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In this paper, we consider the flocking problem of multi-agent systems with multiple groups. First, some algorithms using local
information are designed to divide the agents into any pre-assigned number of groups in fixed and switching heterogeneous
networks, respectively. Based on algebraic graph theory and Barbalat’s lemma, convergence criteria are established to
ensure velocity alignment and cohesion of each subgroup as well as collision avoidance between any agents in the whole
group. Second, an algorithm for homogeneous networks is studied. Simulation examples are finally presented to verify the
effectiveness of our theoretical results.
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1. Introduction

Over the past several years, the problem of distributed con-
trol in multi-agent systems has received increasing attention
from different research communities due to its prosperous
applications including formation control of multiple air ve-
hicles, synchronisation of self-organised sensor networks,
and cooperative control of unmanned vehicles (Akyildiz,
Su, Sankarasubramaniam, & Cayirci, 2002; Ji, Wang, Lin,
& Wang, 2010; Ren & Beard, 2008; Xiao, Wang, Chen, &
Gao, 2009). As an interesting and significant problem de-
rived from the motion of animals in nature such as schools
of fish, swarms of bees, migrations of birds (Okubo, 1986;
Shaw, 1975), flocking control in multi-agent systems has
been investigated for a few years and many meaningful re-
sults have been obtained (Cucker & Dong, 2010; Cucker
& Smale, 2007; Olfati-Saber, 2006; Reynolds, 1987;
Shi, Wang, & Chu, 2006; Tanner, Jadbabaie, & Pappas,
2007; Vicsek, Czirk, Ben-Jacob, Cohen, & Shochet, 1995;
Zavlanos, Jadbabaie, & Pappas, 2007).

To date, most researches concerning flocking problems
are on the basis of Reynolds’ three rules: separation, align-
ment, and cohesion (Reynolds, 1987). These results fo-
cus on the behaviour of agents located in a single group,
while neglect the case that agents can move among mixed
groups. Actually, phenomena that agents move to differ-
ent groups are ubiquitously observed in reality. For in-
stance, scattered animals in a system (Zheng & Wang, 2012;
Zheng, Zhu, & Wang, 2011) migrate by species, a group
of vehicles disperse when facing multi-task, a flock splits
when encountering predators, and a community divides into
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In fact, there has been quite a few results about the
division of a group by self-organising on the consensus
problems of multi-agent systems (Altafini, 2013; Blondel,
Hendrickx, & Tsitsiklis, 2009; Hegselmann & Krause,
2002; Yu & Wang, 2009, 2010). Moreover, several exist-
ing investigations on flocking of multi-agent systems have
also involved the fragmentation problem of a group. More
specifically, Su, Wang, and Yang (2008) studied the case
of multiple virtual leaders existing in a flock; Luo, Li, and
Guan (2010) proposed an algorithm for a group of agents to
track multi-target; Mckenzie (2012) optimised the flocking
algorithm in Olfati-Saber (2006) for the case when several
flocks meet each other and need to swap their positions;
Fan and Zhang (2013) investigated a protocol to solve the
problem of a group splitting into two groups flocking in
opposite directions. Nevertheless, to the best of our knowl-
edge, few results have discussed the method for a group
of agents to disperse and flock in any specified number of
groups by self-organising.

Motivated by all the above analysis, and based on a
well-known viewpoint of animal behaviour scientists that
“schools need no leaders” (Shaw, 1975), we present some
distributed algorithms for a group of agents described in
double-integrator dynamics to disperse and form several
subgroups flocking without leaders asymptotically. In the
case of a single group, agents align their velocity vectors
by interacting with each other according to simple local
rules, and flocking algorithms have been designed to avoid
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collisions between any agents and maintain the cohesion
of the group (Zavlanos et al., 2007). However, for the case
of mixed groups, each agent is affected not only by agents
in the same subgroup but also by ones belonging to other
subgroups before different subgroups are separated. Fur-
thermore, the algorithms require preserving cohesion of
each subgroup while collision avoidance between any two
agents in the whole group. These changes induce several
difficulties and challenges.

In this paper, the information exchange is undirected in
both the same subgroup and the different subgroups. To en-
sure the high efficiency of information transmission and the
reduction of costs in real applications, an algorithm solving
the flocking problem for multiple groups of mobile agents in
heterogeneous networks is studied. That is, the interactions
of velocity and position information employ independent
networks (Goldin & Raisch, 2013), where the spread of
position information obeys the nearest-neighbour interac-
tion rules. Furthermore, since the communication topology
between agents usually changes dynamically in reality, the
case of switching velocity topology in heterogeneous net-
works is also discussed. Finally, an algorithm solving the
flocking problem in homogeneous networks is proposed as
well. For each given algorithm, the corresponding criteria
for flocking are established based on graph theories, ma-
trix theories, and Barbalat’s lemma (Khalil, 2002). To deal
with the difficulty of discontinuity induced by time-varying
communication topology, we design a proper artificial po-
tential function such that the evolution of the states can be
studied by Barbalat’s lemma.

The rest of the paper is organised as follows. Some
basic definitions of graphs and the problem formulation
are depicted in Section 2. The main results of flocking
in multiple groups are presented in Section 3. Illustrating
examples are given in Section 4.

Throughout this paper, let R be the set of real num-
bers, and R

k be the k−dimensional Euclidean space, re-
spectively; ||·|| means the Euclidean norm; A\B denotes the
set of those elements of A not belonging to B; XT stands for
the transpose of matrix X; 0 represents any zero matrix with
an appropriate dimension; ⊗ is the kronecker product; |E |
denotes the number of elements in set E ; ∀ implies for all.

2. Preliminaries and problem formulation

2.1 Preliminaries of graph theory

The communications between agents are modelled by
a weighted undirected graph. A weighted graph G =
(V, E,A) is composed of a set of verticesV = {1, . . . , n} ⊆
N, a set of edges E ⊆ V × V , and a weighted adjacency ma-
trix A = [aij ] ∈ R

n×n. An edge of G is denoted by (i, j) and
aij denotes the weight of (i, j). For an undirected graph,
(i, j ) ∈ E if and only if aij = aji �= 0, which implies agents
i and j can interact with each other. Moreover, we assume

aii = 0 for any i ∈ V . Specifically, when we use (V, E) to
denote an undirected graph G, aij is considered to be 1 if
(i, j ) ∈ E . The degree matrix � = [�ij] is a diagonal matrix
with �ii = ∑

j∈V aij , and the Laplacian matrix of graph G
is defined by L = � − A. It is obvious that L and A are
both symmetric if G is undirected; thus, the eigenvalues
of L are all real numbers. A path connecting i and j in an
undirected graph G is a sequence of distinct edges of the
form (i1, i2), (i2, i3), . . ., (ii − 1, ik), where i1 = i, ik = j,
and (ir , ir+1) ∈ E , r ∈ {1, . . ., k − 1}. A graph is said to
be connected if there exists a path between any two distinct
vertices of the graph. An orientation is the assignment of an
arbitrary direction to each edge. The incidence matrix D =
[dij] of an oriented graph is a matrix with rows and columns
indexed by the vertices and edges of G, respectively, such
that dij = 1 if the vertex i is the head of the edge j, dij = −1
if the vertex i is the tail of the edge j, and dij = 0 otherwise.

In the following, the undirected graphs Gv(t) =
(V, Ev(t),A(t)) and Gp(t) = (V, Ep(t)) are employed to de-
note the velocity and position communication topologies,
respectively. Let R be the sensing radius of each agent. That
is, only agents within distances smaller than R can interact
with each other, i.e., Ep(t) = {(i, j )|||xi(t) − xj (t)|| < R}.

2.2 Problem formulation

Consider a multi-agent system with velocity graph Gv(t) =
(V, Ev(t),A(t)) and position graph Gp(t) = (V, Ep(t)) con-
sisting of s groups of mobile agents moving in a k-
dimensional Euclidean space, each agent is described by
a double integrator dynamics:

ẋi(t) = vi(t),

v̇i(t) = ui(t), i ∈ V,
(1)

where xi(t), vi(t) ∈ R
k denote the position and velocity of

agent i at time t respectively, ui(t) ∈ R
k is the control input

for agent i at time t. We now give a definition of flocking in
multi-group.

Definition 2.1 (Flocking in multi-group): The problem of
flocking in multi-group is solved if a group of mobile agents
can be divided into s cohesive subgroups and agents be-
longing to the same subgroup approach a common velocity
vector asymptotically with no collisions occurring in the
process, where s is a positive integer.

Suppose the lth subgroup consists of nl agents, and
employs Gpl(t) = (Vl , Epl(t)) as its position transmission
graph, Gvl(t) = (Vl , Evl(t),Al(t)) as its velocity transmis-
sion graph, l ∈ {1,. . ., s}. It is straightforward that ∪s

l=1Vl =
V , ∪s

l=1Epl ⊆ Ep, and ∪s
l=1Evl ⊆ Ev .

As with the traditional flocking form in Olfati-Saber
(2006), Tanner et al. (2007), and Zavlanos et al. (2007),
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each agent uses a control input consisting of two terms

ui = αi + βi, (2)

where αi denotes a force directing agent i to align its ve-
locity with other agents in the same subgroup, β i is a force
for collision avoidance and each subgroup’s cohesion.

For designing αi, we use a common velocity consensus
term, i.e., αi = ∑

j∈V aij (t)(vj − vi). In this paper, we hope
that each agent aligns its velocity vector with agents in the
same subgroup, while neglects the information from other
subgroups. Thus, the following assumption for the elements
of adjacency matrix A(t) is made:

(A1)
∑

j∈V\Vl

aij (t) = 0, ∀i ∈ Vl , l ∈ {1, . . ., s},

which means the total information that each agent in a sub-
group achieves from agents in other subgroups is zero. Note
that aij(t) in the assumption is the communication weight in
transmission of velocity at time t, it can be negative when
agents i and j belong to different subgroups.

For the component β i, according to Olfati-Saber (2006)
and Zavlanos et al. (2007), it is designed as a vector in the
direction of the negated gradient of an artificial potential
function, which can avoid collisions between agents and
maintain links in the position network. For each subgroup,
the time-varying set of edges Epl(t), l ∈ {1, . . ., s} is further
defined as

• Epl(0) = {(i, j )|||xi(t) − xj (t)|| < R, i, j ∈ Vl},
• if 0 < ||xi(t) − xj(t)|| < r, then (i, j ) ∈ Epl(t),
• if ||xi(t) − xj(t)|| ≥ R, then (i, j ) /∈ Epl(t),

where r ∈ (0, R) is a constant value. Such a definition
is to induce a hysteresis which is essential for preserving
the connectivity of the position graph for each subgroup
(Zavlanos et al., 2007). The rest of links in graph Gp remain
the previous definition.

We require collision avoidance between any agents, but
not necessarily preserve the connectivity between agents
in different subgroups. Based on this consideration, the
potential function is designed as follows:

Vij (||xij ||) =⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

||xij ||2 + 1

R2 − ||xij ||2 , (i, j ) ∈ Ep, i, j ∈ Vl ,

1

||xij ||2 + 2

R3
||xij || − 3

R2
, (i, j ) ∈ Ep, i ∈ Vl , j ∈ V\Vl ,

0, (i, j ) /∈ Ep.

(3)

where xij = xi − xj, l ∈ {1, . . ., s}.

Let Vi = ∑
j∈V,j �=i Vij be the potential of agent i, and

βi = −∇xi
Vi . Then, we get the control law

ui =
∑
j∈V

aij (t)(vj − vi) − ∇xi
Vi, i ∈ V. (4)

Using assumptions (A1), the protocol can be rewritten as
follows:

ui =
∑
j∈Vl

aij (t)(vj − vi) +
∑

j∈V\Vl

aij (t)vj

−∇xi
Vi, i ∈ Vl , l ∈ {1, . . . , s}, (5)

Vij defined in Equation (3) allows collision avoidance be-
tween any two agents and maintains links in each subgroup.
If agents i and j belong to the same subgroup, there are two
transition points, i.e., ||xij|| = r and ||xij|| = R. In this case,
for any two agents i and j, ||xij|| can be guaranteed not to
vanish, and it is notable that when ||xij|| → R, only the loss
of (i, j) leads to Vij → ∞, which is the significance of the
hysteresis introduced in the definition of Epl , l ∈ {1,. . ., s}.
Otherwise, if agents i and j belong to different subgroups,
||xij|| = R is the only transition point, and the potential func-
tion is defined to prevent ||xij|| going to zero, but allows
both the addition and loss of (i, j). Moreover, Vij is set to be
differentiable at the point ||xij|| = R, which is crucial for the
continuity of the right-hand side of Equation (4).

We aim to separate the s mixed subgroups. Note that
for agents in different subgroups, the artificial potential
function Vij produces a repulsive force when ||xij|| < R, and
vanishes when ||xij|| ≥ R, for i and j belonging to different
subgroups.

Lemma 2.2 (Barbalat’s lemma, Khalil, 2002): Let V(t)
be a differentiable function and it has a finite limit as
t → ∞, if V̇ (t) is uniformly continuous with respect to
t, then limt→∞ V̇ (t) = 0.

3. Main results

3.1 Flocking in heterogeneous networks

In this subsection, we consider the mobile agents interact-
ing in heterogeneous networks with fixed and switching
velocity topology, and assume the initial position graph of
each subgroup Gpl(0), l ∈ {1,. . ., s} is connected. Before
showing main theorems, we propose the following propo-
sition:
Proposition 3.1: For system (1) with protocol (4), assume
that the Laplacian matrix L(t) of velocity graph Gv has ex-
actly s simple zero eigenvalues and all the other eigenvalues
are positive real numbers for all t ≥ 0. Then, the edges of
Gpl(t), l ∈ {1,. . ., s} will never vanish at all times.

Proof: Let x̄ denote a vector which consists of the position
difference between any two agents in the whole group, i.e.,
x̄ = (DT ⊗ Ik)x, where x is a position vector composed of
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2576 G. Jing et al.

∑s
l=1 nl components, D is the oriented incidence matrix of

the complete graph with vertices set V . Then, system (1)
with protocol (5) is transformed to the following system:

˙̄x = (DT ⊗ Ik)v,

v̇ = u,
(6)

where v denotes the velocity vector, u is the control input
vector. For system (6), we construct an energy function W
as follows:

W (x̄, v) = 1

2
||v||2 + 1

2

∑
i∈V

Vi. (7)

Let ti, i = 1, 2, . . . be the time at which the velocity graph or
the position graph switches, and t0 = 0 be the initial time.
For any t ∈ [ti, ti + 1), i = 0, 1, 2,. . ., it is straightforward
that W is differentiable, aij(t) and L(t) are constant, implying
that

Ẇ =
∑
i∈V

vT
i

⎛
⎝∑

j∈V
aij (t)(vj − vi) − ∇xi

Vi

⎞
⎠ + 1

2

∑
i∈V

V̇i ,

From the definition of Vij, one has

1

2

∑
i∈V

V̇i = 1

2

∑
i∈V

∑
j∈V

ẋT
ij∇xij

Vij

= 1

2

∑
i∈V

∑
j∈V

(
ẋT

i − ẋT
j

)∇xij
Vij

=
∑
i∈V

∑
j∈V

vT
i ∇xi

Vij =
∑
i∈V

vT
i ∇xi

Vi . (8)

Then

Ẇ =
∑
i∈V

vT
i

⎛
⎝∑

j∈V
aij (t)(vj − vi) − ∇xi

Vi

⎞
⎠ +

∑
i∈V

vT
i ∇xi

Vi

=
∑
i∈V

∑
j∈V

aij (t)vT
i (vj − vi)

= −vT (L(t) ⊗ Ik)v, (9)

where L(t) is the Laplacian matrix of velocity graph Gv .
When L(t) has exactly s simple zero eigenvalues and the rest
are positive real numbers, it is clear that L(t) is a positive
semi-definite matrix. Then Ẇ ≤ 0 for t ∈ [ti, ti + 1), i = 0,
1, 2,. . ., which induces Ẇ ≤ 0 for all t ≥ 0. Consequently,
there exists a positive constant value c, such that Vij ≤
c, i, j ∈ VA at all times. For any l ∈ {1,. . ., s}, assume
that a link is lost in graph Gpl at t = t′, which means that
||xij(t′)|| = R, and (i, j ) ∈ Epl at the previous moment. It
follows that Vij(t) → ∞ as t → t′, which is a contradiction.
Thus, all the links in graph Gpl can be maintained. �

Remark 1: Note that Proposition 3.1 is applicable to the
case of heterogeneous networks with both fixed and switch-
ing velocity topology, as well as the case of homogeneous
networks since the proposition allows velocity and position
topologies to switch independently.

For the case that the velocity graph is time-invariant,
i.e., Gv(t) = Gv = (V, E,A), the following theorem is pre-
sented:

Theorem 3.2: Consider a group of mobile agents (1) with
protocol (4). Suppose (A1) holds and the initial position
graph Gpl(0) is connected for any l ∈ {1,. . ., s}. If the
Laplacian matrix L of velocity graphGv has exactly s simple
zero eigenvalues and all the other eigenvalues are positive
real numbers, then flocking in multi-group can be solved.

Proof: Our first goal is to show that agents in each sub-
group attain a common velocity vector asymptotically.

For any l ∈ {1,. . ., s}, by Proposition 3.1, together with
the connectivity of the initial position graph, one obtains
the fact that |Epl(t)| is nondecreasing, and Gpl(t) always
preserves its connectivity. Note that |Epl(t)| ≤ nl (nl−1)

2 , then
|Epl(t)| converges to constant values, implying that Gpl(t)
switches finite times. We set its final topology as Gpl(t∗).
For the links between agents from different subgroups, Vij

is differentiable at the transition point (||xij|| = R), and thus
does not introduce discontinuities when the position topol-
ogy switches. That is, when we study the problem on the
interval (t∗, ∞), the right-hand side of Equation (4) is con-
tinuous, which implies that for all i ∈ V , vi is continuous
and W(t) is differentiable.

According to Equations (7) and (9), we have W ≥ 0 and
Ẇ ≤ 0 at all times, then W has a finite limit as t → ∞. To
employ Lemma 2.2, we need the uniform continuity of Ẇ .
It follows from Equation (9) that

Ẇ = −vT (L ⊗ Ik)v = −
∑
i∈V

∑
j∈V

aij ||vi − vj ||2.

For any 0 ≤ t1 < t2, we have

|Ẇ (t1) − Ẇ (t2)| =
∣∣∣∣ −

∑
i∈V

∑
j∈V

aij ||vi(t1) − vj (t1)||2

+
∑
i∈V

∑
j∈V

aij ||vi(t2) − vj (t2)||2
∣∣∣∣

=
∣∣∣∣ ∑

i∈V

∑
j∈V

aij

(||vi(t1) − vj (t1)|| + ||vi(t2) − vj (t2)||) ·

(||vi(t1) − vj (t1)|| − ||vi(t2) − vj (t2)||)
∣∣∣∣, (10)
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where

| ||vi(t1) − vj (t)|| − ||vi(t2) − vj (t2)|| |
≤ ||vi(t1) − vj (t) − vi(t2) + vj (t2)||.

We now proceed to prove vi is uniformly continuous with
respect to t for any i ∈ V .

From Equation (9), there exists a positive constant value
c, such that ||v|| ≤ c and

∑
i∈V Vi ≤ c, which leads to ||vi|| ≤

c, Vij ≤ c, ∀i, j ∈ V . Note that

||∇xi
Vij || = ||∇xij

Vij || =
∣∣∣∣
∣∣∣∣ dVij

d||xij || · ∇xij
||xij ||

∣∣∣∣
∣∣∣∣

=
∣∣∣∣ dVij

d||xij ||
∣∣∣∣.

We use this fact and the definition of Vij to obtain the
boundedness of ||∇xi

Vij ||. As a result,

||v̇i || =
∣∣∣∣
∣∣∣∣ ∑

j∈V
aij (vj − vi) −

∑
j∈V,j �=i

∇xi
Vij

∣∣∣∣
∣∣∣∣

≤
∑

j∈V,j �=i

|aij |(||vi || + ||vj ||) +
∑

j∈V,j �=i

M

≤
(

s∑
l=1

nl − 1

)
(2ac + M),

(11)

where M is the upper bound of ||∇xi
Vij ||, a =

maxi,j∈V{|aij |}. Together with the continuity of vi, the uni-
form continuity of vi for t > t∗ now follows.

Consequently, for any t1, t2 > 0, i ∈ V , one has
lim|t1−t2|→0 ||vi(t1) − vi(t2)|| = 0, it follows from Equation
(10) that lim|t1−t2|→0

∣∣Ẇ (t1) − Ẇ (t2)
∣∣ = 0. This yields the

uniform continuity of Ẇ for t > t∗. By Lemma 2.2,
we obtain limt→∞ Ẇ = limt→∞ vT (L ⊗ Ik)v = 0. On the
other hand, when assumption (A1) is satisfied, the Lapla-
cian matrix L has at least s linearly independent eigen-
vectors, i.e., (1, . . . , 1︸ ︷︷ ︸

n1

, 0, . . . , 0︸ ︷︷ ︸
n2+···+ns

)T ,. . ., ( 0, . . . , 0︸ ︷︷ ︸
n1+···+ns−1

, 1, . . . , 1︸ ︷︷ ︸
ns

)T as-

sociated with the zero eigenvalue. Owing to the condi-
tion that L has exactly s simple zero eigenvalues and
the rest are positive real numbers, L has exactly these s
eigenvectors associated with the zero eigenvalue. Hence,
limt→∞ ||vi(t) − vj (t)|| = 0, i, j ∈ Vl , l ∈ {1,. . ., s}.

The cohesion of each subgroup is obvious since the
position graph of each subgroup is connected at all
times.

Finally, we have to show collision avoidance in the
whole group. For any (i, j ) ∈ Ep, if ||xi − xj|| → 0, one
has Vij → ∞, which contradicts with Vij ≤ c. Therefore, no
collisions occur between any agents.

Remark 2: For t > t∗, the continuity of dVij

d||xij || at ||xij|| =
R is essential to the continuity of v̇i , which leads to the
continuity of vi, and it follows the uniform continuity of
vi. According to the fact that the existence of a continuous
solution is not always guaranteed for a discontinuous dy-
namical system Cortes (2008), for an easier analysis, we
study the problem for t > t∗ so that the system is continu-
ous and the position topology becomes fixed. This implies
that a continuously differentiable solution starts at t∗ always
exists, and Barbalat’s lemma can be used.

When the velocity graph is time-varying, i.e., Gv(t) =
(V, Ev(t),A(t)). We make the following assumption
further:

(A2) Let ti for i = 1, 2,. . . denote the time when the
topology of Gv(t) changes, t0 is the initial time, there exists
a τ > 0 such that ti + 1 − ti ≥ τ , ∀i = 0, 1, 2,. . ..

Then we present the result as follows:

Theorem 3.3: Consider a group of mobile agents (1) with
protocol (4). Suppose (A1 − A2) hold and the initial position
graph Gpl(0) is connected for any l ∈ {1,. . ., s}. If the
Laplacian matrix L(t) of velocity graph Gv(t) has exactly s
simple zero eigenvalues and all the other eigenvalues are
positive real numbers for all t ≥ 0, then flocking in multi-
group can be solved.

Proof: As analysed in the proof of Theorem 3.2, we study
this problem when t > t∗, and it is easy to get that Ẇ is
uniformly continuous with respect to t for t ∈ [ti, ti + 1),
ti > t∗. Now let us prove Ẇ → 0, as t → ∞. Suppose this
is not true. Then, there exists a constant ε > 0 such that
Ẇ (bi) < −ε, i = 1, 2,. . ., where {b1, b2,. . .} is an infinite
sequence and bi ∈ [tmi

, tmi+1), tmi
> t∗. From the uniform

continuity of Ẇ in [tmi
, tmi+1), there exists a constant 0

< δ < τ such that each bi is contained in an interval of
length δ in which Ẇ (t) ≤ −ε < −ε/2. Let M >

2W (t∗)
δε

, for
t > tmM+1, we have

W (t) = W (t∗) +
∫ t

t∗
Ẇ (s)ds

< W (t∗) − Mδε

2
< 0, (12)

which conflicts with the fact that W is positive semi-definite
of t.

Hence, we obtain limt→∞ Ẇ (t) = 0, i.e.,
limt→∞ vT (L(t) ⊗ Ik)v = 0. Due to the property of
L(t), it has exactly s linearly independent eigenvectors,
i.e., (1, . . . , 1︸ ︷︷ ︸

n1

, 0, . . . , 0︸ ︷︷ ︸
n2+···+ns

)T ,. . ., ( 0, . . . , 0︸ ︷︷ ︸
n1+···+ns−1

, 1, . . . , 1︸ ︷︷ ︸
ns

)T associ-

ated with the s simple zero eigenvalues. Thus, one has
limt→∞ ||vi(t) − vj (t)|| = 0, i, j ∈ Vl , l ∈ {1,. . ., s}. The
remainder of the argument is analogous to that in Theorem
3.2 and is omitted here. �
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Remark 3: In the above theorems, the assumption for
eigenvalues of L(t) can be transformed to restrictions on
graphs in a special case. In fact, for any fixed time t, when
each agent receives no velocity information from agents be-
longing to other subgroups, i.e., aij(t) = 0, i ∈ Vl , j ∈ V\Vl ,
l ∈ {1, · · · , s}, implying that (A1) is distinctly satisfied and
velocity graph Gv has at least s connected components, if
Gvl(t) is connected for all l ∈ {1,. . ., s}, then L(t) has exactly
s zero eigenvalues and all the other eigenvalues are positive
real numbers. This is due to the fact that L(t) becomes a
block s diagonal matrix, where each submatrix has exactly
one zero eigenvalue and the rest of eigenvalues are positive
real numbers.

To derive criteria associated with graphs for all cases,
we modify protocol (4) to make each agent neglect the
velocity information from agents in other subgroups. The
protocol is replaced by the following form:

ui =
∑
j∈Vl

aij (t)(vj − vi) − ∇xi
Vi, i ∈ Vl , l ∈ {1, . . . , s},

(13)

where Vi = ∑
j∈V,j �=i Vij , Vij is defined in Equation (3).

When protocol (13) is applied, assumption (A1) is no longer
required since aij(t) with i ∈ Vl , j ∈ V\Vl has no affect on
the system. Together with the analysis in Remark 3, we have
the following result.

Corollary 3.4: Consider a group of mobile agents (1) with
protocol (13). Suppose (A2) holds, the initial position graph
Gpl(0) and velocity graph Gvl(t) are both connected for any
l ∈ {1, . . . , s}, t ≥ 0, then flocking in multi-group can
be solved.

3.2 Flocking in homogeneous networks

In this subsection, the information transmission of veloc-
ity and position is under the same communication topol-
ogy, i.e., Gv(t) = Gp(t) = G(t) = (V, Ep(t)). To separate
the whole group, we make each agent not use the veloc-
ity information from other subgroups. The protocol is pro-
posed as follows:

ui =
∑

j∈Ni (t)∩Vl

aij (t)(vj − vi) − ∇xi
Vi, i ∈ Vl ,

l ∈ {1, . . . , s}, (14)

where Vi = ∑
j∈V,j �=i Vij , Vij is defined in Equation (3),

Ni(t) = {j |(i, j ) ∈ Ep(t), j �= i, j ∈ V} denotes the set of
neighbours of agent i at time t. Our result is stated in the
following theorem:

Theorem 3.5: Consider a group of mobile agents (1) with
protocol (14). Assume the initial position graphs Gpl(0), l ∈
{1, . . . , s} are all connected. Then, flocking in multi-group
can be solved.

Proof: As explained in the proof of Theorem 3.2, there
exists a time t∗, such that the communication topology be-
comes fixed at time t∗, i.e., Gl(t)→Gl(t∗), l ∈ {1, . . . , s}. We
now discuss the problem once the topology stops switching.
Note that protocol (14) is a special case of Equation (4),
and thus Proposition 3.1 is applicable. Then we can obtain

Ẇ = −vT (L(t) ⊗ Ik)v ≤ 0,

where L(t) =
(

L1(t) 0

. . .
0 Ls (t)

)
, Ll(t) is the Laplacian matrix

of Gl(t) , l ∈ {1,. . ., s}.
For t > t∗, Ll(t) = Ll(t∗), i.e., L(t) = L(t∗) =(

L1(t∗) 0

. . .
0 Ls (t∗)

)
. As with the method used in the proof of

Theorem 3.2, it is easy to show the uniform continuity of
Ẇ (t) with respect to t for t > t∗. Then, by Barbalat’s lemma,
one has limt→∞ Ẇ (t) = 0. That is, limt→∞ vT (L(t∗) ⊗
Ik)v = 0. For any l ∈ {1,. . ., s}, from the connectiv-
ity of Gl(t∗), Ll(t∗) has a simple zero eigenvalue, and
the corresponding eigenvector is (1, . . . , 1︸ ︷︷ ︸

nl

)T . Thus, we ob-

tain limt→∞ ||vi(t) − vj (t)|| = 0, i, j ∈ Vl , l ∈ {1, . . . ,
s}. The remainder of the argument is analogous to that in
Theorem 3.2 and is omitted here. �

The result in homogeneous networks imposes no re-
strictions on velocity graphs, so that it is easier to verify the
convergence of flocking by using protocol (14). However,
in real applications, multiple information usually cannot be
transmitted accurately at once, and efficient homogeneous
networks may take more costs than heterogeneous networks
do. Thus, both heterogeneous networks and homogeneous
networks have their own advantages.

Remark 4: Using protocol (4), a special case cannot be
ignored. In fact, when some agents in a subgroup are sur-
rounded by the agents in another subgroup, the two sub-
groups are possibly inseparable at all times. For instance,
the two groups of agents depicted in Figure 1 will never dis-
perse. In this case, the aforementioned theorems also hold.
That is, limt→∞ ||vi(t) − vj (t)|| = 0, i, j ∈ Vl , l ∈ {A, B}.
It is straightforward to show that all the agents will achieve
a common velocity by reduction to absurdity; therefore, the
problem of flocking in a single group is solved simultane-

Figure 1. Two groups of agents move on a line.
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Figure 2. The fixed velocity graph Gv .

ously. It is notable that such a case only happens when the
velocity vectors of all agents are colinear and parallel to
the line connected between any two agents in the group; the
probability of this happening in Euclidean space R

k , k ≥ 2
is rare. Moreover, in real applications, the whole group can
be artificially divided to avoid this special case.

Remark 5: When l ∈ {1}, algorithms (5) and (14) will
reduce to the ones for the traditional flocking problem,
which are similar to the algorithms described in Tanner
et al. (2007) and Zavlanos et al. (2007), respectively.

4. Simulations

In this section, we present several simulation results to
illustrate the effectiveness of our theoretical results. In sim-
ulations, we set the sensing radius R = 5, and hysteresis r
= 4. The initial position vector of each agent is restricted to

Figure 3. The initial position states of agents.

ensure the connectivity of the position graph of each
subgroup, the initial velocity vector of each agent is
selected randomly.

Example 4.1: We consider a group of 10 agents includ-
ing two subgroups that each subgroup consists of 5 agents
moving in the plane. Figure 2 shows the undirected veloc-
ity interaction graph Gv; it is easy to get the corresponding
Laplacian matrix L. The numerical computation shows that
L has exactly two simple zero eigenvalues and all the other
eigenvalues are positive real numbers. Figure 3 depicts the

Figure 4. Snapshots of flocking in a couple of groups with fixed velocity topology.
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Figure 5. Six undirected connected graphs satisfying (A1) and (A2).

initial position states of the agents. Figure 4 describes the
evolution of agents applying algorithm (4). The colour of
each point in Figures 3 and 4 represents the subgroup the
agent belongs to, the arrow on each point shows its ve-
locity vector at the corresponding time, and a green line
implies connected. It is clear that the flocking problem for

two groups of agents is solved, and the connectivity of each
subgroup’s position graph is maintained at all times, which
implies cohesion.

Example 4.2: Now we consider the behaviour of 10 agents
in heterogeneous networks with switching velocity interac-

Figure 6. Snapshots of flocking in a couple of groups with switching velocity topology.
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Figure 7. Snapshots of flocking in three groups when the networks are homogeneous.

tion graph. In this case, some of the existing interaction
links fail and some new edges are created due to the influ-
ence of external factors. We set the dwell time between any
two adjacent switching time as 0.005s, the velocity graph
is chosen from {Ga,Gb, . . . ,Gf } in order (see Figure 5).
For each velocity graph, the corresponding Laplacian ma-
trix L has exactly two simple zero eigenvalues and the rest
are positive real numbers. The initial position states of the
agents are the same as the ones in Example 1. The 10 agents
applying protocol (4) successfully flock in two groups of
agents and the links between agents in each subgroup are
maintained, as shown in Figure 6.

Example 4.3: This example is for illustrating the result of
flocking in homogeneous networks. In this case, the group
of 12 agents consist of three subgroups. It can be seen
from Figure 7 that by applying protocol (14), the flocking
problem described in Definition 2.1 is solved.

5. Conclusion

In this paper, the problem of flocking in multiple groups
of agents has been solved, which describes that a group
of agents disperse to several cohesive subgroups with each
subgroup achieving a common velocity gradually, while
the collisions between any agents are avoided. The dis-
tributed feedback designs have been presented in both het-
erogeneous networks and homogeneous networks. For each
flocking algorithm, we have provided the corresponding
conditions under which the flocking problem is solved.

Moreover, the theoretical results have been numerically
verified.

Since our algorithms are the extensions of those for the
traditional flocking problem, a number of works of the latter
may be feasible for the former and are worth exploring.
Such results include flocking with nonlinear measurements,
the asymmetric interaction of velocity in heterogeneous
networks, the intermittent control input, and so on.
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