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SUMMARY

In this paper, we consider the optimal topology for leader-following consensus problem of continuous-time
and discrete-time multi-agent systems based on linear quadratic regulator theory. For the first-order multi-
agent systems, we propose a quadratic cost function, which is independent of the interaction graph, and
find that the optimal topology is a star topology. For the second-order multi-agent systems, a quadratic
cost function is also constructed, whereas the optimal topology for second-order leader-following consensus
problem is an unevenly weighted star topology. The universality of these findings means that if each follower
is connected with the leader, the information exchange between followers is unnecessary and insufficient.
Simulation examples are provided to illustrate the effectiveness of the theoretical results. Copyright © 2014
John Wiley & Sons, Ltd.
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1. INTRODUCTION

Recently, more attention has been paid to distributed control of multi-agent systems (MASs),
because of its wide applications, such as formation control in unmanned aerial vehicles [1], flock-
ing in biology [2] and rendezvous problem of mobile autonomous robots [3]. Consequently, many
research topics about MASs have arisen, to name but a few, consensus problem [4–7], containment
control problem [8–11], controllability analysis [12] and optimal control [13–15].

Of these topics, consensus problem of MASs is one of the fundamental problems that have been
attracting increasing attentions. Consensus means that a group of agents converge to a common value
using information of neighbors. It was originally investigated by Vicsek et al. [4] and was explained
by graph theory [5]. Some relaxed necessary and sufficient conditions were obtained to solve con-
sensus problem of first-order MASs in [6]. Asynchronous consensus was further considered by Xiao
and Wang [16] for MASs with switching topologies. Because second-order dynamics exist widely
in nature, MASs with second-order dynamics of agents had aroused wide concern in recent years.
Sufficient conditions for second-order consensus were gotten under various circumstances [17, 18].
Consensus problem based on sampled-data control was also investigated in [19, 20]. In [21, 22], the
authors further studied consensus of heterogeneous MASs composed of first-order and second-order
dynamics of agents.

Omnipresent phenomena in natural systems indicate that there exists at least one leader in MASs,
for instance, the navigation aircraft in a fight formation of unmanned aerial vehicles and the queen
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ant in an ant colony. This triggers researchers great interest in leader-following consensus. Some
sufficient conditions for solving leader-following consensus were brought up for MASs with an
active leader [23] and for high-order MASs [24]. Two different leader roles, the power leader and
the knowledge leader, were proposed in [25]. As an extension of leader-following consensus, con-
tainment control problem of MASs with multiple leaders was also studied in [8, 9]. Then, some
necessary and sufficient conditions were arisen in [10, 11] for different cases.

Along with the consensus, optimality problem is also an active topic for MASs. Relevant studies
have corroboratively confirmed that consensus can be achieved under different interaction graphs.
A natural question emerges as follows: which is the optimal one under a given performance index?
Generally speaking, two classes of performance indexes were considered. One is the convergence
rate, and the other is cost function. The convergence rate of the consensus algorithm can be quan-
tified by algebraic connectivity of graph, the second smallest eigenvalue of Laplacian matrix [26].
Moreover, the algebraic connectivity of graph can be increased by designing the weights based on
semi-definite convex programming [27]. The fastest convergence graph was proposed in [28] for
solving the average consensus problem. Besides, convergence rate can also be measured by con-
vergence time. Hence, achieving consensus within finite-time was considered in [29–31]. Although
the convergence rate is a conventional metric of optimality, it usually takes great or even unafford-
able control effort to achieve this rate under the limited resources constraint. Cost function, then, is
another performance index in need of consideration to get a balance between the state convergence
and the control effort. A quadratic cost function was applied in the structured optimal control prob-
lem of formation [32]. Differential games were employed to obtain the Nash-bargaining consensus
protocol in [33]. Ji et al. [13] considered the optimal control of quasi-equilibrium for leader-based
formation. Cao and Ren [14] proposed linear quadratic regulator-based (LQR-based) optimal con-
sensus protocol for leaderless MASs and proved that the optimal solution corresponds to a complete
(directed) graph. A nonquadratic cost function was constructed for MASs with obstacles in [34].
Hengster-Movric and Lewis [15] used the notion of inverse optimality and partial stability to obtain
a sufficient condition for solving a global optimal LQR control problem of MASs.

Motivated by these studies in optimal control of MASs, we consider the optimal control problem
for leader-following MASs. Different from some optimal consensus problems in the aforementioned
literature [14, 15, 33], we aim to design a global optimal interaction topology for leader-following
consensus of MASs without any graphical structure constraints. Basically, leader-following con-
sensus is achieved when the state of each follower xi .t/ converges to the state of the leader
xNC1.t/. To balance the global consensus error

PN
iD1

�
qi .xi .t/ � xNC1.t//

2
�

and the control effortPN
iD1

�
riu

2
i .t/

�
, we propose a linear quadratic cost function independent of the interaction topology

and minimize it by seeking the optimal interaction graph among all consensusable topologies. The
main contributions of this paper are twofold. Firstly, we propose a linear quadratic cost function for
first-order discrete-time and continuous-time MASs. Based on LQR theory, we prove that the opti-
mal control always corresponds to a star topology. Secondly, for second-order cases, a quadratic cost
function is also constructed. However, the optimal topology is an unevenly weighted star topology in
which each follower, with different weights in the position and the velocity graph, is connected to no
other than the leader. It should be mentioned that these results provide some theoretic explanations
for some cooperative games and dictatorship.

The remainder of this paper is organized as follows. In Section 2, we introduce the graph theory
and the infinite-time LQR theory. In Section 3, we formulate and solve the optimal control problem
of first-order leader-following consensus. In Section 4, the optimal control problem of second-order
leader-following consensus is also considered. Simulation examples are provided in Section 5 to
illustrate the effectiveness of the theoretical results. Finally, a short conclusion is given in Section 6.

Throughout this paper, the following notations will be used: let N and R be the set of nonnegative
integral numbers and the set of real numbers, respectively. Rn�m is the set of n � m real matrices.
Denote by 1n (or 0n) the column vector with all entries equal to one (or all zeros). In denotes an
n�dimensional identity matrix. diag¹A1; : : : ; Anº is a block-diagonal matrix with matrices Ai ,
i D 1; : : : ; n, on its diagonal. For a matrix A 2 Rn�n, if B satisfies B2 D A, then B D A

1
2

(or B D
p
A). A˝ B denotes the Kronecker product of matrices A and B . In D ¹1; : : : ; nº is an

index set.
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2. PRELIMINARY

2.1. Graph theory

In order to solve distributed coordination problems, graph theory is employed to describe informa-
tion exchange between agents.

Let G D ¹V;E;Aº be a weighted directed graph consisting of a vertex set V D ¹1; 2; : : : ; nº, an
edge set E D ¹.i; j / 2 V � V º and an adjacency matrix A D Œaij � 2 Rn�n. An edge .j; i/ 2 E
implies that the agent i can access the information of the agent j . The adjacency matrix A of G is
defined such that for all i 2 In, ai i D 0 and for all i ¤ j , .j; i/ 2 E , aij > 0, while aij D 0

otherwise. The neighbor set of the agent i is Ni D ¹j W aij > 0º. The degree matrix D 2 Rn�n is
a diagonal matrix with di i D

P
j2Ni aij and the Laplacian matrix L D D � A. A special directed

graph is star topology where there is a vertex, labeled i0, with no neighbors and for all j 2 In n¹i0º,
Nj D ¹i0º.

In MASs, an agent is a leader if it has no neighbors and is a follower if it has at least one neighbor
[9]. In this paper, we assume that there are one leader, labeled by N C 1, and N followers, labeled
by i 2 IN . For the first-order MASs, there is only position information exchange between agents.
Hence, we employ a weighted directed graphG.A/ with Laplacian matrixLA to model it. However,
for the second-order MASs, both the position and the velocity information are exchanged. There-
fore, we still employ G.A/ to describe the position information exchange. And besides, we use
another weighted directed graphG.W /with Laplacian matrixLW to model the velocity information
exchange. And according to the definition of leader, LA and LW can be partitioned as

LA D

 
LA
ff

�b

0TN 0

!
and LW D

 
LW
ff

�d

0TN 0

!
;

where b D Œb1; : : : ; bN �T and d D Œd1; : : : ; dN �T areN -dimension column vectors. For all i 2 IN ,
if bi > 0, then there is a directed edge from the leader N C 1 to the follower i in the graph G.A/
with the weight bi and as a result, the follower i can access the position information of the leader.
Likewise, for all i 2 IN , if di > 0, then the follower i can have an access to the velocity information
of the leader with the weight di . For a second-order MAS, if G.A/ and G.W / have the same
structure (i.e. the .i; j /th entry of LA equals to zero if and only if the .i; j /th entry of LW is zero)
and different weights, then the system is said to have an unevenly weighted interaction graph.

2.2. Infinite-time linear quadratic regulator theory

In this subsection, some basic concepts and properties in infinite-time LQR theory, which will be
used in this paper, are given. For more details, please refer to [35].

Consider a linear system as follows:

PX.t/ D GX.t/CHU.t/; (1)

where X.t/ 2 Rn, U.t/ 2 Rm, G 2 Rn�n and H 2 Rn�m. Let Q 2 Rn�n and R 2 Rm�m be
symmetric and be nonnegative and positive definite, respectively. Define the cost function

J.U.:/; X.0// D

Z 1
0

�
XT .t/QX.t/C U T .t/RU.t/

�
dt:

The physical interpretation of the cost function is the ’total cost’ of system (1) during the process
from the initial state X.0/ to the equilibrium state. The task of the optimal control problem is to find
an optimal control U �.t/ D �K�X.t/ minimizing J.U.:/; X.0//, where K� is called the optimal
feedback gain matrix [35]. In other words, optimal control can drive the state close to the equilibrium
state without any excessive cost. Two LQR optimal control lemmas are given, which can be found
in [35].

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2015; 25:3404–3421
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Lemma 1
Suppose that system (1) is completely controllable or completely stabilizable. Then, the algebraic
Riccati equation (ARE)

GTP C PG CQ � PHR�1HTP D 0

has a unique positive-definite solution. Furthermore, the optimal control U �.t/ D �R�1HTPX.t/
minimizes the cost function J.U.�/; X.0// and drives the system to achieve asymptotic stability.

Lemma 2
Suppose the discrete-time linear system

X.k C 1/ D GTX.k/CHTU.k/; k 2 N

is completely controllable or completely stabilizable, where X.k/ 2 Rn, U.k/ 2 Rm, GT 2 Rn�n

and HT 2 Rn�m. Define the cost function

J.U.:/; X.0// D

1X
kD0

�
XT .k/QX.k/C U T .k/RU.k/

�
;

where Q 2 Rn�n and R 2 Rm�m are symmetric and are nonnegative and positive definite,
respectively. Then, the following discrete-time ARE

GTT

�
P � PHT

�
RCHT

T PHT
��1

HT
T P

�
GT CQ D P

has a unique positive-definite solution. Moreover, the optimal controlU �.k/ D �.RCHT
T PHT /

�1

HT
T PGTX.k/ minimizes the cost function J.U.�/; X.0// and steers the system to be asymptoti-

cally stable.

3. LQR-BASED OPTIMAL TOPOLOGY OF FIRST-ORDER
LEADER-FOLLOWING CONSENSUS

3.1. Continuous-time case

Consider first-order leader-following MASs as follows:

Pxi .t/ D ui .t/; i 2 IN ;
PxNC1.t/ D 0;

(2)

where xi .t/ 2 R and ui .t/ 2 R are the position and the control input of the follower i (i 2 IN ),
respectively. And xNC1.t/ 2 R is the position of the leader. Let X.t/ D .x1.t/; : : : ; xN .t//

T and
U.t/ D .u1.t/; : : : ; uN .t//

T . Leader-following consensus means to design ui .t/ (i 2 IN ) based on
neighbor information of the follower i to drive the state converging to that of the leader. The precise
definition is as follows:

Definition 1 (First-order leader-following consensus)
System (2) is said to achieve leader-following consensus if, for each follower i 2 IN , there exists
a local state feedback ui .t/ based on NA

i , such that the corresponding states of the closed-loop
system satisfy

lim
t!1
jxi .t/ � xNC1.t/j D 0; i 2 IN ; (3)

for any initial state X.0/ 2 RN .

A common linear-consensus protocol is considered in [23, 24] as follows:

ui .t/ D

NX
jD1

aij Œxj .t/ � xi .t/� � bi Œxi .t/ � xNC1.t/� ; i 2 IN ; (4)

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2015; 25:3404–3421
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where aij is the .i; j /th entry of the adjacency matrix A of G.A/ and bi is the i th entry of b. The
matrix form of (2) with the protocol (4) is

PX.t/ D U.t/

U.t/ D �LAffX.t/C bxNC1.t/:
(5)

Then, we propose the cost function

J.U.t/; X.0// D

Z 1
0

´
NX
iD1

�
qi .xi .t/ � xNC1.t//

2 C riu
2
i .t/

�μ
dt;

where qi > 0 and ri > 0 are the weight of consensus error and the weight of control effort of the
follower i , respectively. Therefore, the optimal control problem of the leader-following MASs is to
find the optimal control U �.t/ minimizing J.U.t/; X.0// for any initial state X.0/ 2 RN

min
U.t/

J.U.t/; X.0//

subject to (5) and (3).
(6)

According to U.t/ D �LA
ff
X.t/C bxNC1.t/, seeking U �.t/ is equivalent to finding the optimal

topology G.A�/ with Laplacian Matrix LA
�

.

Theorem 1
For optimal control problem (6), the optimal topology is a star topology in which the follower i

(i 2 IN ) is connected only to the leader with the weight
r
qi

ri
.

Proof
Denote the consensus error of the follower i (i 2 IN ) by "i .t/ D xi .t/�xNC1.t/ and the consensus
error vector by ".t/ D ."1.t/; : : : ; "N .t//T . The error system of (5) is

P".t/ D U.t/;

U.t/ D �LAff ".t/:
(7)

By substituting ".t/ into J.U.t/; X.0//, the optimal control problem (6) can be converted into a
standard LQR problem as follows:

min
U.t/

Z 1
0

�
"T .t/Q".t/C U T .t/RU.t/

�
dt

subject to (7) and lim
t!1
j".t/j D 0 ;

where Q D diag¹q1; : : : ; qN º and R D diag¹r1; : : : ; rN º. Because the controllability matrix is
ŒIN ; : : :�, system (7) is controllable. Hence, it follows from Lemma 1 that there exists a positive-
definite matrix P 2 RN�N satisfied the following ARE:

PR�1P D Q; (8)

and the optimal feedback gain matrix LA
�

ff
D R�1P can stabilize system (7). By premultiplying

R�1 on both sides of (8), we can easily obtain

LA
�

ff D .R
�1Q/

1
2 D diag

²r
q1

r1
; : : : ;

r
qN

rN

³
:

Obviously, we have

LA
�

D

 
LA
�

ff
�b�

0TN 0

!
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and NA�

i D ¹N C 1º for all i 2 IN , where b� D
�r

q1

r1
; : : : ;

r
qN

rN

	T
. Thus, the optimal topology

is a star topology in which each follower i (i 2 IN ) is connected to no other than the leader with

the weight
r
qi

ri
. Finally, owing to asymptotic stability of close-loop system (7) with the feedback

gain matrix LA
�

ff
, system (5) achieves leader-following consensus. �

Remark 1
Star topology G.A�/ has N edges. In [23], the authors proved if the interaction topology G.A/ is
connected, system (5) can achieve leader-following consensus. It is easy to prove that if G.A/ is
connected, then the edge number is greater than or equal to N . Therefore, star topology G.A�/ has
the minimal edge number among all connected interaction topologies. It should be noted that star
topology is not the only connected graph with the minimal edge number. For example, a tree graph
has the minimal edge number too. However, G.A�/ is the only one with the minimal edge number
as well as the minimal cost.

Remark 2
Suppose there are M.M > 1/ leaders, labeled by N C 1; : : : ; N CM . Then, the Laplacian Matrix
of G.A/ is

LA D

 
LA
ff

LA
fr

0M�N 0M�M

!
;

where LA
ff
2 RN�N and LA

fr
2 RN�M . Denote Xf .t/ D Œx1.t/; : : : ; xN .t/�

T and Xr.t/ D
ŒxNC1.t/; : : : ; xNCM .t/�

T . Then, it follows that

PXf .t/ D �L
A
ffXf .t/ � L

A
f rXr.t/;

PXr.t/ D 0M :
(9)

From [10], we have if LA
ff

is invertible, then Xf .t/ will converge to Xc
f
D �.LA

ff
/�1LA

f r

Xr.0/ 2 co.Xr.0//, where co.Xr.0// is the convex hull spanned by the initial states of the leaders
Xr.0/. Define a cost function as follows:

J.U.t/; X.0// D

Z 1
0

��
Xf .t/ �X

c
f

�T
Q
�
Xf .t/ �X

c
f

�
C U.t/TRU.t/

	
dt;

whereQ D diag¹q1; q2; : : : ; qN º andR D diag¹r1; r2; : : : ; rN º areN -dimension positive-definite
diagonal matrices. Similar to Theorem 1, we show that the optimal control problem

J.U �.�/; X.0// D min
U.�/

J.U.�/; X.0//

subject to (9) and lim
t!1

Xf .t/ D X
c
f

can be solved by LA
�

ff
D diag

²r
q1

r1
; : : : ;

r
qN

rN

³
and

L�f r D

0
@ b�1
: : :

b�N

1
A ;

where b�i 2 R1�M (i 2 IN ) is the solution of the following convex programming:

min
bi

²
xi .0/C

r
ri

qi
biXr.0/

³2

subject to bi1M D
r
qi

ri
:

(10)
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In other words, the optimal control is associated with an interaction graph in which each follower
can only access the information from leaders determined by (10).

3.2. Discrete-time case

By sampling the continuous-time MASs (2) in period T > 0, we can formulate first-order discrete-
time MASs as

xi .kT C T / D xi .kT /C ui .kT /T; i 2 IN
xNC1.kT C T / D xNC1.kT /;

(11)

where k 2 N. The discrete-time MAS (11) is said to achieve leader-following consensus if

lim
k!1

jxi .kT / � xNC1.kT /j D 0; i 2 IN ; (12)

for any initial state X.0/ 2 RN . In order to guarantee (12), let the linear-consensus protocol be

ui .kT / D

NX
jD1

aij Œxj .kT / � xi .kT /� � bi Œxi .kT / � xNC1.kT /� ; i 2 IN :

Then, the matrix form of system (11) is

X.kT C T / D X.kT /C U.kT /T;

U.kT / D �LAffX.kT /C bxNC1.kT /:
(13)

Similar to continuous case, we propose the following optimal control problem for system (11):

min
U.kT /

J.U.kT /;X.0//

subject to (13) and (12);
(14)

where

J.U.kT /;X.0// D

1X
kD0

NX
iD1

�
qi .xi .kT / � xNC1.kT //

2 C riu
2
i .kT /

�
;

qi > 0 and ri > 0.

Theorem 2
For optimal control problem (14), the optimal topology is a star topology in which the follower i

(i 2 IN ) is only connected to the leader with the weight
T

2

2
4
s


qi

ri

�2
C

4qi

T 2ri
�
qi

ri

3
5.

Proof
Denote ".kT / D X.kT / � 1N ˝ xNC1.kT /. From system (13), we get

".kT C T / D ".kT /C T U.kT /;

U.kT / D �LAff ".kT /; k 2 N:
(15)

Thus, the optimal control problem (14) is converted into the following standard LQR problem:

min
U.kT /

1X
kD0

�
".kT /TQ".kT /C U.kT /TRU.kT /

�
subject to (15) and lim

k!1
j".kT /j D 0;
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where Q D diag¹q1; : : : ; qN º and R D diag¹r1; : : : ; rN º. By using Lemma 2 and noticing that
system (15) is controllable, we can obtain that the discrete-time ARE

Q D PT .RC T 2P /�1TP (16)

has a unique positive-definite matrix solution. Moreover, the optimal feedback gain matrix LA
�

ff
D

.R C T 2P /�1TP can stabilize system (15). Next, we solve (16). Premultiplying by R�1 on both
sides of (16) leads to

R�1Q D R�1PT
�
IN C T

2R�1P
��1

TR�1P: (17)

From the fact that
�
IN C T

2R�1P
��1
D IN � T

2R�1P
�
IN C T

2R�1P
��1

, we get

R�1PT
�
IN C T

2R�1P
��1

TR�1P D
�
TR�1P

�2
� T 2R�1P

�
h
R�1PT

�
IN C T

2R�1P
��1

TR�1P
i
:

(18)

Together with (17), it follows that

R�1Q D T 2
�
R�1P

�2
� T 2

�
R�1P

�
R�1Q: (19)

Hence, we have R�1P D
1

2

2
4R�1QC

s
.R�1Q/2 C

4R�1Q

T 2

3
5. Consequently, the feedback

gain matrix is

LA
�

ff D
T

2

2
4
s
.R�1Q/

2
C
4R�1Q

T 2
�R�1Q

3
5 D diag¹b�1 ; : : : ; b

�
N º;

where b�i D
T

2

2
4
s


qi

ri

�2
C

4qi

T 2ri
�
qi

ri

3
5 for i 2 IN . Thus, we have

LA
�

D



LA
�

ff
�b�

0TN 0

�
;

where b� D Œb�1 ; : : : ; b
�
N �
T and NA�

i D ¹NC1º for all i 2 IN . In other words, the optimal topology
GA
�

is a star topology in which each follower i (i 2 IN ) just has one connection to the leader

with the weight
T

2

2
4
s


qi

ri

�2
C

4qi

T 2ri
�
qi

ri

3
5. Finally, because of the asymptotic stability of (15)

with the optimal feedback gain matrix LA
�

ff
, the discrete-time MAS (13) achieves leader-following

consensus. �

Remark 3

Obviously,
T

2

"s
q2i
r2i
C

4qi

T 2ri
�
qi

ri

#
!

r
qi

ri
as T ! 0.

4. LQR-BASED OPTIMAL TOPOLOGY OF SECOND-ORDER LEADER-FOLLOWING
CONSENSUS

4.1. Continuous case

Second-order leader-following MASs can be formulated as

Pxi .t/ D vi .t/; Pvi .t/ D ui .t/; i 2 IN ;
PxNC1.t/ D vNC1.t/; PvNC1.t/ D 0;

(20)
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where xi .t/ 2 R, vi .t/ 2 R and ui .t/ 2 R are the position, the velocity and the control
input of the follower i , respectively. xNC1.t/ 2 R and vNC1.t/ 2 R are the position and the
velocity of the leader, respectively. Denote X.t/ D .x1.t/; : : : ; xN .t/; v1.t/; : : : ; vN .t//

T and
U.t/ D .u1.t/; : : : ; uN .t//

T . System (20) is said to achieve leader-following consensus if for any
initial state X.0/ 2 R2N , there exists a local state feedback U.t/ where each ui .t/ based on NA

i

and NW
i , such that the corresponding states of the closed-loop system satisfy

lim
t!1
jxi .t/ � xNC1.t/j D 0; lim

t!1
jvi .t/ � vNC1.t/j D 0; i 2 IN : (21)

In this paper, we propose a protocol as follows:

ui .t/ D

NX
jD1;j¤i

®
aij

�
xj .t/ � xi .t/

�
C wij

�
vj .t/ � vi .t/

�¯
� bi Œxi .t/ � xNC1.t/� � di Œvi .t/ � vNC1.t/� ;

(22)

where aij and wij are the .i; j /th entry of adjacent matrices A and W of G.A/ and G.W /, respec-
tively. bi and di are the i th entry of b and d, respectively. The matrix form of system (20) with the
protocol (22) is

PX.t/ D GX.t/CHU.t/;

U.t/ D �
h
LAff ; L

W
ff

i
X.t/C bxNC1.t/C dvNC1.t/;

(23)

where

G D



0N�N IN
0N�N 0N�N

�
and H D



0N�N
IN

�
:

Then, we propose the optimal control problem of (20) as follows:

min
U.t/

J.U.t/; X.0//

subject to (23) and (21);
(24)

where

J.U.t/; X.0// D

Z 1
0

´
NX
iD1

�
qi
�
.xi .t/ � xNC1.t//

2 C .vi .t/ � vNC1.t//
2
�
C riu

2
i .t/

�μ
dt;

qi > 0 and ri > 0. It follows from (23) that seeking optimal control U �.t/ is equivalent to finding
the optimal topology with the position graph G.A�/ and the velocity graph G.W �/ of associating
the Laplacian Matrices LA

�

and LW
�

, respectively.

Theorem 3
For optimal control problem (24), the optimal topology is an unevenly weighted star topology. More

specifically, each follower i (i 2 IN ) is only connected to the leader with the weights
r
qi

ri
in the

position graph and

s
2

r
qi

ri
C
qi

ri
in the velocity graph.

Proof
Define the consensus error vector of system (20) by

".t/ D X.t/ �
�
1TN ˝ xNC1.t/; 1

T
N ˝ vNC1.t/

�T
:

Then, the associated error dynamics system is

P".t/ D G".t/CHU.t/;

U.t/ D �K".t/;
(25)
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where K D
h
LA
ff
; LW

ff

i
. Consequently, the optimal control problem (24) is converted into a

standard LQR problem as follows:

min
U.t/

Z 1
0

�
"T .t/.I2 ˝Q/".t/C U

T .t/RU.T /
�
dt

subject to (25) and lim
t!1
j".t/j D 0 ;

(26)

where Q D diag¹q1; : : : ; qN º and R D diag¹r1; : : : ; rN º. The linear system (25) is controllable
because the rank of controllability matrix

ŒH;GH;G2H; : : : ; G2NH� D



0N�N IN : : :

IN 0N�N : : :

�
is 2N . Therefore, according to Lemma 1, the associated ARE of (26)

PG CGTP C I2 ˝Q � PHR
�1HTP D 0 (27)

has a unique positive-definite solution. Furthermore, the optimal control U �.t/ D �R�1HTP".t/
can drive (25) to achieve asymptotic stability. Next, we solve ARE (27). Denote P by

P D



P11 P12
P T12 P22

�
;

where P11 2 RN�N and P22 2 RN�N are symmetric, and P12 2 RN�N . Then,

K� D
h
LA
�

ff ; L
W �

ff

i
D R�1HTP D

�
R�1P12; R

�1P22
�
;

and it follows from (27) that

P12R
�1P22 D P11 D P22R

�1P T12;

Q D P12R
�1P T12;

P T12 C P12 CQ D P22R
�1P22:

Supposing P12 D P T12 and premultiplying by R�1 on both side of the above equations gives

LA
�

ff D
�
R�1Q

� 1
2 D diag

®
b�1 ; : : : ; b

�
N

¯
;

LW
�

ff D
�
R�1.2P12 CQ/

� 1
2 D diag

®
d�1 ; : : : ; d

�
N

¯
;

where b�i D
r
qi

ri
and d�i D

s
2

r
qi

ri
C
qi

ri
. Thus, we have

LA
�

D

 
LA
�

ff
� b�

0TN 0

!
and LW

�

D

 
LW

�

ff
� d�

0TN 0

!
;

where b� D Œb�1 ; : : : ; b
�
N �
T and d� D Œd�1 ; : : : ; d

�
N �
T . This implies that the optimal topology is an

unevenly weighted star topology in which each follower i (i 2 IN ) is connected to no other than

the leader with different weights
r
qi

ri
and

s
2

r
qi

ri
C
qi

ri
in the position and the velocity graph,

respectively. The asymptotic stability of system (25) with feedback gain matrix K� means that
system (20) achieves leader-following consensus. �

Remark 4
Consider a general linear leader-following MAS as follows:

Pxi D Axi C Bui ; i 2 IN ;
PxNC1 D AxNC1;

(28)
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where xi .t/ 2 Rn, ui .t/ 2 Rm, A 2 Rn�n and B 2 Rn�m. Let the cost function be

J.U.t/; X.0// D

Z 1
0

´
NX
iD1

�
qi k xi .t/ � xNC1.t/ k

2 Cri k ui .t/ k
2
�μ
dt:

Assume that the pair .A;B/ is completely controllable. Similar to Theorem 3, we obtain that the
optimal control problem

J.U �.�/; X.0// D min
U.�/

J.U.�/; X.0//

subject to (28) and lim
t!1

Xi .t/ D XNC1.t/
(29)

can be solved by u�i D �r
�1
i BTPi .xi � xNC1/; i 2 IN , where Pi is the solution of the ARE

PiAC A
TPi C qiIn � r

�1
i PiBB

TPi D 0:

Hence, u�i is only dependent with xi and xNC1. That is to say the optimal topology of (29) is a
star topology.

4.2. Discrete-time case

By sampling the continuous-time MASs (20) in period T > 0, the discrete-time leader-following
MASs can be define as

xi .kT C T / D xi .kT /C vi .kT /T;

vi .kT C T / D vi .kT /C ui .kT /T; i 2 IN ;
xNC1..k C 1/T / D xNC1.kT /C vNC1.kT /T;

(30)

where k 2 N. Denote X.kT / D Œx1.kT /; v1.kT /; : : : ; xN .kT /; vN .kT /�
T and U.kT / D

Œu1.kT /; : : : ; uN .kT /�
T . System (30) is said to achieve leader-following consensus if

lim
k!1

jxi .kT / � xNC1.kT /j D 0; lim
k!1

jvi .kT / � vNC1.kT /j D 0; i 2 IN (31)

for any initial state X.0/ 2 R2N . Let the linear-consensus protocol be

ui .kT / D

NX
jD1;j¤i

®
aij

�
xj .kT / � xi .kT /

�
C wij

�
vj .kT / � vi .kT /

�¯
� bi Œxi .kT / � xNC1.kT /� � di Œvi .kT / � vNC1.kT /� :

Hence, we have

X.kT C T / D .IN ˝GT /X.kT /C .IN ˝HT /U.kT /;

U.kT / D �
°
LAff ˝ Œ1 0�C L

W
ff ˝ Œ0 1�

±
X.kT /C bxNC1.kT //C dvNC1.kT /;

(32)

where

GT D



1 T

0 1

�
and HT D



0

T

�
:

Now we propose the optimal control problem of (32) as follows:

min
U.kT /

J.U.kT /;X.0//

subject to (32) and (31);
(33)

where

J.U.kT /;X.0// D

1X
kD0

NX
iD1

�
qi
�
.xi .kT / � xNC1.kT //

2C.vi .kT / � vNC1.kT //
2
�
Criu

2
i .kT /

�
and qi > 0 and ri > 0.
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Theorem 4
For optimal control problem (33), the optimal topology is an unevenly weighted star topology. More
specifically, each follower i (i 2 IN ) just has one connection to the leader with different weights
b�i and d�i in the position and the velocity graph, respectively, where�

b�i ; d
�
i

�
D
�
ri CH

T
T PiH

T
T

��1
HT
T PiGT ;

and Pi 2 R2�2 (i 2 IN ) is the solution of the discrete-time ARE

GTT PiGT C qiI2 � Pi �G
T
T PiHT

�
ri CH

T
T PiH

T
T

��1
HT
T PiGT D 0:

Proof
Denote "i .k/ D Œxi .kT / � xNC1.kT /; vi .kT / � vNC1.kT /�T and ".k/ D

�
"T1 .k/; : : : ; "

T
N .k/

�T
.

Then the dynamics of ".k/ is

".k C 1/ D .IN ˝GT /".k/C .IN ˝HT /U.k/;

U.k/ D �K".k/;
(34)

where K D
h
LA
ff
˝ Œ1 0�C LW

ff
˝ Œ0 1�

i
. Obviously, the optimal control problem (33) is

equivalent to

min
U.k/

1X
kD0

�
".k/T .Q˝ I2/".k/C U.k/

TRU.k/
�

subject to (34) and lim
k!1

j".k/j D 0 ;

(35)

whereQ D diag¹q1; : : : ; qN º and R D diag¹r1; : : : ; rN º. It is easy to show that the controllability
matrix of (34) is of row full rank:

rank
�
.IN ˝HT /; .IN ˝GT /.IN ˝HT /; : : : ; .IN ˝GT /

2N�1.IN ˝HT /
�

D rank
�
IN ˝ Œ0; T �

T ; IN ˝ ŒT
2; T �T ; : : :

�
D rank



IN ˝



T 2 0

T T

�
; : : :

�
D 2N:

Therefore, we can conclude from Lemma 2 that the discrete-time ARE

Q˝ I2C
�
IN ˝G

T
T

�
P .IN ˝GT / � P

�
�
IN ˝G

T
T

�
P .IN ˝HT /

�
RC

�
IN ˝H

T
T

�
P .IN ˝HT /

��1 �
IN ˝H

T
T

�
P .IN ˝GT / D 0

(36)

has a unique positive-definite solution P . And the optimal control U �.k/ D �K�".k/ can steer the
close-loop system (34) to achieve asymptotic stability, where

K� D
�
RC

�
IN ˝H

T
T

�
P .IN ˝HT /

��1 �
IN ˝H

T
T

�
P .IN ˝GT / :

Our next goal is to solveP andK� by decomposing the LQR problem (35) intoN LQR problems.
Observing that R, Q ˝ I2, IN ˝ GT and IN ˝ HT are all block-diagonal matrices, we suppose
P D diag¹P1; : : : PN º with Pi 2 R2�2, i 2 IN , on its diagonal. As a result, the ARE (36) is
decomposed into N matrix equations as follows:

GTT PiGT C qiI2 � Pi �G
T
T PiHT

�
ri CH

T
T PiHT

��1
HT
T PiGT D 0; i 2 IN : (37)

Moreover, it gives rise to K� D diag
®
K�1 ; : : : ; K

�
N

¯
, where K�i D

�
b�i ; d

�
i

�
D�

ri CH
T
T PiH

T
T

��1
HT
T PiGT . It should be noted that (37) is AREs of the following LQR problems

for all i 2 IN :

min
ui .k/

1X
kD0

�
qi"i .k/

T "i .k/C riui .k/
2
�

subject to "i .k C 1/ D GT "i .k/CHT ui .k/:

(38)
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Therefore, the optimal control problem (35) is decomposed into N optimal control problems (38).
Thus, each u�i .k/ (i 2 IN ) is independent of "j .k/, for all j ¤ i . That is to say, there is no
information exchange between followers. Using the fact that .GT ;HT / is controllable, we further
obtain the ARE (37) has a unique solution Pi 2 R2�2 for each i 2 IN , and the optimal feedback
matrix of (38) is K�i . In addition, the optimal control of (38)

u�i D �b
�
i .xi .kT / � xNC1.kT // � d

�
i .vi .kT / � vNC1.kT //

gives rise to the asymptotical stability of the associated close-loop of "i .k/, and therefore, leads to
the leader-following consensus of the i th follower. Thus, we conclude that the optimal topology is
an unevenly weighted star topology in which each follower i (i 2 IN ) is only connected to the
leader with different weights b�i and d�i in the position and the velocity graph, respectively. �

The results of this paper mean that if each follower can access the information from the leader,
then any information from other followers is unnecessary and insufficient. This explains some coop-
eration games. Consider a cooperative team, if the goal of the team is a “common knowledge” for
all members (in other words, each member has full knowledge about the goal of the team and knows
how to fulfill it and moreover, knows that all others also know the goal and the method), then infor-
mation exchange and cooperation between members become unnecessary. However, cooperation
always decreases the “total payoff” because either the goal information is not fully available to all
members or some members cannot achieve the goal independently. Besides the cooperation games,
the result of the paper is also sociologically applicable. In dictatorship, the dictator would prefer a
network where all the followers can access no other than the dictator himself. This type of network
prevents the followers from communicating with each other, thus, safeguards the ruling power of
the dictator.

5. SIMULATIONS

In this section, we give two numerical simulations to illustrate the theoretical results in Sections 3
and 4, respectively.

Example 1
Consider a first-order continuous-time MAS that consists of four followers, labeled by 1, 2, 3 and
4, and a leader, labeled by 5. Suppose Q D R D I4 and x5.0/ D 0. Four interaction topologies
G�, G2, G3 and G4 are depicted in Figures 1, 2, 3 and 4, respectively. Table I gives the costs
J.U.t/; X.0// of G�, G2 and G3 with same initial states. It shows that the cost of G� is always
minimal, which is consistent with the result of Theorem 1. Consider the star topology G4 with the
weights 1, 1, y and ´ (y; ´ 2 RC). Note that for a given initial state X.0/ 2 R4, we have the cost
function J.U.t/; X.0// D JX.0/.y; ´/ for G4. JX.0/.y; ´/ is minimal when G4 D G� (y D ´ D 1)

5

1

23

4
1 1

11

Figure 1. The topology G�.
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5

1

23

4 1

1 1 

1

11

1

1

Figure 2. The topology G2.

5 4 3 2 11 1 1 1

Figure 3. The topology G3.

Figure 4. The topology G4.

Table I. The costs of different interaction topologies.

J.U.t/; X.0//

X.0/ G� G2 G3

Œ6:78 � 7:57 � 7:43 3:92�T 173.84 288.76 253.52

Œ1:10 0:046 � 8:73 � 2:47�T 83.53 128.69 165.05

Œ2:63 6:54 6:89 7:48�T 153.11 167.55 189.30

with a random chosen initial stateX.0/ D Œ2:63 6:54 6:89 7:48�T in Figure 5, which is consistent
with the result of Theorem 1.

Example 2
Consider a second-order continuous-time MAS that consists of four followers and a leader. Suppose
that Q D R D I4, x5.0/ D 0 and v5.t/ D 1 (t > 0). We propose a star topology OG� in which
the position and the velocity graph are depicted in Figure 6. The second interaction topology is OG2

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2015; 25:3404–3421
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Figure 5. JX.0/.y; ´/ with the topology G4 and X.0/ D Œ2:63 6:54 6:89 7:48�T .

Figure 6. The topology OG�.

Figure 7. The topology OG5.
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Table II. The costs of different interaction topologies.

J.U.t/; X.0//

X.0/ OG� OG2 OG3

Œ7:57 74:31 7:84 � 3:74 0:83 9:26 4:18 28:69�T 12326 18293 22091

Œ�3:81 1:53 15:90 9:34 1:50 � 4:34 10:69 8:09�T 1338.1 1888.4 5941.8

Œ0:40 � 2:38 1:80 0:79 3:80 8:30 7:68 10:70�T 369.78 441.58 2893.9

Figure 8. JX.0/.y; ´/ with OG5 and X.0/ D Œ0:40 � 2:38 1:80 0:79 3:80 8:30 7:68 10:70�T .

in which the position and the velocity topology are G2. The third one is OG3 in which the position
and the velocity graph are G3. Figure 7 describes an unevenly weighted star topology OG5 with the
weights 1, 1, 1 and y in the position graph, and the weights

p
3,
p
3,
p
3 and ´ in the velocity graph,

where y; ´ 2 RC. Table II shows the costs of OG�, OG2, and OG3 with same initial states. It is easy
to find that the cost of OG� is always minimal. In addition, we get the cost function J.U.t/; X.0// D
JX.0/.y; ´/ for OG5. Notice that when OG5 D OG� (y D 1; ´ D

p
3), JX.0/.y; ´/ is minimal with

a random chosen initial state X.0/ D Œ0:4 � 2:3816 1:8 0:79 3:8 8:3 7:68 10:7�T

in Figure 8. The results of Table II and Figure 8 illustrate the effectiveness of theoretical result
in Theorem 3.

6. CONCLUSION

In this paper, we developed LQR-based optimal control for leader-following MASs and found that
the optimal control is always associated with star topology. Firstly, we proposed a quadratic cost
function, which is independent of the interaction graph. Secondly, by employing LQR method,
we can get the optimal topology by solving the associated ARE. For both first-order and second-
order leader-following MASs, the optimal control always corresponds to a star topology in which
each follower just has an access to information of the leader. The results offer some theoretical
explanations to some cooperation games and dictatorship. Future work may consider optimal control
problems for some MASs with constrains, such as MASs with fixed and switching topologies and
MASs without velocity measurement.
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