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This paper studies the consensus problem of first-order and second-order multi-agent systems with nonlinear dynamics
and quantised interactions. Continuous-time and impulsive control inputs are designed for the multi-agent systems on the
logarithmic quantised relative state measurements of agents, respectively. By using nonsmooth analysis tools, we get some
sufficient conditions for the consensus of multi-agent systems under the continuous-time inputs. Compared with continuous-
time control inputs, impulsive distributed control inputs just use the state variables of the systems at discrete-time instances.
Based on impulsive control theory, we prove that the multi-agent systems can reach consensus by choosing proper control
gains and impulsive intervals. The simulation results are given to verify the effectiveness of the theoretical results.

Keywords: multi-agent system; consensus; quantised control; impulsive control

1. Introduction

In recent years, distributed coordination of multi-agent sys-
tems has attracted a great deal of attention. This is partly
due to broad practical applications of multi-agent systems
in many areas such as formation control (Fax & Murray,
2004; Ren & Cao, 2011), swarming (Liu, Chu, Wang, &
Wang, 2005) and flocking (Tanner, Jadbabaie, & Pappas,
2007). A key problem in distributed control is the con-
sensus problem, which aims at designing distributed al-
gorithm to make a group of agents reach an agreement
upon some quantities of interest. In Vicsek, Czirok, Jacob,
Cohen, and Schochet (1995), the authors proposed a
discrete-time model for the phase transition of a group
of autonomous agents. Through computer simulations, it
was showed that all agents eventually moved in the same
direction. In Jadbabaie, Lin, and Morse (2003), a theoreti-
cal explanation was provided for the consensus behaviour
of the Vicsek model through graph theory. In Olfati-Saber
and Murray (2004), a theoretical framework for consen-
sus problems of continuous-time multi-agent systems was
presented. The authors provided the convergence analysis
of a consensus protocol for a network of integrators with
directed information flow and fixed/switching topology. In
Ren and Beard (2005), the authors extended the results in
Jadbabaie et al. (2003) to the case of directed graphs. The
work above inspired much subsequent theoretical investiga-
tion for the consensus problems of multi-agent systems. So
far, lots of works have been done for the average consensus
problem of multi-agent systems under different contexts (Ji,

∗
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Wang, Lin, & Wang, 2010; Sun, Wang, & Xie, 2008; Xiao
& Wang, 2008; Xiao, Wang, Chen, & Gao, 2009; Yu &
Wang, 2012; Zheng & Wang, 2012; Zheng, Zhu, & Wang,
2011; Zheng, Zhu, & Wang, 2014).

Due to finite memories capacity and limited communi-
cation channels in practical applications, the quantisation
effects have to be considered in consensus problems. For
the case that the multi-agent systems with discrete-time dy-
namics, there have been many results for the quantised con-
sensus problem under various situations. In Kashyap, Basar,
and Srikant (2007) and Carli, Fagnani, Frasca, and Zampieri
(2010), the effect of quantised communication on the gos-
sip consensus algorithm was studied. In Guan, Meng, Liao,
and Zhang (2012), the authors considered the quantised
consensus problem of second-order multi-agent systems.
However, recently, quantised continuous-time systems have
attracted more and more attention. This is because the dy-
namics of the agents is naturally described by continuous-
time systems in many applications, such as robotic
networks. In Dimarogonas and Johansson (2010), the log-
arithmically quantised consensus problem of multi-agent
system was studied in the case of a tree topology. In Cera-
giolia, Persis, and Frasca (2011), the authors considered the
consensus problem in which the agents states were commu-
nicated through uniform quantisers. The researches above
mainly considered the quantised consensus problem in the
case when the agents have no inherent dynamics. However,
in many practical systems, inherent dynamics often exists
for the agents, such as the node in complex dynamical

C© 2013 Taylor & Francis
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networks. In Hou, Cheng, and Tan (2009) the authors stud-
ied the consensus problems for multi-agent systems with
the uncertain nonlinear dynamics and a decentralised ro-
bust adaptive control approach was proposed to solve the
consensus. In Cheng, Hou, Tan, Lin, and Zhang (2010),
an adaptive leader-following controller was proposed for
the consensus of multi-agent systems with the uncertain
nonlinear dynamics.

Compared with general continuous-time control strat-
egy, impulsive control strategy just uses the state variables
of the system at discrete-time instances and thus impulsive
controller usually has a relatively simple structure. As we
known, impulsive control method has been widely used to
synchronise coupled dynamical systems (Guan, Liu, Feng,
& Wang, 2010; Guan, Wu, & Feng, 2012; Liu & Hill, 2011;
Lu, Ho, & Cao, 2010; Wang, Yang, Wang, & Guan, 2009).
In Wang et al. (2009), the authors investigated the robust
stabilisation of complex switched networks with parametric
uncertainties and time delays under impulsive control. In Lu
et al. (2010), based on the concept named ‘average impul-
sive interval’, a unified synchronisation criterion is derived
for directed impulsive dynamical networks. Recently, there
are some research to use impulsive control method for the
consensus problem of multi-agent systems. In Liu and Hill
(2011), the authors investigate the problem of global con-
sensus between a complex dynamical network and a known
goal signal by designing an impulsive consensus control
scheme. In Guan et al. (2012), an impulsive model has
been proposed by taking advantages of instantaneous infor-
mation, and the authors studied the consensus problems for
directed networks of agents with external disturbances.

In this paper, by using the spectral properties of the
graph Laplacian matrix we study the consensus prob-
lems of first-order and second-order multi-agent systems
with nonlinear dynamics. Continuous-time and impulsive
control inputs are established for the multi-agent systems
with weighted connected topologies and logarithmic quan-
tised information transmission. By using the graph theory,
Lyapunov theory and impulsive control theory, some suffi-
cient conditions are derived for the consensus of the multi-
agent systems.

This paper is organised as follows. In Section 2, we
provide some definitions and results in graph theory, non-
smooth analysis and logarithmic quantisation theory. The
consensus problems of first-order and second-order multi-
agent systems with nonlinear dynamics under logarithmi-
cally quantised information are discussed in Sections 3 and
4. In Section 5, the simulation results are given to show the
effectiveness of the obtained results. Section 6 is a brief
conclusion.

Notation: Throughout this paper, we let Rn be the n-
dimensional Euclidean space, Rn×m be the set of n×m real
matrix, Z be the set of integers, Z+ be the set of posi-
tive integers, IN be the N-dimensional identity matrix and
1N be the N-dimensional vector with each entry being 1.

The superscript ‘T’ represents the transpose. For symmetric
matrices X, Y ∈ Rn×n, X ≥ Y means X − Y is semi-positive
definite. ‖·‖ denotes the 2-norm both for vectors and matri-
ces. For the set S, |S| denotes its cardinality. Let B(x, δ) be
the open ball of radius δ centred at x, B(Rd ) be the collec-
tion of all subsets of Rd, μ(S) be the Lebesgue measure of
S, co be the convex hull and c̄o be the convex closure.

2. Preliminaries

In this section, we first present some definitions and re-
sults in graph theory, nonsmooth analysis and logarithmic
quantisation theory used in the sequel (Dimarogonas & Jo-
hansson, 2010; Fu & Xie, 2004; Godsil & Royal, 2001;
Shevitz & Paden, 1994; Zelazo & Mesbahi, 2011).

Let G = (V, E,A) be a weighted undirected graph of
order N, with the sets of node V = {1, 2, . . . , N}, a set
of edges E ⊂ V × V , and a weighted adjacency matrix
A = (aij ) ∈ RN×N . If (i, j ) ∈ E , then i, j are adjacent. The
adjacency matrix A is a symmetric matrix with adjacency
element aij > 0 if i, j are adjacent, and aij = 0 otherwise.
A path of length r in G is a sequence of r + 1 distinct ver-
tices such that any two consecutive vertices are adjacent.
An undirected graph G is called connected if between any
two distinct vertices i,j in G, there is a path that starting with
i and ending with j. The matrix � = (�ij) of the graph G is
a diagonal matrix with �ii = ∑N

j=1 aij . An orientation on
G is the assignment of an arbitrary direction to each edge
to make it have a head and tail. We make use of |V| × |E |
the incidence matrix B for an arbitrary oriented graph. The
columns of B are then indexed by the edge set, and the ith
row entry takes the value ‘1’ if it is the head of the corre-
sponding edge, ‘−1’ if it is the tail and zero otherwise. The
weighting matrix W is a |E | × |E | diagonal matrix and the
ith entry on the diagonal is the adjacency element associ-
ated with corresponding edge. The graph Laplacian matrix
L of a graph G is defined as L � BWBT = � − A.

In this paper, we will design control input on the loga-
rithmically quantised relative measurements of agents. Q:
R → R is used to denote the logarithmic quantisation func-
tion. The set of logarithmic quantisation levels is described
by

U = {±ui, ui = ρiu0, i = ±1,±2, . . .} ∪ {±u0} ∪ {0},
0 < ρ < 1, u0 > 0.

The associated quantiser is defined as follows:

Q(a) =
⎧⎨
⎩

ui if 1
1+δ

ui < a ≤ 1
1−δ

ui, a > 0,

0 if a = 0,

−Q(−a) if a < 0,

where δ = 1−ρ
1+ρ

. From the definition, for ∀a ∈ R, we have

(1 − δ)a2 ≤ aQ(a) ≤ (1 + δ)a2, 1
(1+δ)Q

2(a) ≤ aQ(a) ≤
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1
(1−δ)Q

2(a) and |Q(a) − a| ≤ δ|a|. For a vector v = [v1, . . . ,

vd]T ∈ Rd, define Q(v) � [Q(v1), . . . , Q(vd)]T.

Definition 2.1: Let A = (aij)m×n, B = (bij)p×q, the
Kronecker product of A and B (denoted as A ⊗ B ) is defined
as

A ⊗ B =

⎛
⎜⎝

a11B · · · a1nB
...

. . .
...

am1B · · · amnB

⎞
⎟⎠ ∈ Rmp×nq .

Some properties of Kronecker product are also given
below:

(1) (P ⊗ Q)T = PT ⊗ QT;
(2) (P ⊗ Q)(E ⊗ F) = (PE) ⊗ (QF).

Lemma 2.2 (Boyd, Ghaoui, Feron, & Balakrishnan, 1994):
The following linear matrix inequality (LMI)

(
Q(x) S(x)
ST (x) R(x)

)
> 0,

where Q(x) = QT(x), S(x) = ST(x) is equivalent to either of
the following conditions:

(1) Q(x) > 0, R(x) − ST(x)Q−1(x)S(x) > 0;
(2) R(x) > 0, Q(x) − S(x)R−1(x)ST(x) > 0.

Lemma 2.3 (Horn & Johnson, 1985): Assume that G is
an undirected connected graph with N vertices, then the
eigenvalues of the graph Laplacian matrix L of G can be
ordered as 0 = λ1(L) < λ2(L) ≤ ··· ≤ λN(L).

Definition 2.4 (Clarke, 1983): For a vector field f(t, x):
R × Rd → Rd, the Filippov set-valued map K[f](t, x): R ×
Rd → Rd is defined by

K[f ](t, x) �
⋂
δ>0

⋂
μ(S)=0

c̄o{f (t, B(x, δ))\S},

where
⋂

μ(S)=0 denotes the intersection over all sets of
Lebesgue measure zero.

Lemma 2.5 (Paden & Sastry, 1987):

(1) Assume that f, g: Rm → Rn are locally bounded,
then

K[f + g](x) ⊆ K[f ](x) + K[g](x).

(2) Let f: Rm → Rn be continuous, then

K[f ](x) = {f (x)}.
Definition 2.6 (Clarke, 1983): Consider a vector differen-
tial equation

ẋ(t) = f (t, x(t)), (1)

where x(t) = [x1(t), . . . , xd(t)]T. A vector function x(·) is
called a Filippov solution of Equation (1) on [t0, t1], where
t1 could be ∞, if x(·) is absolutely continuous on [t0, t1] and
for almost all t ∈ [t0, t1]

ẋ ∈ K[f ](t, x).

Lemma 2.7 (Filippov, 1988): Given Equation (1), let f be
measurable and locally essentially bounded, i.e. bounded
in any bounded neighbourhood of every point of definition
excluding the sets of measure zero. Then for all x0 ∈ Rd,
there exists a Filippov solution to Equation (1) with the
initial condition x(0) = x0.

Definition 2.8 (Clarke, 1983): For a locally Lipschitz func-
tion V: R × Rd → R locally continuous, the generalised
gradient of V at (t, x) is defined by

∂V (t, x) � co
{

lim
i→∞

�V (ti , xi)|(ti , xi)

→ (t, x), (ti , xi) /∈ �V

}
,

where �V is the set of measure zero where the gradient of
V with respect to x or t is not defined.

The set-valued Lie derivative of V(t, x) with respect to
t, the trajectory of Equation (1), is defined as

˙̃V (t, x) �
⋂

ξ∈∂V (t,x)

ξT

(
K[f ](t, x)

1

)
.

In particular, if the function V(t, x) has no explicit depen-
dence on t, the generalised gradient of V(x) at x becomes
∂V(x) � co{limi → ∞�V(xi)|xi → x, xi �∈ �V}, and the set-
valued Lie derivative of V(x) with respect to t becomes
˙̃V (x) �

⋂
ξ∈∂V (x) ξ

T K[f ](t, x).

Lemma 2.9 (Shevitz & Paden, 1994): Given Equation (1),
let f(t, x) be locally essentially bounded, and 0 ∈ K[ f ](t, 0)
in a region Q ⊃ {t|t0 ≤ t < ∞}× { x ∈ Rd|‖x‖ < r}, where
r > 0. Also, let V: R × Rd→R be a regular function
satisfying

V (t, 0) = 0

and

V1(‖ x ‖) ≤ V (t, x) ≤ V2(‖ x ‖) f or x �= 0
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in Q for some class K functions V1 and V2. Then

(1) ˙̃V (t, x) ≤ 0 in Q implies x(t) ≡ 0 is a uniformly
stable solution.

(2) If in addition, there exists a class K function w(·)
in Q with the property

˙̃V (t, x) ≤ −w(x) < 0

then the solution x(t) ≡ 0 is uniformly asymptoti-
cally stable.

Lemma 2.10: For x = [x1, x2, . . . , xn]T ∈ Rn, W = diag(w1,
w2, . . . , wn) ≥ 0 ∈ Rn×n, we have

xT WK[Q](x) ≥ (1 − δ)xT Wx.

Proof: From the definition of the Filippov set-valued map,
we have for a ≥ 0 ∈ R, if Q(·) is continuous on a, K[Q](a) =
Q(a), if Q(·) is discontinuous on a, K[Q](a) = [(1
− δ)a, (1 + δ)a] and K[Q](−a) = −K[Q](a). Then
it is obtained that aK[Q](a) ≥ (1 − δ)a2 for a ∈
R. Thus, we have xT WK[Q](x) = ∑N

i=1 xiwiK[Q](xi) ≥
(1 − δ)

∑N
i=1 wix

2
i = (1 − δ)xT Wx.

3. Consensus of first-order multi-agent systems

Given a connected graph G with N nodes. Suppose that each
node of the graph G is a first-order agent with nonlinear
dynamics

ẋi(t) = f (xi(t)) + ui(t), t ≥ t0 ≥ 0, i = 1, . . . , N, (2)

where xi(t) ∈ Rn and f(xi(t)): Rn → Rn are the position state
and inherent nonlinear dynamics of agent i, respectively,
ui(t) ∈ Rn is the control input that will be designed for
consensus problem.

Definition 3.1: The system (1) is said to achieve consensus
if for any initial conditions

lim
t→∞ ‖xi(t) − xj (t)‖ = 0 ∀i, j = 1, 2, . . . , N.

Assumption 1: Assume that the nonlinear function f in
Equation (2) is continuous and there exists a constant θ >

0 such that f satisfies:

‖ f (x(t)) − f (y(t)) ‖≤ θ ‖ x(t) − y(t) ‖,
∀x(t), y(t) ∈ Rn.

First, we give the continuous-time control input on the
quantised relative measurements of agents as:

ui(t) = −b

N∑
j=1

aijQ(xi(t) − xj (t)),

i = 1, 2, . . . , N, (3)

where b > 0 is a control gain.
Let x(t) = [xT

1 (t), . . . , xT
N (t)]T , x̄(t) = 1

N

∑N
j=1 xj (t),

x̃(t) = x(t) − (1N ⊗ In)x̄(t), F (x(t)) = [f (x1(t))T , . . . ,

f (xN (t))T ]T , and orientating the graph G let
x̂(t) = (BT ⊗ In)x(t), where B is the incidence ma-
trix of the oriented graph. Since 1T

NB = 0, the error
dynamical system of the multi-agent system (2) under the
control input (3) can be described as:

˙̃x(t) =
((

IN − 1

N
1N1T

N

)
⊗ In

)
F (x(t))

− b ((BW ) ⊗ In) Q(x̂(t)), i = 1, 2, . . . , N.

(4)

Because of the discontinuity of the quantised sig-
nals, we consider Filippov solutions to the multi-agent
system (2) under the control input (3).

Theorem 3.2: For a connected network of agents with
Laplacian matrix L, if b > θ

(1−δ)λ2(L) , the multi-agent
system (2) achieves consensus under the control
input (3).

Proof: Consider the Lyapunov function

V (t) = 1

2
x̃T (t)x̃(t).

From Equation (4), we have

˙̃V ⊆ x̃T (t)

(((
IN − 1

N
1N1T

N

)
⊗ In

)
F (x(t))

− b ((BW ) ⊗ In) K[Q](x̂(t))

)
.

Since

x̃T (t)

((
IN − 1

N
1N 1T

N

)
⊗ In

)
F (x(t))

= x̃T (t)

(
F (x(t)) −

((
1

N
1N1T

N

)
⊗ In

)
F (x(t))

− 1N ⊗ f (x̄(t)) + 1N ⊗ f (x̄(t))

)
,

D
ow

nl
oa

de
d 

by
 [

B
ei

ha
ng

 U
ni

ve
rs

ity
] 

at
 0

1:
22

 2
8 

A
pr

il 
20

15
 



International Journal of Systems Science 2065

x̃T (t)(1N ⊗ f (x̄(t)))

= xT (t)

((
IN − 1

N
1N1T

N

)
⊗ In

)
(1N ⊗ f (x̄(t)))

= xT (t)

((
1N − 1

N
1N 1T

N1N

)
⊗ f (x̄(t))

)
= 0,

and

x̃T (t)

((
1

N
1N1T

N

)
⊗ In

)
F (x(t))

= xT (t)

((
IN − 1

N
1N1T

N

)
⊗ In

)

×
((

1

N
1N1T

N

)
⊗ In

)
F (x(t))

= xT (t)

((
1

N
1N 1T

N − 1

N2
1N1T

N1N1T
N

)
⊗ In

)
F (x(t))

= 0,

by Assumption 1, one has

x̃T (t)

((
IN − 1

N
1N1T

N

)
⊗ In

)
F (x(t)) = x̃T (t)(F (x(t))

− 1N ⊗ f (x̄(t))) ≤ θx̃T (t)x̃(t).

Note that

x̃T (t)(L ⊗ In)x̃(t)

= xT (t)

((
IN − 1

N
1N1T

N

)
⊗ In

)

× (L ⊗ In)

((
IN − 1

N
1N 1T

N

)
⊗ In

)
x(t)

= xT (t)(L ⊗ In)x(t),

according to Lemma 2.3 and Lemma 2.10, we get

x̃T (t)((BW ) ⊗ In)K[Q](x̂(t))

= xT (t)

((
IN − 1

N
1N 1T

N

)
⊗ In

)

× ((BW ) ⊗ In)K[Q](x̂(t))

= xT (t)((BW ) ⊗ In)K[Q](x̂(t))

= x̂T (t)(W ⊗ In)K[Q](x̂(t))

≥ (1 − δ)x̂T (t)(W ⊗ In)x̂(t)

= (1 − δ)xT (t)(L ⊗ In)x(t)

= (1 − δ)x̃T (t)(L ⊗ In)x̃(t)

≥ (1 − δ)λ2(L)x̃T (t)x̃(t).

Then

˙̃V ≤ (θ − b(1 − δ)λ2(L))x̃T (t)x̃(t).

According to the Lemma 2.9, the consensus of the
system (2) is achieved.

Next an impulsive control input is proposed to make
multi-agent system (2) achieve consensus:

ui(t) = −
∞∑

k=1

bk

N∑
j=1

aijQ(xi(t) − xj (t))δ(t − tk),

i = 1, 2, . . . , N, (5)

where the impulse instant sequence {tk}∞k=1 satisfies 0 ≤
t0 < t1 < · · · < tk < tk+1 < · · · , limk→+∞ tk = +∞, δ(t)
is the Dirac delta function.

Using the incidence matrix B, the error dynamical sys-
tem of multi-agent system (2) under the control input (5)
can be described by the following impulsive differential
equations:

⎧⎪⎪⎨
⎪⎪⎩

˙̃x(t) =
((

IN − 1

N
1N 1T

N

)
⊗ In

)
F (x(t)),

t �= tk, k ∈ Z+, t ≥ t0,

�x̃(tk) = −bk((BW ) ⊗ In)Q (x̂(tk)) .

(6)

where �x̃(tk) = x̃(t+k ) − x̃(tk), x̃(t+k ) = limt→t+k x̃(t). We
always assume that x̃(t) is left-hand continuous at t = tk.
Hence, the solutions of Equation (6) are piecewise left-
hand continuous functions with discontinuities at t = tk,
k ∈ Z+ .

Theorem 3.3: For a connected network of agents
with Laplacian matrix L, if 0 < bk < 2

(1+δ)λN (L) and

the impulsive intervals satisfy 2θ (tk − tk−1) + ln((1 − δ2)
λ2(L)λN (L)b2

k − 2(1 − δ)λ2(L)bk + 1) < 0, k ∈ Z+, then
the multi-agent system (2) achieves consensus under the
control input (5).

Proof: Consider the Lyapunov function

V (t) = 1

2
x̃T (t)x̃(t).

For t �= tk, k ∈ Z+ , by Assumption 1, we have

V̇ (t) = x̃T (t)

((
IN − 1

N
1N1T

N

)
⊗ In

)
F (x(t))

≤ θx̃T (t)x̃(t).

For t = tk, k ∈ Z+ ,

V (t+k ) = 1

2
(x̃(tk) − bk((BW ) ⊗ In)Q(x̂(tk)))T (x̃(tk)

− bk((BW ) ⊗ In)Q(x̂(tk))).

Since the matrix W
1
2 BT BW

1
2 has the same eigenvalues with

the matrix BWBT, we obtain

QT (x̂(tk))
(
(BW )T ⊗ In

)
((BW ) ⊗ In) Q(x̂(tk))

= QT (x̂(tk))
((

WBT BW
) ⊗ In

)
Q(x̂(tk))
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≤ λN (L)QT (x̂(tk))(W ⊗ In)Q(x̂(tk))

≤ (1 + δ)λN (L)x̂T (tk)(W ⊗ In)Q(x̂(tk)).

Note that

x̃T (tk)((BW ) ⊗ In)Q(x̂(tk)) = x̂T (tk)(W ⊗ In))Q(x̂(tk))

≥ (1 − δ)x̂T (tk)(W ⊗ In)x̂(tk) = (1 − δ)x̃T (tk)

×(L ⊗ In)x̃(tk),

and since 0 < bk < 2
(1+δ)λN (L) , we have

V (t+
k ) ≤ 1

2

(
(1 + δ)λN (L)b2

k − 2bk

)
x̂T (tk)(W ⊗ In)Q(x̂(tk))

+ 1

2
x̃T (t)x̃(t)

≤ 1

2
x̃T (tk)

((
(1 + δ)(1 − δ)λN (L)b2

kL

− 2(1 − δ)bkL + I
)

⊗ In

)
x̃(tk)

≤ 1

2

(
(1 − δ2)λN (L)λ2(L)b2

k

− 2(1 − δ)λ2(L)bk + 1
)
x̃T (tk)x̃(tk), = αkV (tk).

where 0 < αk = (1−δ2)λN (L)λ2(L)b2
k−2(1−δ)λ2(L)bk +

1 < 1.
Therefore, for t ∈ [tk − 1, tk), k ∈ Z+

V (t) ≤ V (t0)exp(2θ (t − tk−1))
k−1∏
i=1

αiexp(2θ (ti − ti−1)).

Thus, from the conditions in Theorem 3.3 we get V(t) →
0 as t → ∞. Therefore, the consensus of the system (2) is
achieved.

4. Consensus of second-order multi-agent systems

Consider a second-order multi-agent system composed of
N coupled nonlinear dynamic agents with dynamics

{
ẋi(t) = vi(t) + ux

i (t),
v̇i(t) = f (xi(t), vi(t)) + uv

i (t), i = 1, 2, . . . , N,
(7)

where xi(t), vi(t) ∈ Rn are the position and velocity states
of agent i, respectively, f: Rn × Rn → Rn is a continuously
vector-valued function, ux

i (t), uv
i (t) ∈ Rn are the control

input that will be designed for the consensus problem.

Definition 4.1: The system (7) is said to achieve consensus
if for any initial conditions

lim
t→∞ ‖xi(t) − xj (t)‖ = 0, lim

t→∞ ‖vi(t) − vj (t)‖ = 0

∀i, j = 1, 2, . . . , N.

Assumption 2: Assume that there exist constants θ1, θ2 >

0 such that the nonlinear function f in Equation (7) satisfies:

‖f (x(t), v(t)) − f (y(t), z(t))‖ ≤ θ1‖x(t) − y(t)‖
+ θ2‖v(t) − z(t)‖ ∀x(t), y(t), v(t), z(t) ∈ Rn.

Let η = max{ 3θ1+θ2
2

2+θ1+3θ2
2 }, γ = 1 + θ1 + 2θ2.

First, we give the continuous-time control inputs for the
system (7) on the quantised relative measurements of agents
as:

⎧⎪⎪⎨
⎪⎪⎩

ux
i (t) = 0,

uv
i (t) = −b

N∑
j=1

aij (Q(xi(t) − xj (t))+Q(vi(t) − vj (t))),

i = 1, 2, . . . , N,
(8)

where b > 0 is a control gain.

Let v(t) = [vT
1 (t), . . . , vT

N (t)]T , v̄(t) = 1
N

∑N
j=1

vj (t), ṽ(t) = v(t) − (1N ⊗ In)v̄(t), v̂(t) = (BT ⊗ In)v(t),
F (x(t), v(t)) = [f (x1(t), v1(t))T , . . . , f (xN (t), vN (t))T ]T .
Using the incidence matrix B, the error dynamical system
of the system (7) with the control input (8) can be described
as: ⎧⎨

⎩
˙̃x(t) = ṽ(t),
˙̃v(t) = ((

IN − 1
N

1N1T
N

) ⊗ In

)
F (x(t), v(t))

−b((BW ) ⊗ In) (Q(x̂(t)) + Q (v̂(t))) .

(9)

Theorem 4.2: For a connected network of agents with
Laplacian matrix L, if we choose b > η

(1−2δ)λ2(L) when

δ < 1
2 , then the system (7) achieves consensus under the

control input (8).

Proof: Let y(t) = [x̃T (t), ṽT (t)]T , construct the following
Lyapunov function

V (t) = 1

2
yT (t)(� ⊗ In)y(t),

where � =
(

2bL IN

IN IN

)
.

According to Lemma 2.3, we have

x̃T (t)(L ⊗ In)x̃(t) ≥ λ2(L)x̃T (t)x̃(t).

Then

V (t) ≥ 1

2
yT (t)

(
�̂ ⊗ In

)
y(t),

where �̂ =
(

2bλ2(L)IN IN

IN IN

)
.

By Lemma 2.2, we know �̂ > 0 is equivalent to
b > 1

2λ2(L) . Since η > 1, δ < 1
2 , we have b ≥ η

(1−2δ)λ2(L) >
1

2λ2(L) , and thus �̂ > 0.
From Equation (9), we have

˙̃V ⊆ 2bx̃T (t)(L ⊗ In)ṽ(t) + ṽT (t)ṽ(t) + (x̃(t) + ṽ(t))T
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×
( ((

IN − 1

N
1N 1T

N

)
⊗ In

)
F (x(t), v(t))

− b((BW ) ⊗ In)(K[Q](x̂(t)) + K[Q](v̂(t)))

)
.

Similar to the proof of Theorem 3.2, we obtain

x̃T (t)((BW ) ⊗ In)K[Q](x̂(t)) ≥ (1 − δ)x̃T (t)(L ⊗ In)x̃(t),

ṽT (t)((BW ) ⊗ In)K[Q](v̂(t)) ≥ (1 − δ)ṽT (t)(L ⊗ In)ṽ(t),

and according to Assumption 2, one has

x̃T (t)

((
IN − 1

N
1N1T

N

)
⊗ In

)
F (x(t), v(t))

= x̃T (t)(F (x(t), v(t)) − 1N ⊗ f (x̄(t), v̄(t)))

≤
(

θ1 + θ2

2

)
x̃T (t)x̃(t) + θ2

2
ṽT (t)ṽ(t),

ṽT (t)

((
IN − 1

N
1N1T

N

)
⊗ In

)
F (x(t), v(t))

= ṽT (t)(F (x(t), v(t)) − 1N ⊗ f (x̄(t), v̄(t)))

≤ θ1

2
x̃T (t)x̃(t) +

(
θ2 + θ1

2

)
ṽT (t)ṽ(t).

Note that

−x̃T (t)((BW ) ⊗ In)K[Q](v̂(t))

= −xT (t)

((
IN − 1

N
1N1T

N

)
⊗ In

)
((BW ) ⊗ In)

× (v̂(t) + e(t))

= −xT (t)((BW ) ⊗ In)(v̂(t) + e(t))

= −xT (t)(L ⊗ In)v(t) − x̂T (t)(W ⊗ In)e(t)

≤ −xT (t)(L ⊗ In)v(t) +
∥∥∥(

W
1
2 ⊗ In

)
x̂(t)

∥∥∥
×

∥∥∥(
W

1
2 ⊗ In

)
e(t)

∥∥∥
≤ −xT (t)(L ⊗ In)v(t) + δ

∥∥∥(
W

1
2 ⊗ In

)
x̂(t)

∥∥∥
×

∥∥∥(
W

1
2 ⊗ In

)
v̂(t)

∥∥∥
≤ −xT (t)(L ⊗ In)v(t) + δ

2
xT (t)(L ⊗ In)x(t)

+ δ

2
vT (t)(L ⊗ In)v(t)

= −x̃T (t)(L ⊗ In)ṽ(t) + δ

2
x̃T (t)(L ⊗ In)x̃(t)

+ δ

2
ṽT (t)(L ⊗ In)ṽ(t)

where e(t) = K[Q](v̂(t)) − v̂(t).

Similarly

−ṽT (t)((BW ) ⊗ In)K[Q](x̂(t)) ≤ −ṽT (t)(L ⊗ In)x̃(t)

+ δ

2
x̃T (t)(L ⊗ In)x̃(t) + δ

2
ṽT (t)(L ⊗ In)ṽ(t).

Hence

˙̃V ≤ x̃T (t)

((
3θ1 + θ2

2
I + bδL − b(1 − δ)L

)
⊗ In

)
x̃(t)

+ ṽT (t)

((
2 + θ1 + 3θ2

2
I + bδL − b(1 − δ)L

)
⊗ In

)
ṽ(t).

Thus, from the condition in Theorem 4.2, the consensus of
second-order multi-agent system (7) is achieved according
to the Lemma 2.9.

Next an impulsive control input is proposed to make
system (7) achieve consensus:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ux
i (t) = −

∞∑
k=1

bk

N∑
j=1

aijQ(xi(t) − xj (t))δ(t − tk),

uv
i (t) = −

∞∑
k=1

bk

N∑
j=1

aijQ(vj (t) − vi(t))δ(t − tk),

i = 1, 2, . . . , N.
(10)

Using the incidence matrix B, the error dynamical sys-
tem of the system (7) with the control input (10) can be
described as:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

˙̃x(t) = ṽ(t),

˙̃v(t) =
(

(IN − 1

N
1N 1T

N ) ⊗ In

)
F (x(t), v(t)),

t �= tk, k ∈ Z+, t ≥ t0,

�x̃(tk) = −bk((BW ) ⊗ In)Q(x̂(tk)),
�ṽ(tk) = −bk((BW ) ⊗ In)Q(v̂(tk)).

(11)

Theorem 4.3: For a connected network of agents with
Laplacian matrix L, if 0 < bk < 2

(1+δ)λN (L) and the

impulsive intervals satisfy γ (tk − tk−1) + ln((1 − δ2)
λ2(L)λN (L)b2

k − 2(1 − δ)λ2(L)bk + 1) < 0, k ∈ Z+, then
the system (7) achieves consensus under the control input
(10).

Proof: Consider the Lyapunov function

V (t) = 1

2
x̃T (t)x̃(t) + 1

2
ṽT (t)ṽ(t).

For t �= tk, k ∈ Z+ , by Assumption 2, we have

V̇ (t) = x̃T (t)ṽ(t) + ṽT (t)

((
IN − 1

N
1N1T

N

)
⊗ In

)

×F (x(t), v(t))

≤ 1

2
(1 + θ1)x̃T (t)x̃(t) + 1

2
(1 + θ1 + 2θ2)ṽT (t)ṽ(t)

≤ γV (t).
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Similar to the proof of Theorem 3.3, for t = tk, k ∈ N+ we
obtain

V (t+k ) ≤ (
(1 − δ2)λ2(L)λN (L)b2

k

− 2(1 − δ)λ2(L)bk + 1
)
V (tk).

Thus, from the conditions in Theorem 4.3 we get V(t) →
0 as t → ∞. Therefore, the consensus of the system (7) is
achieved.

Remark 1: Compared with uniform quantiser, the loga-
rithmic quantiser is capable of adjusting the size of quanti-
sation step according to the input value, but it is more com-
putationally expensive. The multi-agent systems can reach
consensus with logarithmic quantisers in certain conditions.
However, due to the constraint of uniform quantisation, the
multi-agent systems cannot reach exact average consensus.

5. Simulations

Example 5.1: Consider a multi-agent system with 4 nodes.
The state equation of agent i is

ẋi(t) = f (xi(t)) + ui(t), i = 1, 2, 3, 4,

where xi(t) = (xi1(t), xi2(t), xi3(t))T ∈ R3, f(xi(t)) =
(α(−xi1(t) + xi2(t) − h(xi1(t))), xi1(t) − xi2(t) + xi3(t),
− βxi2(t))T, α = 10, β = 14.87, h(xi1(t)) = −0.68xi1(t) +
0.5(−1.27 + 0.68)(|xi1(t) + 1| − |xi1(t) − 1|). If the in-
teraction graph is given by Figure 1, the graph Laplacian
matrix is

L =

⎛
⎜⎜⎝

3.5 −2 −1 −0.5
−2 2.5 −0.5 0
−1 −0.5 1.5 0

−0.5 0 0 0.5

⎞
⎟⎟⎠.

By some computation, we get θ = 18.3436, λ2(L) = 0.6086,
λ4(L) = 5.1642.

Figure 1. An undirected connected graph.

Figure 2. The position errors of first-order agent x1 with xi, i =
2, 3, 4, under the continuous-time control input (3).

First, we design the continuous-time control input as
Equation (3) to system (2). By Theorem 3.2, we derive b >

37.68 when δ = 0.2. The simulation results are shown in
Figure 2 when b = 40. We can see that the system achieves
consensus.

Then we design the impulsive control input as Equa-
tion (5) to system (2). By Theorem 3.3, we choose bk =
0.1 and the impulsive interval tk − tk − 1 = 0.001 for all k ∈
Z+ for simplicity when δ = 0.2. The simulation results are
shown in Figure 3. We can see as desired that the consensus
is still achieved.

Example 5.2: Consider a second-order multi-agent sys-
tem with interaction graph G shown in Figure 1. The state

Figure 3. The position errors of first-order agent x1 with xi, i =
2, 3, 4, under the impulsive control input (5).
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Figure 4. The position and velocity errors of second-order agent
x1 with xi, i = 2, 3, 4, under the continuous-time control input (8).

equation of agent i is

{
ẋi(t) = vi(t) + ux

i (t),
v̇i(t) = f (xi(t), vi(t)) + uv

i (t),

where xi(t) = (xi1(t), xi2(t), xi3(t))T, vi(t) = (vi1(t), vi2(t),
vi3(t))T ∈ R3, f(xi(t), vi(t)) = (α(− vi1(t) + vi2(t) −
h(vi1(t))), vi1(t) − vi2(t) + vi3(t), −βvi2(t))T, α = 10, β =
14.87, h(vi1(t)) =−0.68vi1(t) + 0.5(− 1.27 + 0.68)(|vi1(t)
+ 1| − |vi1(t) − 1|). By some computation, we get θ1 = 0,
θ2 = 18.3436, η = 28.0154, γ = 37.6872.

First, we design the continuous-time control input as
Equation (8) to system (7). To satisfy the condition in The-
orem 4.2, we choose b = 80 when δ = 0.2. Figure 4 shows
the evolution process of the position and velocity errors.
We can see that the consensus is achieved.

Then we adopt the impulsive control input as
Equation (10). According to Theorem 4.3, we take

Figure 5. The position and velocity errors of second-order agent
x1 with xi, i = 2, 3, 4, under the impulsive control input (10).

bk = 0.1 and the impulsive interval tk − tk − 1 = 0.0014
for all k ∈ Z+ for simplicity when δ = 0.2. The simulation
results are shown in Figure 5. As desired, system (7) reaches
consensus.

6. Conclusion

Using the results in graph theory, nonsmooth analysis and
logarithmic quantisation theory, we studied the consensus
of first-order and second-order multi-agent systems with
nonlinear dynamics under logarithmically quantised infor-
mation. Two kinds of control inputs have been designed
for the system on the quantised relative state measurements
of agents, and some sufficient conditions for the consen-
sus are derived. Some examples are given to illustrate the
effectiveness of the theoretical results in the last.
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