(B) to, respectively, describe the position and
velocity information exchange relationship between agents and
A = (aij)n×n, B = (bij)m×m are weighted adjacency matrices. The
protocol can also be designed as

ui(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−
n∑

j=1

aijq(xi − xj) − p1

m∑
j=1

bijq(vi − vj), i ∈ Im,

−p2

n∑
j=1

aijq(xi − xj), i ∈ In/Im

(10)
where p1, p2 > 0 are control gains.

Corollary 1: Suppose that G(A) is a tree and G(B) is an undirect
connected graph. The heterogeneous multi-agent system (2) with
protocol (10) can reach consensus under logarithmic quantisers.

Proof: Similar to the proof of Theorem 1, differentiating V1, gives

˙̃V1 =
⋂

ξ∈∂V1

ξT [K[ẋ1], K[ẋ2], . . . , K[ẋn], K[v̇1], K[v̇2], . . . , K[v̇m]]T

=
⋂

ξi∈(∂V1)i

(
n∑

i=1

ξiK[ẋi] +
m∑

i=1

viK[v̇i]
)

⊆
⋂

ξi∈(∂V1)i

⎛
⎝ m∑

i=1

ξivi − p2

n∑
i=m+1

ξiK

⎡
⎣ n∑

j=1

aijql(xi − xj)

⎤
⎦

−
m∑

i=1

vi

⎛
⎝K

⎡
⎣ n∑

j=1

aijql(xi − xj)

⎤
⎦ + p1

m∑
j=1

bijK[ql(vi − vj)]
⎞
⎠

⎞
⎠

=
⋂

ξi∈[ai ,bi]

⎛
⎝ m∑

i=1

vi[ξi − bi, ξi − ai] − p2

n∑
i=m+1

ξi[ai, bi]
⎞
⎠

− 1

2
p1

m∑
i=1

m∑
j=1

bij(vi − vj)K[ql(vi − vj)]

≤ 0,

where K
[∑n

j=1 aijql(xi − xj)
]

� [ai, bi].
Note that from 0 ∈ ˙̃V1, we get vi = vj , ∀i, j ∈ Im since

G(B) is connected and 0 ∈ [ai, bi] ⊆ ∑n
j=1 aijK[ql(xi − xj)],

i ∈ In/Im. Let x = [x1, x2, . . . , xn]T and y = [v1, v2, . . . , vm,
xm+1, xm+2, . . . , xn]T. Thus, the solutions on the invariant set must
satisfy the differential inclusion ẏ ∈ −BWK[ql(x̄)] � HK[ql(x̄)],
where B and W are, respectively, the incidence matrix and
weighting matrix of G(A) and x̄ = BTx . Since G(A) is a tree,
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we have rank(H ) = rank(B) = n − 1. Let ȳ = [v2 − v1, . . . , vm −
v1, xm+1, xm+2, . . . , xn]T, one has ˙̄y ∈ QK[ql(x̄)], where Q can
be obtained by omitting the first row of the matrix which is
obtained using the elementary line row transformation of matrix
H . Thus, rank(Q) = n − 1, that is, the matrix Q is non-singular.
Note that from vi = vj , ∀i, j ∈ Im, and 0 ⊆ ∑n

j=1 aijK[ql(xi − xj)],
i ∈ In/Im, we can obtain that 0 ∈ QK[ql(x̄)]. Since Q is non-
singular, we obtain 0 ∈ K[ql(x̄)], which implies that x̄ = 0. Thus,
one has xi = xj for all i, j ∈ In from the connected of G(A). Then
vi = 0, i ∈ Im from (10). Thus, it follows Lemma 3 that the trajec-
tory of (2) under protocol (10) converges to limt→∞ |xi − xj| = 0
for i, j ∈ In and limt→∞ vi(t) = 0 for i ∈ Im. �

3.2 Consensus with uniform quantisation

Compared with logarithmic quantisers, uniform quantisers are easy
to realise and computationally cheap. Next, we discuss the con-
sensus problem in the case that uniform quantised information is
available. The following lemma is needed for the derivation of the
results in this section.

Lemma 4 [18]: (a) For x ∈ R and |x| ≤ δ, it holds that
x(K[qu(x)] + K[qu(0)]) ⊆ [0, ∞). (b) For x ∈ R and |x| > δ, it
holds that x(K[qu(x)] + K[qu(0)]) ⊆ (0, ∞).

The following results provide the convergence results for the
heterogeneous multi-agent with uniform quantisers.

Theorem 3: Suppose that G(A) is an undirected connected graph
and p1 ≤ mini∈Im

∑n
j=1 aij . For the heterogeneous multi-agent

system (2) with protocol (5), the positions of all the agents asymp-
totically converge to the set {x | |xi − xj| < δ, (i, j) ∈ E} and the
velocities of all the second-order agents asymptotically converge
to 0 under uniform quantisers.

Proof: Take a Lyapunov function for (6) and (7) as

V1(e, v) = 1

2

n∑
i=1

n∑
j=1

aij

∫ xi−xj

0
qu(s) ds + 1

2

m∑
i=1

v2
i .

Similar to the proof in Theorem 1, we have (see equation at the
bottom of the page)

where K
[∑n

j=1 aijqu(xi − xj)
]

� [ai, bi].
Note that 0 ∈ ˙̃V1 implies that vi = 0, i ∈ Im and 0 ∈ [ai, bi] =

K[∑n
j=1 aijqu(xi − xj)] ⊆ ∑n

j=1 aijK[qu(xi − xj)] ⊆ ∑n
j=1 aijK[qu

(xi − xj)] + ∑n
j=1 aijK[qu(0)], i ∈ In/Im. From vi = 0, one

has 0 ∈ ∑n
j=1 aijK[qu(xi − xj)] + p1K[qu(0)] ⊆ ∑n

j=1 aijK[qu(xi−
xj)] + ∑n

j=1 aijK[qu(0)], i ∈ Im, according to (6). Then, we obtain
the solutions on the invariant set must satisfy the differential inclu-
sion 0 ∈ ∑n

i=1 xi(
∑n

j=1 aijK[qu(xi − xj)] + ∑n
j=1 aijK[qu(0)]),
˙̃V1 =
⋂

ξ∈∂V1

ξT [K[ẋ1], K[ẋ2], . . . , K[ẋn], K[v̇1], K[v̇2], . . . , K[v̇m]]

⊆
⋂

ξi∈[ai ,bi]

⎛
⎝ m∑

i=1

vi ([ξi − bi, ξi − ai]) − p2

n∑
i=m+1

ξi[ai, bi] − p1

m∑
i=1

viK[qu(vi)]
⎞
⎠

≤ 0,
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i ∈ In. Since the communication graph is connected, one has

0 ∈
n∑

i=1

n∑
j=1

aijxi
(
K[qu(xi − xj)] + K[qu(0)])

= 1

2

n∑
i=1

n∑
j=1

aij(xi − xj)
(
K[qu(xi − xj)] + K[qu(0)]) .

Applying Lemma 4, one can easily get that |xi − xj| < δ,
∀(i, j) ∈ E. Thus, Theorem 3 is proved. �

Theorem 4: Suppose that the heterogeneous multi-agent system (2)
has a leader and n − 1 followers and the communication topol-
ogy among the followers is undirected and connected. For the
heterogeneous multi-agent system (2) with protocol (5), if the
leader is a first-order integrator agent and p1 ≤ mini∈Im

∑n
j=1 aij ,

the positions of all the agents asymptotically converge to the
set {x | |xi − xj| < δ, (i, j) ∈ E} and the velocities of second-order
agents asymptotically converge to 0 under uniform quantisers.

Proof: Similar to the proof of Theorem 2, consider the Lyapunov
function

V2(x̂, v) = 1

2

n−1∑
i=1

n−1∑
j=1

aij

∫ x̂i−x̂j

0
qu(s) ds

+
n−1∑
i=1

ain

∫ x̂i

0
qu(s) ds + 1

2

m∑
i=1

v2
i ,

and we get ˙̃V2 ≤ 0 and ˙̃V2 = 0 implies that 0 ∈ ∑n−1
j=1 aijK[qu(x̂i −

x̂j)] + ainK[qu(x̂i)] + ∑n
j=1 aijK[qu(0)], i ∈ In−1. Thus, the solu-

tions on the invariant set must satisfy the differential inclusion

0 ∈
n−1∑
i=1

x̂i

⎛
⎝n−1∑

j=1

aijK[qu(x̂i − x̂j)] + ainK[qu(x̂i)] +
n∑

j=1

aijK[qu(0)]
⎞
⎠

= 1

2

n−1∑
i=1

n−1∑
j=1

aij(x̂i − x̂j)
(
K[qu(x̂i − x̂j)] + K[qu(0)])

+
n−1∑
i=1

ainx̂i
(
K[qu(x̂i)] + K[qu(0)]) .

From Lemma 4 and the connectivity of the communication topol-
ogy among followers, we obtain that |xi − xj| < δ, ∀(i, j) ∈ E.
Theorem 4 is proved. �

4 Simulations

In this section, two examples are provided to demonstrate the
effectiveness of the theoretical results.

Example 1: Consider a heterogeneous multi-agent system with the
interaction graph G shown in Fig. 1 in which the second-order inte-
grator agents are denoted as 1 − 3, the first-order integrator agents
are denoted as 4 − 5, and each edge weight is assumed to be 1. It is
easy to find that G is connected. The initial positions of the agents
are set as [x1, x2, x3, x4, x5] = [12, 6, −8, −14, 8], the initial veloc-
ities of the second-order integrator agents are set as [v1, v2, v3] =
[2, 3, −2]. We assume that control gains p1 = 2, p2 = 1. It is easy
to verify that p1 satisfies the condition in Theorem 3. Figs. 2 and 3
show the simulation results of the heterogeneous multi-agent sys-
tem (2) with protocol (5) under logarithmic and uniform quantisers
with parameter δ = 2, respectively. For the case of without quan-
tiser, the simulation result is shown in Fig. 4. Comparing with the
2558
Fig. 1 Undirected graph
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Fig. 2 State trajectories of the agents under logarithmic quantisers
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Fig. 3 State trajectories of the agents under unform quantisers

resuts without quantisation, we can see that when uniform quantis-
ers are used, the positions of all the agents just convege to a bound
set and when logarithmic quantisers are used, the consensus is
achievied, but the quantisation process leads to slower convegence
speed. Furthermore, we look the effect of δ on the convergence
performance of the system. Fig. 5 shows the position trajectories
of the agents under logarithmic quantisers with different values of
δ. We can see that the bigger δ is, the more time it takes for the
quantised system to converge.

Example 2: When the communication topology is depicted in Fig.
6, where the first-order agent 5 is the leader, Figs. 7 and 8 show the
simulation results of the heterogeneous multi-agent system (2) with
protocol (5) under with the logarithmic and uniform quantisers,
respectively. From Fig. 7, we can see that the leader-following
consensus is achievied when logarithmic quantisers are used, which
IET Control Theory Appl., 2015, Vol. 9, Iss. 17, pp. 2553–2560
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Fig. 4 State trajectories of the agents without quantisers

0 5 10 15
−20

0

20

t (δ=1)

x i, i
=

1,
2,

3,
4.

5

0 5 10 15
−20

0

20

t (δ=2)

x i, i
=

1,
2,

3,
4.

5

0 5 10 15
−20

0

20

t (δ=2.5)

x i, i
=

1,
2,

3,
4.

5

Fig. 5 Position trajectories of the agents under logarithmic quantisers

Fig. 6 Leader-following network

verify the correctness of Theorem 2. The simulation results shown
in Fig. 8 confirm the results of Theorem 4. It can be seen that the
position of all the agents convege to a bound set under unform
quantisers.

5 Conclusion

By using graph theory and non-smooth analysis, the consensus
of heterogeneous multi-agent systems has been investigated in the
presence of quantised information under undirected connected and
leader-following communication networks. It has been shown that
when logarithmic quantisers are used, the heterogeneous multi-
agent system can reach consensus asymptotically for any quantiser
accuracy. For the case of uniform quantisers, it has been proved
that the position differences of the agents converge to a bounded
set and the velocities converge to zero. The future work will focus
IET Control Theory Appl., 2015, Vol. 9, Iss. 17, pp. 2553–2560
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Fig. 7 State trajectories of the agents under logarithmic quantisers
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Fig. 8 State trajectories of the agents under uniform quantisers

on the quantised consensus of heterogeneous multi-agent systems
under directed and switching networks.
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