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a b s t r a c t

For the multi-agent system with a navigational leader and its opponent, the followers cannot converge
to the state of the navigational leader. In this paper, we consider the topology selection problem to
minimize the opponent’s influence which is measured by the tracking error of the system. Firstly, two
combinatorial optimization problems are formulated. One is to minimize the tracking error by selecting
guided informed-agents (the followers who can obtain the navigational leader’s information). The other
is to choose minimal number of guided informed-agents under an upper bound constraint of the tracking
error. Secondly, for the scenario where the guided informed-agents are preset, we consider the problem
of assigning the weights of edges tominimize the tracking error. Three convex optimization problems are
proposed to evaluate the upper and lower bounds of the tracking error. Finally, numerical examples are
provided to illustrate the effectiveness of the theoretical results.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

In the last decade, cooperative control of multi-agent systems
(MASs) has captured tremendous attention from a wide range of
academic disciplines, such as biology, physics, and social science
etc [1–4]. Consensus seeking is an important issue of cooperative
control of MASs which means all agents will converge to the same
state. There have been extensive studies and results under various
circumstances [5–10]. Multi-agent systems with leaders are also
considered which leads to several research hotspots such as the
leader-following consensus [11,12], containment control [13,14]
and controllability analysis [15]. Shi et al. considered the leader-
following consensus problem for MASs with a virtual leader [11].
In [12], the authors considered tracking control under variable
topologies and obtained some sufficient conditions for solving
the leader-following consensus. As an extension of consensus
problem, containment control of multi-agent systems means that
the followers will converge to the convex hull spanned by the
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leaders. Containment control under fixed undirected topology and
switching topologieswas considered in [13,16], respectively. Some
sufficient and/or necessary conditions for solving containment
control had also been addressed under varied models, such as
containment control of heterogeneousMASs [17] and ofMASswith
measurement noises [18], etc.

In leader–follower multi-agent systems, followers can be clas-
sified into two types: the informed-agents who can receive in-
formation from leaders directly and the others who cannot. The
leader sends its state information to the informed-agents who
will spread this information to other followers by the interac-
tion among the followers. Therefore, the interaction graph of the
system is together determined by the subgraph of the followers
and the set of informed-agents. Existing studies have shown that
followers can converge to the leader under different interaction
graphs. Then, a natural question that arises is how to design the
interaction graph such that the system can converge quickly. The
fast consensus problem is considered by solving semi-definite pro-
gramming problems [5,19,20]. Based on linear-quadratic regulator
theory, [21] proved that the optimal topology of leader-following
consensus is a star topology. The problem of topology selection is
also studied. In [22], the authors revealed that in order to achieve
high accuracy, the more the agents, the smaller the proportion of
informed-agents needed. [23] found that the convergence rate for
first-order leader–follower MASs can also be determined by the
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maximal distance from the leader to the followers in the interac-
tion graph. In order to minimize this distance, a standard combi-
natorial optimization problem was proposed. For leader–follower
MASswith noises, [24] investigated the problem ofminimizing the
mean-square deviation via selecting a given number of informed-
agents. Meanwhile, the problem of solving containment control
in an optimal way was also studied. In [25], the authors gave an
explicit expression to estimate the tracking error for multi-agent
systems with some moving leaders. Clark et al. [26] formulated a
leader selection problem for containment control in order to mini-
mize the convergent error. A supermodular optimization approach
was developed to solve this problem.

Competition and conflict are ubiquitous in practice. For the
multi-agent system, differences of agents’ interests may produce
competition and opposition. One example from social science
is election. Two candidates run for election and both want
to beat their opponent. Based on this fact, [27] formulated
the problem of maximizing influence in social networks with
competitive ideas as a Stackelberg game. In [28], the authors
provided a model to investigate the tension between information
aggregation and spread of misinformation in large societies.
Another example comes from networks. In a network, some nodes
may be compromised by a malicious attacker whose objective is
to disrupt the operation of the network. Therefore, a distributed
strategy was developed to calculate any arbitrary function of the
node values for networks with malicious nodes in [29]. In this
paper, we consider the multi-agent system with two leaders who
have opposite purposes. One leader named navigational leader
propagates the navigational information to drive the followers
to follow itself. The other leader named the opponent sends the
misinformation to make the followers to keep away from the
navigational leader. Considering the existence of the opponent,
the followers will never converge to the navigational leader.
Therefore, we focus on the problem of topology selection to
reduce the opponent’s influence. The main contribution of this
paper is threefold. Firstly, we define the tracking error to quantify
the opponent’s influence. Then, we prove that if a follower is
added into the set of guided informed-agents (who receive the
navigational information), the tracking error will be decreased.
Secondly, we formulate two topology selection problems. One is
how to choose at most k guided informed-agents to minimize
the tracking error. The other is how to select minimal number
of guided informed-agents under an upper bound constraint of
the tracking error. Since the two problems are NP-hard, two
algorithms are developed to obtain their suboptimal solutions
respectively. Finally, the problem of assigning theweights of edges
is considered to reduce the opponent’s influence for the case that
the guided informed-agents are preset. We propose three convex
programming problems to obtain the upper and the lower bounds
of the minimal tracking error.

This paper is organized as follows. In Section 2, we introduce
the graph theory and the systemmodel. In Section 3, we formulate
two guided informed-agents selection problems and develop two
algorithms. The problem of designing the optimal weights of
guided informed-edges to minimize tracking error is given in
Section 4. In Section 5, numerical simulations are carried out to
illustrate the effectiveness of our results. Some conclusions are
drawn in Section 6.

Notation: Throughout this paper, the following notations will
be used: let R be the set of real numbers. Rn×m is the set of
n × m real matrices. Denote 1n (or 0n) as the column vector with
all entries equal to one (or all zeros). For a column vector b =
[b1, b2, . . . , bn]T , Db is a diagonal matrix with bi, i = 1, . . . , n, on
its diagonal and ∥b∥p = (

n
i=1 |bi|

p)
1
p is lp-norm of b. In denotes

an n-dimensional identitymatrix and 0n×m is amatrixwith all zero
entries. AmatrixA ∈ Rn×m is nonzero ifA ≠ 0n×m. ForA, B ∈ Rn×m,
denote A > B (resp. A ≥ B) if A − B is a positive matrix (resp.
nonnegative matrix), and let Aij be the ij-th entry of A. For a square
matrix A, ρA and tr(A) are the spectral radius and the trace of A,
respectively. adj(A) is the adjugate of A. det(A) is the determinant
of A. For a set S, |S| and 2S are the cardinality and the power set of S
respectively. For two sets S1 and S2, denote S1× S2 as the Cartesian
product. S1 \ S2 = S1 − S2. Let ei denote the canonical vector with
a 1 in the ith entry and 0’s elsewhere.

2. Preliminaries

2.1. Graph theory

In this subsection, we present some basic notions of algebraic
graph theory which will be used in this paper. For more details,
interested readers are referred to [30] for a thorough study of graph
theory.

LetG = {V, E, A} be an undirected graph consisting of a vertex
set V = {1, 2, . . . , n} and an edge set E = {(i, j) ∈ V × V}. The
adjacency matrix A is a matrix such that for all i ∈ In, aii = 0 and
for all i ≠ j, (i, j) ∈ E if and only if aij = aji > 0, while aji = 0
otherwise. A walk of length r in a graph G is a sequence of vertices
i0 ∼ i1 ∼ · · · ∼ ir where (ik, ik+1) ∈ E . If there exists at least one
walk from the vertex i to j in G with length r , then (Ar)ij > 0 [30].
The degree matrix D = D[d1,...,dn]T where di =


j∈Ni

aij and the
Laplacian matrix L = D −A.

Lemma 1. Let G be a connected graph. Assume ∆ be a nonnegative
and nonzero diagonal matrix. Then, L + ∆ is positive definite and
(L+∆)−1 is a positive matrix.

Proof. By Lemma 3 in [12], we obtain that L + ∆ is positive
definite. Let θi = (L+∆)ii and θ̂ = max1≤i≤n θi. It follows that

L+∆ = Dθ −A = θ̂


In −


∆̃+

A

θ̂


,

where θ = [θ1, . . . , θn] and ∆̃ = In −
Dθ

θ̂
. It is easy to show that

∆̃+ A

θ̂
is a nonnegative matrix with spectral radius ρ < 1. Hence,

we have

(L+∆)−1 =
1

θ̂

∞
k=0


∆̃+

A

θ̂

k

≥
1

θ̂

∞
k=0


A

θ̂

k

. (1)

For every (i, j) ∈ V×V , becauseG is connected, there exists at least
one walk from i to j with length k ≥ 1, i.e., (Ak)ij > 0. Therefore,
∞

k=0 Ak > 0. Together with (1), we have (L+∆)−1 > 0. �

Lemma 2. Let G be a connected graph. Let ∆1, ∆2 be two nonnega-
tive and nonzero diagonal matrices. Suppose that ∆2 − ∆1 ≥ 0 and
∆2 ≠ ∆1. Then, (L+∆1)

−1
− (L+∆2)

−1 is a positive matrix.

Proof. Denote ∆2 −∆1 = D[x1,x2,...,xn]T and

L0 = L+∆1,

L1 = L0 + x1e1eT1,
· · ·

Ln = Ln−1 + xneneTn .

From the matrix inversion lemma [31], we have

L−1k−1 − L−1k =
L−1k−1xkeke

T
k L
−1
k−1

1+ xkeTk L
−1
k−1ek

, k = 1, 2, . . . , n.
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It follows that

(L+∆1)
−1
− (L+∆2)

−1
=

n
k=1


L−1k−1 − L−1k


=

n
k=1

L−1k−1xkeke
T
k L
−1
k−1

1+ xkeTk L
−1
k−1ek

.

Using Lemma 1, L−1k−1 > 0. Together with ∆2 − ∆1 ≥ 0, we

get
L−1k−1xkeke

T
k L
−1
k−1

1+xkeTk L
−1
k−1ek

≥ 0. Since ∆2 ≠ ∆1, there exists at least one

L−1k−1xkeke
T
k L
−1
k−1

1+xkeTk L
−1
k−1ek

> 0. Consequently, we have
n

k=1
L−1k−1xkeke

T
k L
−1
k−1

1+xkeTk L
−1
k−1ek

> 0

which implies that (L+∆1)
−1
− (L+∆2)

−1 > 0. �

2.2. System model

In MASs, an agent who sends its own information and do not
receive the information from the others is the leader. An agent is
called the follower if it is not the leader. Consider a multi-agent
system consisting of two leaders and n followers. In this paper, the
following definitions are given.

Definition 1. The leader who sends the navigational information
ρ0(t) is called the navigational leader. The leader who sends the
misinformation ρ1(t)(≠ ρ0(t)) is called the opponent.

Definition 2. The followers who can receive the navigational
information are called the guided informed-agents (GI-agents).
The followers who can receive the misinformation are called the
misguided informed-agents (MI-agents).

Definition 3. For follower i, θi > 0 and ϑi > 0 are the guided link-
weight (GL-weight) and the misguided link-weight (ML-weight),
respectively. If follower i is chosen as a GI-agent (resp. MI-agent),
then the weight of the corresponding directed edge from the
navigational leader (resp. the opponent) to follower i is θi (resp.ϑi).

The navigational leader wants the followers to track ρ0(t),
while the opponent wants the followers to keep away from ρ0(t).
As a result, the navigational leader propagates ρ0(t) to GI-agents
and the opponent sends ρ1(t) to MI-agents. In this paper, we
assume that the two leaders are static, i.e., ρ0(t) = ρ0 and
ρ1(t) = ρ1.

Suppose that the interaction of the followers is described by an
undirected graph G = (V, E, A) where V = {1, . . . , n} is the
set of followers. If two followers i and j can communicate with
each other, then (i, j) ∈ E . Let S be the set of GI-agents (GI-
set) and T be the set of MI-agents (MI-set). Two Boolean vectors
x = [x1, . . . , xn]T and y = [y1, . . . , yn]T indicate whether each
follower belongs to S and T or not, respectively, i.e.,

xi =

1 i ∈ S
0 otherwise and yi =


1 i ∈ T
0 otherwise, i ∈ V.

Therefore, the dynamics of the follower i is

ξ̇ i
=

n
j=1

aij(ξ j
− ξ i)+ xiθi(ρ0 − ξ i)+ yiϑi(ρ1 − ξ i),

where aij is the ijth entry of A. Denote θ = [θ1, . . . , θn]
T ,

ϑ = [ϑ1, . . . , ϑn]
T and ξ(t) = [ξ 1(t), . . . , ξ n(t)]T . The aggregate

dynamics of the system is represented by

ξ̇ (t) = −(L+ DθDx + DϑDy)ξ(t)+ Dθxρ0 + Dϑyρ1, (2)

where L is the Laplacian matrix of G. The following assumptions
are given throughout this paper.
A1. (Connectivity) G is connected.
A2. (Information accessibility) There exist at least one GI-agent

and one MI-agent, i.e., S ≠ ∅ and T ≠ ∅.

It follows from [14] that

Lemma 3. Suppose that A1 and A2 hold. For multi-agent system (2),
one has limt→∞ ξ i(t) = αiρ0 + βiρ1, where

αi = eTi (L+ DθDx + DϑDy)
−1Dθx,

βi = eTi (L+ DθDx + DϑDy)
−1Dϑy,

(3)

αi + βi = 1, αi > 0 and βi > 0 for all i ∈ V .

Remark 1. From Lemma 3, the converging states of the followers
are determined by L, S, T , θ and ϑ . Therefore, the navigational
leader can reduce the opponent’s influence by designing S or θ .

3. Minimizing the opponent’s influence via GI-agent selection

In this section, assume thatG, θ ,ϑ and T are fixed.Wedefine the
tracking error function to quantify the influence of the opponent.
Then, we propose two combinatorial optimization problems to
minimize the tracking error function.

3.1. Definition of tracking error function

Given that G, θ and ϑ are fixed, it is easy to know that
limt→∞ ξi(t) is determined by S and T . Denote ξ i

S,T = limt→∞

ξ i(t), i ∈ V . It follows from Lemma 3 that ξ i
S,T ∈ (min{ρ0, ρ1},

max{ρ0, ρ1}). Therefore, the distance between the follower i
and the navigational leader can be employed to quantify the
opponent’s influence on i.

Definition 4. Let diS,T = |ξ
i
S,T − ρ0| be the tracking error of the

follower i. Define

fp(S, T ) =
dS,Tp , 1 ≤ p ≤ ∞

as the tracking error function of system (2), where dS,T =

[d1S,T , . . . , d
n
S,T ]

T .

Remark 2. It is natural to use the p-norm of dS,T to measure the
opponent’s influence on the whole system. In particular, when
p = 1, f1(S, T ) is the sum of all agents’ tracking error. If p = ∞,
f∞(S, T ) is the maximum tracking error among all diS,T , i ∈ V .

Theorem 1. If a follower is added into GI-set, then the tracking error
of each follower will be decreased. On the other hand, if a follower
is added into MI-set, then the tracking error of each follower will be
increased.

Proof. Denote S ′ = S ∪ {v} and T ′ = T ∪ {v′}, where v ∈ V \ S
and v′ ∈ V \ T . It is easy to find that S ′ is a subset of V . It suffices
to prove dS,T − dS′,T > 0 and dS,T ′ − dS,T > 0.

Let x, x′ and y be the indicative vectors of S, S ′ and T respectively.
Using Lemma 3, we have

dS,T = c(L+ DθDx + DϑDy)
−1Dϑy (4)

and

dS,T − dS′,T = c

(L+ DθDx + DϑDy)

−1

− (L+ DθDx′ + DϑDy)
−1Dϑy,

where c = |ρ1 − ρ0|. Due to S ( S ′, we have x′ − x is nonnegative
and nonzerowhich implies (DθDx′+DϑDy)−(DθDx+DϑDy) is also
nonnegative and nonzero. Recalling Lemma 2, we can obtain that
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(L+ DθDx + DϑDy)
−1
− (L+ DθDx′ + DϑDy)

−1 > 0. Considering
c > 0, Dϑy ≥ 0 and Dϑy ≠ 0, we have dS,T − dS′,T > 0. Therefore,
the tracking error of each follower will be decreased if a follower
is added into GI-set.

From (3), we obtain dS,T = c

1n − (L+ DθDx + DϑDy)

−1Dθx

.

Similar to the proof of dS,T − dS′,T > 0, one can derive dS,T ′ −
dS,T > 0 which implies that the tracking error of each follower is
increasing with the increasing of GI-agents. �

Theorem 2. If some followers are added into GI-set, then the
tracking error of system (2) will be decreased. On the other hand,
if some followers are added into MI-set, then the tracking error of
system (2) will be increased.

Proof. Denote the new GI-set S ′ = S ∪ {v1, v2, . . . , vr} and
T ′ = T ∪ {n1, n2, . . . , nl}, where {v1, v2, . . . , vr} ⊆ V \ S and
{n1, n2, . . . , nl} ⊆ V \ T . It suffices to prove fp(S, T ) > fp(S ′, T )
and fp(S, T ′) > fp(S, T ). Letting Sj = S ∪ {v1, v2, . . . , vj}, j =
1, 2, . . . , r , we have S ′ = Sr ) Sr−1 ) · · · ) S1 ) S0 = S.
For every j ∈ {1, 2, . . . , r}, it follows from Sj = Sj−1 ∪ {vj} that
diSj−1,T − diSj,T > 0. Thus, from the definition of fp(S), we have
fp(Sj−1) > fp(Sj). Consequently, fp(S) > fp(S1) > · · · > fp(S ′).
Therefore, we know that if some followers are added into GI-set,
the tracking error of system (2) will be decreased. Likewise, we
can prove that if some followers are added intoMI-set, the tracking
error of system (2) will be increased. �

Corollary 1. For all S ∈ 2V , fp(V, T ) ≤ fp(S, T ) and the equation
holds if and only if S = V .

Proof. For all S ∈ 2V , we have S ⊆ V . Therefore, the proof is
straightforward from Theorem 2. �

Theorem 3. Suppose that GL-weight θi is not less thanML-weight ϑi
for every follower i ∈ V . Let MI-set be the subset of GI-set. Then, all
followers’ tracking errors are not greater than 1

2 |ρ1 − ρ0|.

Proof. Without loss of generality, let ρ0 > 0.
Firstly, we will prove the case of ρ1 = −ρ0. According to

Lemma 3, we have ξ i
S,T = ρ0eTi (L+DθDx+DϑDy)

−1(Dθx−Dϑy). It
follows from S ⊇ T and θ −ϑ ≥ 0 that (Dθx−Dϑy) ≥ 0. Together
with (L + DθDx + DϑDy)

−1 > 0 and ρ0eTi ≥ 0, we get ξ i
S,T ≥ 0.

Thus, diS,T = ρ0 − ξ i
S,T ≤ ρ0 =

1
2 |ρ1 − ρ0|.

Secondly, if ρ1 ≠ −ρ0, we can translate the coordinate system
so that its origin coincides with the middle point between ρ0 and
ρ1. Consequently, system (2) is converted into the case of ρ1 =

−ρ0. �

In the following context of this section, suppose that MI-set is
given. Then, denote fp(S, T ) as fp(S).

3.2. Minimizing fp(S) via selecting up to k GI-agents

Minimizing fp(S) by selecting up to k GI-agents is given by the
optimization problem

min
S

fp(S)

s.t. |S| ≤ k.
(5)

Theorem 4. Optimization problem (5) is equivalent to the combina-
torial optimization problem

min
S

fp(S)

s.t. |S| = k.
(6)

Moreover, the optimal value of (6) is a strictly monotone decreasing
function of k.
Proof. Denote the optimal solution to (5) as S∗. Suppose |S∗| < k.
By Theorem 2, we known fp(S∗) < fp(S∗ ∪ {v}) where v ∈ V \ S∗.
Thus, it has a conflict with the fact that S∗ is the optimal solution to
(5). Therefore, |S∗| = kwhich implies the optimal solution to (6) is
the optimal solution to (5).

For two positive integers k1 < k2 ∈ {1, . . . , n}, denote the
corresponding optimal solutions to (6) as S∗1 and S∗2 , respectively.
For a set Λ = {v1, v2, . . . , vk2−k1} ⊆ V \ S∗1 , one has fp(S∗1 ) <
fp(S∗1 ∪Λ). It follows from |S∗1 ∪Λ| = k2 that fp(S∗1 ∪Λ) ≤ fp(S∗2 ).
Thus, fp(S∗1 ) < fp(S∗2 ).

Therefore, optimization problem (5) is equivalent to combina-
torial optimization problem (6) which is a strictly monotone de-
creasing function of k. �

Remark 3. From

(L+ DθDx + DϑDy)
−1
=

adj(L+ DθDx + DϑDy)

det(L+ DθDx + DϑDy)
,

we have diS,T =
qi(x)
det(x) , where

qi(x) = ceTi adj(L+ DθDx + DϑDy)Dϑy

and

det(x) = det(L+ DθDx + DϑDy).

It is shown that qi(x) and det(x) are two polynomials with degree
m(≤ n−1) and with the highest term Πn

i=1θixi, respectively. Since

f pp (S) = Σn
i=1q

p
i (x)

detp(x) (p <∞), optimization problem (6) is equivalent
to

min
x

Σn
i=1q

p
i (x)

p
det(x)

s.t. 1T
nx = k,

xi ∈ {0, 1}, i = 1, 2, . . . , n,

which is NP-hard. As a result, (6) is NP-hard for p <∞. Similarly,
(6) is also NP-hard for p = ∞.

Since (6) is NP-hard, it is hard to find the optimal solution for the
case that the systemcontains large numbers of followers. However,
we propose a Greedy Algorithm for Selecting k GI-agents to obtain a
suboptimal solution to (6). The algorithm initializes S = ∅. At the
jth iteration, the algorithm chooses vj ∈ V \ S such that fp(S∪{vj})
is minimized and sets S = S ∪ {vj}. The pseudocode description is

Greedy Algorithm for Selecting k GI-agents: Algorithm for
selecting up to k GI-agents to minimize the tracking error fp(S).

Input: Number of GI-agents k, the followers’ interaction graph
G, MI-set T , GL-weight vector θ , ML-weight vector ϑ .

Output: GI-set S
Initialization:S ← ∅, j← 1
while (j < k)

vj ← argmin{fp(S∪{v}) : v ∈ V \ S}, S ← S∪{vj}, j← j+1
end while
return S

3.3. Minimizing the size of GI-set under an upper bound constraint on
fp(S)

In this subsection, we consider the problem of selecting
minimum number of GI-agents under an upper bound constraint
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on fp(S). The problem can be described as

min
S
|S|

s.t. fp(S) ≤ α.
(7)

Remark 4. From Corollary 1, we have if α ≤ fp(V), then optimiza-
tion problem (7) is no solution.

Remark 5. Similar to the analysis in Remark 3, combinatorial
optimization problem (7) is NP-hard.

Because (7) is NP-hard, an algorithm is proposed to solve a
suboptimal solution of (7), namely Algorithm to Select Minimal-size
GI-set (ASMG). S is initialized by S = ∅. At each iteration, the node
v∗ ∈ V \ S is selected such that fp(S ∪ {v∗}) is minimal and S is set
by S = S ∪ {v∗}. The pseudocode description of the algorithm is

Algorithm to Select Minimal-size GI-set: Algorithm for
selecting the minimum-size GI-set S such that fp(S) ≤ α.

Input: Upper bound α, the followers’ interaction graph G, MI-
set T , GL-weight vector θ , ML-weight vector ϑ .

Output: GI-set S
Initialization:S ← ∅
while (fp(S) > α)

v∗ ← argmin{fp(S ∪ {v}) : v ∈ V \ S}, S ← S ∪ {v∗},
end while
return S

4. Minimizing the opponent’s influence via GL-weight assign-
ing

In this section, suppose that G, ϑ , S and T is known by
navigational leader. Hence, the tracking error of system (2) can be
reduced by assigning GL-weight vector.

4.1. Bounds of tracking error

In this section, the following assumption is given.
A3. For follower i ∈ V , there exists a threshold θ̄i > 0 for its

GL-weight, i.e., θi ∈ [0, θ̄i].
Denote S = {i1, i2, . . . , ik} and θS = Dxθ where i1 < i2 <

· · · < ik. Noticing that θS is a vector with θir in the ir -th entry,
r = 1, 2, . . . , k, and 0’s elsewhere. Denote ξ i

θ̃S
= limt→∞ ξ i(t)

where θ̃S = [θi1 , θi2 , . . . , θik ]. Recalling Lemma 3, one has ξ i
θ̃S

is

determined by θ̃S .

Definition 5. Define di
θ̃S
= |ξ i

θ̃S
− ρ0| as the tracking error of

follower i. Let fp(θ̃S) =
dθ̃S


p
be the tracking error function of

system (2), where 1 ≤ p ≤ ∞ and dθ̃S
= [d1

θ̃S
, . . . , dn

θ̃S
]
T .

Similar to the proof of Theorem 1, we have

Theorem 5. If GL-weight of one GI-agent is increased, then the
tracking error of every follower and of system (2) will be decreased.

Denote ỹ = Dϑy. It follows from Lemma 3 that

dθ̃S
= c(L+ DθS + Dỹ)

−1ỹ. (8)

Owing to the fact that di
θ̃S

is a fraction of two polynomials of θ̃S , it

is difficult to know whether fp(θ̃S) is a convex function or not. The
following results give some convex relaxations.
Theorem 6. (1) For f1(θ̃S), one has
c
∥ỹ∥∞

ỹT (L+ DθS + Dỹ)
−1ỹ

≤ f1(θ̃S) ≤ c∥ỹ∥∞1T
n(L+ DθS + Dỹ)

−11n,

where ỹT (L+DθS+Dỹ)
−1ỹ and 1T

n(L+DθS+Dỹ)
−11n are convex

functions of θ̃S .
(2) For f2(θ̃S), one has

f2(θ̃S) ≤ c∥ỹ∥2tr((L+ DθS + Dỹ)
−1),

where tr((L+ DθS + Dỹ)
−1) is a convex function of θ̃S .

Proof. We firstly prove (1). From 0 ≤ ỹ ≤ ∥ỹ∥∞1n and (L+DθS +

Dỹ)
−1 > 0, we have

0 ≤ (L+ DθS + Dỹ)
−1ỹ ≤ ∥ỹ∥∞(L+ DθS + Dỹ)

−11n

and

1n(L+ DθS + Dỹ)
−1
≥

1
∥ỹ∥∞

ỹT (L+ DθS + Dỹ)
−1.

It follows from f1(θ̃S) = c1T
n(L+ DθS + Dỹ)

−1ỹ that

c
∥ỹ∥∞

ỹT (L+ DθS + Dỹ)
−1ỹ

≤ f1(θ̃S) ≤ c∥ỹ∥∞1T
n(L+ DθS + Dỹ)

−11n.

For an n-dimensional column vectorb ≠ 0,bT
n(L+DθS+Dỹ)

−1bn is
the composition of a convex function bT

nP
−1bn of a positive matrix

P with an affine function P = L + DθS + Dỹ. From [32], we know
that bT

n(L+DθS +Dỹ)
−1bn is a convex function of θ̃S . Therefore, we

have ỹT (L+ DθS + Dỹ)
−1ỹ and 1T

n(L+ DθS + Dỹ)
−11n are convex

functions of θ̃S .
Then we give the proof of (2). From the definition of f2(θS), we

get

f2(θS) = c

ỹT (L+ DθS + Dỹ)

−2ỹ
 1
2 .

Since (L+ DθS + Dỹ)
−1 is positive define,

f2(θS) ≤ cρ(L+DθS+Dỹ)
−1∥ỹ∥2 ≤ c∥ỹ∥2tr((L+ DθS + Dỹ)

−1).

From [32], we know that tr(P−1) is a convex function of a positive
matrix P . Moreover, we have L + DθS + Dỹ is an affine function.
Hence, tr((L+ DθS + Dỹ)

−1) is a convex function of θS . �

4.2. Minimizing tracking error via assigning GL-weights

In this subsection, suppose that there is a budget on the sum of
GL-weights, i.e.,

k
j=1 θir ≤ π . The problemofminimizing tracking

error via assigning GL-weights is formulated by the optimization
problem

min
θ̃S

fp(θ̃S)

s.t.
k

j=1

θir ≤ π, θir ∈ [0, θ̄ir ], r = 1, 2, . . . , k.
(9)

It is not hard to see that the constraint set of (9) is convex and
compact. Considering that fp(θ̃S) is continuous in the constraint
set of (9), the optimal solution of (9) exists. By Theorem 6, we can
straightly obtain the following results.
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Theorem 7. For p = 1, the optimal value of (9) has an upper bound
cµ∥ỹ∥∞ and a lower bound cτ

∥ỹ∥∞
, whereµ is the optimal value of the

convex optimization problem

min
θ̃S

1T
n(L+ DθS + Dỹ)

−11n

s.t. 1T
k θ̃S = π, θir ∈ [0, θ̄ir ], r = 1, 2, . . . , k,

(10)

and τ is the optimal value of the convex optimization problem

min
θ̃S

ỹT (L+ DθS + Dỹ)
−1ỹ

s.t. 1T
k θ̃S = π, θir ∈ [0, θ̄ir ], r = 1, 2, . . . , k.

(11)

Theorem 8. For p = 2, the optimal value of (9) has an upper bound
cγ ∥ỹ∥2, where γ is the optimal value of the convex optimization
problem

min
θ̃S

tr((L+ DθS + Dỹ)
−1)

s.t. 1T
k θ̃S = π, θir ∈ [0, θ̄ir ], r = 1, 2, . . . , k.

(12)

Using the Schur complement, convex optimization problems
(10) and (11) can be transformed into SDP problems

min
z, θ̃S

z

s.t.


z bT
n

bn L+ DθS + Dỹ


≽ 0

1T
k θ̃S = π, θir ∈ [0, θ̄ir ], r = 1, 2, . . . , k,

(13)

where bn = 1n and bn = ỹ, respectively. Likewise, convex opti-
mization problem (12) can be transformed into an SDP problem

min
Z, θ̃S

tr(Z)

s.t.

Z In
In L+ DθS + Dỹ


≽ 0

1T
k θ̃S = π, θir ∈ [0, θ̄ir ], r = 1, 2, . . . , k.

(14)

SDPproblems (13) and (14) can be solved efficiently using standard
SDP solvers, such as SDPT3 [33] etc.

5. Simulations

In this section, numerical examples are performed to illustrate
the effectiveness of our results in Sections 3 and 4. Consider a
network with 100 randomly distributed nodes in a unit square
which is depicted in Fig. 1. A pair of nodes communicateswith each
other if their distance is not greater than 0.2 unit. The edge-weights
aij for each (i, j) ∈ E are uniformly selected from 1 to 10. The
navigational informationρ0 = 0 and themisinformationρ1 = −1.

Example 1. Assume that GL-weight vector θ , ML-weight vector ϑ
andMI-set T are given. S is the decision variable. TheMI-agents are
depicted by red spots in Fig. 1. Max degree algorithms are always
proposed to solve similar problems. In order to minimize the
tracking error f∞(S), max degree algorithm and greedy algorithm
are used to solve S. Fig. 2 demonstrates that when the number of
the GI-agents is varying from 1 to 50, the corresponding tracking
errors under the solutions of (6) solved by two algorithms are
decreasing. This result manifests the effectiveness of theoretical
results in Theorems 2 and 4. We also observe from Fig. 2 that using
greedy algorithm results in lower tracking error than employing
max degree algorithm. This means that greedy algorithm is more
efficient than max degree algorithm for this network.
Fig. 1. The 100-nodes random network with 10 MI-agents (red spots). (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Fig. 2. Comparison of tracking errors by using two algorithms: Max degree
algorithm and Greedy algorithm.

Example 2. Assume that MI-set T , GI-set S and DL-weight vector
ϑ are given. GL-weight vector θ is the decision variable. We solve
convex programming problem (11) to obtain the lower bound
of the optimal solution to (9). And by solving (10), we compute
the corresponding tracking error f1(θ̃S) as an upper bound of
the optimal solution to (9). The results are shown in Fig. 3. We
can observe that the upper bound and lower bound of f1(θ̃S) are
decreasing when π varies from 1 to 50, which illustrates the
effectiveness of theoretical results in Theorem 5.

6. Conclusions

Differences of interests produce conflicts. For the multi-agent
system, agents with different interests may be opposite. In this pa-
per, we consider the topology selection problem of themulti-agent
system with two opposite leaders. We defined the tracking error
for the system. It has been proved that the tracking error is de-
creasing with the increasing of GI-agents or the increasing of the
GL-weights. For the case that the GI-agents were not preset, we
formulated two combinatorial programming problems. One was
to select up to k GI-agents to minimize tracking error. The other
was to select minimum-size GI-set under an upper bound con-
straint of tracking error. Because both of two problems are NP-
hard, it is difficult to solve them when the system contains large
numbers of followers. Consequently, we proposed two algorithms
to obtain their suboptimal solutions respectively. For the case that
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Fig. 3. The upper and the lower bounds of f1(θ̃S).

GI-agentswere fixed,we investigated the problemof designingGL-
weights tominimize the tracking error. Three convex optimization
problems were formulated to evaluate the upper and the lower
bounds of the minimal tracking error. Finally, two numerical ex-
amples were given to illustrate the effectiveness of the established
results. Futureworkmay consider this problem forMASs under the
changing MI-sets or with measurement noises, etc.
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