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a b s t r a c t

It is typical in containment control problems to assume that there is no conflict of interest among leaders.
In this paper, we consider the situation where there is conflict between leaders; namely, the leaders
compete to attract followers. The strategies of each leader are defined by choosing at most k followers
to propagate their information. Then, we formulate a standard two-player zero-sum game by using graph
theory and matrix theory. We further prove that each player will choose exactly k followers when the
game achieves a Nash equilibrium. It is noteworthy that the interaction graph here is generated from the
conflict between leaders and then the Nash equilibrium point of the game corresponds to the equilibrium
topology. For the case of choosing one follower, a necessary and sufficient condition for an interaction
graph to be the equilibrium topology is derived.Moreover,we canobtain the equilibrium topologydirectly
if followers’ interaction graph is a circulant graph or a graph with a center vertex. Simulation examples
are provided to validate the effectiveness of the theoretical results.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

In recent years, distributed control of multi-agent systems
(MASs) has attracted intensive attention in the scientific commu-
nity. This is due to its diverse applications in many areas, such as
formation control in unmanned aerial vehicles (Gu, 2008), flock-
ing in biology (Jing, Zheng, & Wang, 2014), rendezvous problem of
mobile autonomous robots (Xiao, Wang, & Chen, 2012), and so on.

Consensus seeking is a basic problem of MASs which aims to
design appropriate distributed protocols or algorithms such that
a group of agents can converge to the same state. There have
been extensive studies and results under various circumstances,
to name but a few, consensus problems in networks of dynamic
agents with switching topology (Olfati-Saber & Murray, 2004),
second-order consensus (Xie & Wang, 2007), consensus of
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heterogeneous MASs (Zheng, Zhu, & Wang, 2011), consensus of
switched MASs (Zheng & Wang, 2016) and finite-time consensus
(Wang & Xiao, 2010; Zheng &Wang, 2012), etc.

Leaders are ubiquitous in nature. Therefore, researchers have
paid great attention to problems for MASs with leaders, such as
leader-following consensus (Ma, Zheng, &Wang, 2015; Ni & Cheng,
2010), containment control (Ji, Ferrari-Trecate, Egerstedt, & Buffa,
2008; Liu, Xie, & Wang, 2012; Notarstefano, Egerstedt, & Haque,
2011; Zheng & Wang, 2014) and controllability analysis (Guan, Ji,
Zhang, & Wang, 2013; Rahmani, Ji, Mesbahi, & Egerstedt, 2009;
Wang, Jiang, Xie, & Ji, 2009). Containment control of MASs means
that the states of the followers will converge to the convex hull
spanned by the leaders. Ji et al. (2008) and Notarstefano et al.
(2011) investigated containment control with fixed undirected
topology and switching topologies, respectively. Liu et al. (2012)
obtained some necessary and sufficient conditions for solving
containment control of MASs with directed networks.

In the multi-agent system, each agent is an individual who
exchanges informationwith its neighbors and thenmakes decision
independently. If we further define the utility of agents and
assume that individuals adjust their behaviors by promoting
utility, game theory can be used to study distributed multi-agent
coordination. Bauso, Giarré, and Pesenti (2006) proposed a game
theoretic interpretation of consensus problems as mechanism
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design problems. Gu (2008) investigated formation control via
linear–quadratic Nash differential game. Moreover, cooperative
game theory is utilized to ensure team cooperation by considering
a combination of individual cost as the team cost in Semsar-
Kazerooni and Khorasani (2009). For leader-following MASs, the
notion of graphical game was formulated in Vamvoudakis, Lewis,
and Hudas (2012). Gharesifard and Cortés (2013) considered the
distributed convergence to Nash equilibrium for two networks
engaged in a strategic scenario.

Different from the above results, we consider the conflict
between leaders for multi-agent systems and formulate a type of
game. For multi-agent systems with two leaders, if the followers’
interaction subgraph is undirected and connected, then each
follower will converge to a convex combination of two leaders’
states (Liu et al., 2012). Based on this result, we define the average
distance to the followers as the payoff function of each leader.
Every leader’s strategy is to select at most k (≥ 1) followers
to connect with. Then, we formulate a noncooperative game in
which each leader independently chooses its strategy to minimize
payoff function. Noticing that two leaders’ decisionswill determine
the interaction topologies of the system, the Nash equilibrium
point corresponds to the equilibrium topology of the system.
The main contribution of this paper is threefold. Firstly, we
consider the conflict between leaders and formulate it as a zero-
sum game. Secondly, we prove that each leader will choose as
many as possible followers to minimize its payoff. Finally, for the
case selecting one follower, we derive a necessary and sufficient
condition for an interaction graph to be the equilibrium topology.
Moreover, if followers’ interaction graph is a circulant graph or a
graphwith a center vertex, then the system’s equilibrium topology
is obtained.

This paper is organized as follows. In Section 2, we introduce
some notions and propose our problem. In Section 3, we present
our main results and in Section 4, numerical simulations are
given to illustrate the effectiveness of the theoretical results. Some
conclusions are drawn in Section 5.

Notation: Throughout this paper, the following notations will
be used: Rn×m is the set of n × m real matrices. Denote by 1n
(or 0n) the column vector with all entries equal to one (or all
zeros). In is an n-dimensional identity matrix. For a column vector
b = [b1, b2, . . . , bn]T , diag{b} is a diagonal matrix with bi on its
diagonal and ∥b∥1 =

n
i=1 |bi| is 1-norm of b. For a matrix A ∈

Rn×n, adjA and det A are the adjugate and the determinant of
A, respectively. Denote A(i1,i2,...,ik; j1,j2,...,jk) as the matrix obtained
by deleting rows i1, i2, . . . , ik and columns j1, j2, . . . , jk from A.
A[i1,i2,...,ik] is the k × k principal submatrix of A by keeping rows
and columns i1, i2, . . . , ik. In = {1, . . . , n} is an index set. |S| is
the cardinality of a set S. For two sets S1 and S2, denote S1 × S2
as the Cartesian product and S1 \ S2 = S1 − S2. Let ei denote the
canonical vector with a 1 in the ith entry and 0’s elsewhere. The
notation A ⇔ Bmeans that A holds true if and only if B holds true.

2. Preliminaries

2.1. Graph theory

Let G = {V , E} be an undirected graph consisting of a vertex
set V = {1, 2, . . . , n} and an edge set E = {(i, j) ∈ V × V }.
A graph GW = {W , E(W )} is called an induced subgraph of G if
it is obtained by deleting some vertexes from V , along with any
edges that contain a deleted vertex. The adjacency matrix A of G
is a symmetric matrix such that for all i ∈ V , aii = 0 and for all
i ≠ j, (i, j) ∈ E ⇔ aij = aji = 1, while aij = 0 otherwise.
For (i, j) ∈ V × V , if G is a connected graph, then there exists
an integer z ≥ 1 such that the ijth entry of Az is positive. The
neighbor set of the vertex i is Ni = {j : (i, j) ∈ E}. The degree
matrix D = diag{d1, d2, . . . , dn} ∈ Rn×n is a diagonal matrix with
di =


j∈Ni

aij. The Laplacianmatrix L = D−A. A vertex i is a center
vertex if it connects all the other vertexes, i.e., Ni = V \ {i}. A
graph is circulant when the adjacency matrix is a circulant matrix.
A connected graph is called a circle if every vertex has exactly two
neighbors. A tree is a connected graph where all its subgraphs are
not circles. For a connected graph G, a subgraph GS = (V , ES) is
called a spanning tree of G if ES ⊆ E and GS is a tree.

Lemma 1 (Godsil & Royal, 2001). For a graph G, det L = 0 and
adjL = τ(G)1n1T

n , where τ(G) is the number of spanning trees in the
graph G.

Lemma 2. Suppose that graph G is connected. Then, every principal
submatrix of L is positive definite and the inverse matrix of it is a
nonnegative matrix.

Proof. Let W = {i1, i2, . . . , ik} be a subset of V . GW = {W , E(W )}
is the induced subgraph of G where 1 ≤ i1 < i2 < · · · < ik ≤ n.
Let LW and AW be the Laplacian matrix and the adjacency matrix
of GW , respectively. Denoting θim = −


j∉W limj,m = 1, 2, . . . , k,

we have AW = A[i1,i2,...,ik] and L[i1,i2,...,ik] = LW + diag{θi1 , . . . , θik}.
Therefore, by Lemma4 inNi andCheng (2010), L[i1,i2,...,ik] is positive
definite. Moreover, we have

L[i1,i2,...,ik] = diag{li1 i1 , . . . , lik ik} − AW = η


In −


∆ +

AW

η


,

where η = max1≤m≤k lim im and ∆ =
1
η
diag{η − li1i1 , . . . , η − likik}.

It is easy to find that ∆ +
AW
η

is a nonnegative matrix with
spectral radius ρ < 1. Hence, it follows that L−1

[i1,i2,...,ik]
=

1
η


∞

k=0
∆ +

AW
η

k
. Consequently, we have L−1

[i1,i2,...,ik]
is a nonnegative

matrix. �

2.2. Two-player zero-sum games

Consider a zero-sum game of two players, to be referred to as
player P1 and player P2, inwhich each player has finite alternatives.
Denote the set of strategies of P1 and P2 as S1 = {s1, s2, . . . , sm} and
S2 = {ŝ1, ŝ2, . . . , ŝn}, respectively. A strategy pair (si, ŝj) ∈ S1 × S2
means that P1 chooses the strategy si and P2 chooses the strategy ŝj.
For (si, ŝj), the payoff of P1 is−aij while that of P2 is aij. A = {aij}m×n
is the outcome of the game. This type of two-player zero-sumgame
is called amatrix game A. In amatrix game A, P1 wants tominimize
the outcome of the game, while P2 seeks to maximize it, by
independent decisions. Under such an incentive, P1 is forced to pick
its security strategy si∗ satisfying V (A) , maxj ai∗j = mini maxj
aij. Similarly, P2 will choose a security strategy ŝj∗ determined by
V (A) , mini aij∗ = maxj mini aij. Denote S∗

1 and S∗

2 as the set of the
security strategies of P1 and P2, respectively.

Definition 3 (Basar & Olsder, 1995). For a given (m × n) matrix
game A = {aij}, if a strategy pair (si∗ , ŝj∗) that satisfies ai∗j ≤ ai∗j∗ ≤

aij∗ for all i ∈ Im and j ∈ In, then it is said that the matrix game
has a Nash equilibrium point in pure strategies. The corresponding
outcome ai∗j∗ of the game is called the Nash equilibrium outcome
denoted by V (A).

Lemma 4 (Basar & Olsder, 1995). Let A = {aij} denote an (m × n)
matrix game with V (A) = V (A). Then, (1) A has a (pure) Nash equi-
librium point, (2) the strategy pair (si, ŝj) is a Nash equilibrium point
for A if and only if si ∈ S∗

1 and ŝj ∈ S∗

2 , (3) V (A) is uniquely given by
V (A) = V (A).
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Fig. 1. An interaction graph G̃(si, sj) determined by the strategy pair (si, sj).

2.3. Problem statement

Consider a multi-agent system consisting of two leaders and
n followers. Let the two leaders be l0 and l1. Denote the set
of followers as V = {1, . . . , n}. The interaction of the followers
is described by an undirected graph GF = (V , E). The following
assumption is given throughout this paper.

Assumption 1 (Connectivity). GF is connected.

The leaders l0 and l1 keep static states y0, y1 ∈ R (y0 ≠ y1),
respectively. The state of follower i ∈ V is xi(t) ∈ R. The dynamics
of xi(t) is described as

ẋi =

n
j∈1

aij(xj − xi) + bi(y0 − xi) + di(y1 − xi)

where

bi =


1, i is connected to l0
0, otherwise

and

di =


1, i is connected to l1
0, otherwise.

Let b = [b1, . . . , bn]T , d = [d1, . . . , dn]T and Xf (t) = [x1(t),
. . . , xn(t)]T . Then, it follows that

Ẋf (t) = −(L + diag{b + d})Xf (t) + by0 + dy1, (1)

where L is the Laplacian matrix of GF . From Liu et al. (2012), we
have

Lemma 5. Suppose that each leader connects to at least one agent in
GF (i.e., b ≠ 0n and d ≠ 0n) and Assumption 1 holds. Then, Xf (t) will
converge to limt→∞ Xf (t) = αy0 + βy1 where

α = [α1, α2, . . . , αn]
T

= (L + diag{b + d})−1b,

β = [β1, β2, . . . , βn]
T

= (L + diag{b + d})−1d,
(2)

αi + βi = 1, αi > 0 and βi > 0 for all i ∈ V .

Consider the following game regardingmulti-agent system (1) (see
Fig. 1):

Players Let l0 and l1 be two players.
Strategies Each player can select at most k (1 ≤ k ≤ n) followers

from V to connect with, i.e., the set of strategies of each
player is S = {sj = (a1, a2, . . . , an)T | ai ∈ {0, 1},n

i=1 ai ≤ k}. Obviously, S is a finite set and |S| =k
m=1 C

m
n , N . Then, let S = {s1, s2, . . . , sN}.
Payoff The goal of each player is to steer all followers to move
towards itself as closely as possible. As a result, the payoff
of each leader can be described as the average distance
between the followers and itself. Then, player lr(r ∈

{0, 1}) wants to choose a strategy satisfying minsi∈S

Ur(si, sj) , 1
n

n
m=1 | limt→∞ xm(t) − yr |.

Remark 1. This game might be used to illuminate some phenom-
ena about social networks which may be modeled by graph the-
ory (Altafini & Lini, 2015; Hegselmann & Krause, 2002). Consider
two companies sell similar products in a market. These compa-
nies are the leaders and the followers are potential customers. The
companies can employ some ‘‘spokesmen’’ from these followers to
promote their product. Then, in order to sell more products, each
companywants to choose those followerswho aremore influential
than their peers.

3. Main results

3.1. Problem reformulation

In this subsection, we will reformulate the above problem as a
zero-sum game.

According to Lemma 5, let

uij =

n
m=1

βm

n
=

1
n
1T
n(L + diag{si + sj})−1sj. (3)

It follows that

U0(si, sj) = |y1 − y0|uij, U1(si, sj) = |y1 − y0|(1 − uij) (4)

and U0(si, sj) + U1(si, sj) = |y1 − y0| for all (si, sj) ∈ S × S.
Since the two leaders’ states are static, |y1 − y0| is constant,
which produces a conflict between two leaders: the gain of l1
is exactly equal to the loss of l0. There is no way a mutually
beneficial coalition can be built and consequently the game is
noncooperative. Moreover, considering minsi∈S U0(si, sj) = |y1 −

y0|minsi∈S uij, and minsj∈S U1(si, sj) = |y1 − y0|

1 − maxsj∈S uij


,

this game can be reformulated as a two-player zero-sum game
where l0 attempts to minimize uij while l1 intends to maximize it.

Definition 6. For a connected graph GF , there are two players,
l0 and l1. The player l0 wants to pick a strategy si ∈ S satisfying
minsi∈S maxsj∈S uij, and the player l1 seeks to choose a strategy
sj ∈ S such that maxsj∈S minsi∈S uij. This matrix game U is denoted
as Gk(GF ), where U = {uij}N×N , si, sj ∈ S.

Remark 2. It should be mentioned that the game is formulated as
a zero-sum game since there are only two players. For multi-agent
systems with three leaders, the sum of the leaders’ payoffs may be
variable and then the gamemay be cooperative and non-zero-sum.

For system (1), a strategy pair (si, sj) corresponds an interaction
graph G̃(si, sj) which consists of follower interaction graph GF , two
leaders l0 and l1 and several directed edges from the leaders to the
followers (see Fig. 1).

Definition 7. For Gk(GF ), if a strategy pair (si∗ , sj∗) is a Nash
equilibrium point, i.e., ui∗j ≤ ui∗j∗ ≤ uij∗ , i, j ∈ V . It is said that
G̃(si∗ , sj∗) is the equilibrium topology of multi-agent system (1).

Property 8. For Gk(GF ), one has

(1) if the two players l0 and l1 choose the same strategy, then all
followers converge to y0+y1

2 ;
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(2) for all (si, sj) ∈ S×S, uij < (= or >) 1
2 if and only if U0(si, sj) <

(= or >) U1(si, sj). Moreover, U + UT
= 1T

N1N , V (U) ≥
1
2 and

V (U) ≤
1
2 ;

(3) if there is a strategy si∗ such that ui∗j ≤
1
2 for all j ∈ V , then

V (U) = V (U) =
1
2 .

Proof. The proof is straightforward from the definition of U ,
Eq. (4) and Lemma 5. �

Let S∗

0 and S∗

1 be the set of security strategies of l0 and l1,
respectively. Then, one can obtain the following results.

Theorem 9. For Gk(GF ), one has S∗

0 = S∗

1 = S∗. Moreover, suppose
V (U) =

1
2 , then (si, sj) is a Nash equilibrium point if and only if

(si, sj) ∈ S∗
× S∗.

Proof. If si∗ ∈ S∗

0 , maxj ui∗j = V (U) ≤ maxj uij. On the other hand,
by Property 8, we have maxj uij = maxj(1 − uji) = 1 − minj uji

for all i ∈ IN . Therefore, V (U) = minj uji∗ ≥ minj uji. That is
to say si∗ ∈ S∗

1 and V (U) = 1 − V (U). Similarly, if si∗ ∈ S∗

1 ,
we have si∗ ∈ S∗

0 . Therefore, S
∗

0 = S∗

1 = S∗. If V (U) =
1
2 , then

V (U) =
1
2 . By Lemma 4, (si, sj) is a Nash equilibria point if and

only if (si, sj) ∈ S∗
× S∗. �

Remark 3. By Theorem 9, when (si1 , sj1) and (si2 , sj2) are Nash
equilibrium points, (si, sj) is a Nash equilibrium for any i, j ∈

{i1, i2, j1, j2}. Hence, in the case of multiple Nash equilibrium
points, each player does not need to know which security strategy
its opponent will use in the game, since all such strategies are
in equilibrium and they yield the same value. Therefore, it is not
necessary to solve all Nash equilibrium points. As a result, the aim
of each player is to seek a strategy si∗ satisfying ui∗j ≤

1
2 for all

sj ∈ S.

Theorem 10. Suppose that a strategy pair is a Nash equilibrium.
Then, each strategy of it contains exactly k followers.
Proof. We reason by contradiction. Suppose that (si∗ , sj∗) is a Nash
equilibrium where si∗ contains r follower f1, f2, . . . , fr ∈ V , r < k.
It follows that si∗ = ef1 + ef2 + · · · + efr and ui∗j∗ = minsi∈S uij∗ .
Let si′ = si∗ + efr+1 where fr+1 ∈ V \ {f1, f2, . . . , fr}. According
to (3), ui∗j∗ =

1
n1

T
nL

−1
1 sj∗ and ui′j∗ =

1
n1

T
n(L1 + diag{efr+1})

−1sj∗
where L1 = L+ diag{si∗ + sj∗}. Considering (L1 + diag{efr+1})

−1
=

L−1
1 −

L−1
1 efr+1 e

T
fr+1

L−1
1

1+eTfr+1
L−1
1 efr+1

, one has

ui∗j∗ − ui′j∗ =
1
n
1T
n

L−1
1 efr+1e

T
fr+1

L−1
1

1 + eTfr+1
L−1
1 efr+1

sj∗ . (5)

Denote η be the maximum number among the diagonal entries
of L1. Similar to the proof of Lemma 2, we can obtain L−1

1 =
1
η

∞

z=0


∆ +

A
η

z
where A is the adjacency matrix of Gf and ∆ is

negative. For every (n1, n2) ∈ V × V , since Gf is connected, there
exists z ≥ 1 such that the (n1, n2) entry of Az is positive. Therefore,
L−1
1 is a positive matrix, i.e., each entry of L−1

1 is positive. Hence,
it follows from (5) that ui∗j∗ > ui′j∗ which conflicts with the fact
that ui∗j∗ = minsi∈S uij∗ . Therefore, si∗ contains k followers. By
Property 8, we have ui∗j∗ = 1 − uj∗ i∗ . Likewise, we can prove sj∗
contains k followers. �

Remark 4. Theorem 10 implies that each leader will choose as
many as possible followers to minimize its own payoff. As a result,
in order to obtain the equilibrium topology of the game, one
only needs to compute all uij satisfying 1T

nsi = 1T
nsj = k instead of

computing the matrix U .

Remark 5. The results in this subsection can be extended to the
case where GF is a weighted undirected graph.
3.2. Special case: k = 1

In this subsection, we investigate game G1(GF ). Since both
leaders connectwith one follower, they have n alternatives, i.e., the
strategy set can be denoted as S = {e1, e2, . . . , en}. In order to
obtain the equilibrium topology, it is necessary to know whether
the inequality uij ≤

1
2 holds or not.

Lemma 11. For game G1(GF ), uij < (=or >) 1
2 if and only if

∥(L + diag{ei})−1ej∥1 < (=or >)∥(L + diag{ej})−1ei∥1.

Proof. By Property 8, we have uij < 1
2 ⇔ U0(si, sj) < U1(si, sj).

Combining (2) and (4), we get

U0(si, sj) < U1(si, sj) ⇔

1T
n(L + diag{ei + ej})−1ej < 1T

n(L + diag{ei + ej})−1ei.

It follows from (L + diag{ei + ej})−1
=

adj(L+diag{ei+ej})
det(L+diag{ei+ej})

that

1T
n(L + diag{ei + ej})−1ej < 1T

n(L + diag{ei + ej})−1ei ⇔

1T
nadj(L + diag{ei + ej})ej < 1T

nadj(L + diag{ei + ej})ei.

Noticing that

adj(L + diag{ei + ej})ej = adj(L + diag{ei})ej, (6)

one has

1T
nadj(L + diag{ei + ej})ej < 1T

nadj(L + diag{ei + ej})ei
⇔ 1T

nadj(L + diag{ei})ej < 1T
nadj(L + diag{ej})ei.

By using Laplace expansion along column i, it follows from
Lemma 1 that

det(L + diag{ei}) = det L + eTi adjL ei = τ(GF ). (7)

Likewise, we also have det(L + diag{ej}) = τ(GF ). Thus,

1T
nadj(L + diag{ei})ej < 1T

nadj(L + diag{ej})ei ⇔

1T
n(L + diag{ei})−1ej < 1T

n(L + diag{ej})−1ei.

Denote Li =


1 −eTi

−ei L + diag{ei}


. Due to GF being connected, Li is

also the Laplacian matrix of a connected graph with an additional
vertex 0 and an edge (0, i) to GF . Therefore, by Lemma 2, (L +

diag{ei})−1 is a nonnegative matrix. Likewise, (L + diag{ej})−1 is
also nonnegative. Then, we get 1T

n(L + diag{ei})−1ej = ∥(L +

diag{ei})−1ej∥1 and 1T
n(L + diag{ej})−1ei = ∥(L + diag{ej})−1ei∥1.

Thus,

uij <
1
2

⇔ ∥(L + diag{ei})−1ej∥1 < ∥(L + diag{ej})−1ei∥1.

Similarly, we can prove the case of ‘‘=’’ and ‘‘>’’. �

Let

Se = {ei∗ |∥(L + diag{ei∗})−1ek∥1 ≤ ∥(L + diag{ek})−1ei∗∥1,

ei∗ ∈ S, ek ∈ S}.

By Lemma 11, we can derive a necessary and sufficient condition
for an interaction graph G̃(ei, ej) to be the equilibrium topology.

Theorem 12. For game G1(GF ), G̃(ei∗ , ej∗) is the equilibrium topol-
ogy if and only if ei∗ ∈ Se and ej∗ ∈ Se.
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Proof. Because of Definition 7, it suffices to prove that (ei∗ , ej∗) is a
Nash equilibriumpoint if and only if ei∗ ∈ Se and ej∗ ∈ Se. It follows
from Lemma 11 that

ei∗ ∈ Se ⇔ ui∗k ≤
1
2
, k ∈ V . (8)

Sufficiency is proved as follows. Due to (8), we havemaxk ui∗k =

maxk uj∗k =
1
2 . Then, it follows from Property 8 that V (U) =

1
2 and

moreover, ei∗ and ej∗ are security strategies. By Theorem9,wehave
(ei∗ , ej∗) is a Nash equilibrium point.

Necessity is proved as follows. Firstly, we will prove ui∗j∗ =
1
2

by contradiction. Since (ei∗ , ej∗) is a Nash equilibrium point, one
has ui∗j ≤ ui∗j∗ ≤ uij∗ for all i, j ∈ V . Suppose ui∗j∗ > 1

2 . Recalling
uj∗j∗ =

1
2 , it follows that ui∗j∗ > uj∗j∗ which conflicts with the fact

that ui∗j∗ ≤ uij∗ . Supposing ui∗j∗ < 1
2 , we have ui∗ i∗ > uij∗ which

has a conflictwith ui∗j ≤ ui∗j∗ . Therefore, we have proved ui∗j∗ =
1
2 .

Then, it follows that ui∗j ≤
1
2 ≤ uij∗ for all i, j ∈ V . According to (8),

we have ei∗ ∈ Se. Since uij∗ = 1 − uj∗ i, we obtain uj∗ i ≤
1
2 . Hence,

ej∗ ∈ Se. �

Property 13. For game G1(GF ), one has limt→∞(xi(t) − y0) =

limt→∞(y1 − xj(t)) under every strategy pair (ei, ej) ∈ S × S.

Proof. For the case of i = j, it follows from Property 8 that
limt→∞(xi(t) − y0) = limt→∞(y1 − xj(t)) =

y1−y0
2 .

For the case of i ≠ j, one can renumber vertexes of GF by
exchanging the number of 1 and i and that of 2 and j, i.e., 1 ↔

i, 2 ↔ j. Then, it follows that the new Laplacian matrix L′
= PLPT

where P = [ei, ej, e3, . . . ei−1, e1, ei+1, . . . , ej−1, e2, ej+1, . . . , en]
is orthogonal. It is easy to prove that 1T

nadj(L + diag{ei})ej =

1T
nadj(L

′
+ diag{e1})e2 and 1T

nadj(L + diag{ej})ei = 1T
nadj(L

′
+

diag{e2})e1. Consequently, it suffices to prove the case of i = 1
and j = 2.

Let L̃1 = L + diag{e1} and L̃2 = L + diag{e2}, it follows that
L̃1 = L̃2 + diag{1, −1, 0, . . . , 0}. Denote L̃−1

1 = (p1, p2, . . . , pn)

and L̃−1
2 = (r1, r2, . . . , rn) where pi, ri are n-dimension vectors.

Thus, it is easy to show that L̃1L̃−1
2 = In + (r1, −r2, 0n, . . . , 0n)

T ,
L̃2L̃−1

1 = (L̃1L̃−1
2 )−1

= In + (−p1, p2, 0n, . . . , 0n)
T , and p1 = r2 =

1n. Consequently, L̃1L̃−1
2 and L̃2L̃−1

1 have eigenvaluesλ1, λ2, 1, . . . , 1
and λ−1

1 , λ−1
2 , 1, . . . , 1, respectively. Noticing from (7) that λ1λ2 =

|L̃1L̃−1
2 | = |L̃1| |L̃2|−1

= 1, we have λ2 = λ−1
1 . Therefore, the

eigenvalues of L̃2L̃−1
1 are same as those of L̃1L̃−1

2 . Let p2 = (w1,

w2, . . . , wn)
T and r1 = (z1, z2, .., zn), we obtain |λIn − L̃2L̃−1

1 | =

(λ−1)n−2(λ2
−(w2+1)λ+w1) and |λIn−L̃1L̃−1

2 | = (λ−1)n−2(λ2
−

(z1+1)λ+z2). Thus, one hasw1 = z2 = 1 andw2 = z1 = λ1+λ−1
1 .

By Lemma 5, together with (6) and (7), we get

lim
t→∞

Xf (t) = (L + diag{e1 + e2})−1(e1, e2)(y0, y1)T

= µ

L̃−1
2 e1, L̃−1

1 e2

(y0, y1)T = µ[r1, p2](y0, y1)T ,

where µ =
τ(GF )

|L+diag{e1+e2}|
. It follows that limt→∞ x1(t) = µy0 +

µ(λ1 +λ−1
1 )y1 and limt→∞ x2(t) = µ(λ1 +λ−1

1 )y0 +µy1. Because
µ+µ(λ1+λ−1

1 ) = 1, we have limt→∞(xi(t)−y0) = limt→∞(y1−

xj(t)). �

3.3. Graphical results

In this subsection, we will deduce some graphical results for
G1(GF ).
Lemma 14. Suppose that Assumption 1 holds. Then, one has

1T
nadj(L + diag{ei})ej = nτ(GF ) +


k≠i,k∈V

(−1)k+jMjk (9)

for i, j ∈ V and i ≠ j, where Mjk = det L(i,j; i,k).

Proof. Firstly, we will prove the case of i < j. Denote L̃ = L +

diag{ei} and ∆i
= diag{ei}, we have

det L̃(j;k) = det

L(j;k) + ∆i

(j;k)


= det L(j;k) + Mjk.

Therefore, it follows from (−1)k+j det L(j;k) = τ(GF ) that

1T
nadj(L + diag{ei})ej = nτ(GF ) +


k≠i,k∈V

(−1)k+jMjk.

Similarly, we can prove the case of i > j. �

Denoting by Ni the neighbor set of follower i in GF , we have

Theorem 15. For two followers i, j ∈ V , if Ni \ {j} ⊇ Nj \ {i}, then
uij ≤

1
2 and the equality holds if and only if Ni \ {j} = Nj \ {i}.

Proof. Similar to the proof of Property 13, it suffices to prove the
result in the case of i = 1 and j = 2.

It follows from Lemmas 11 and 14 that u12 ≤
1
2 if and only if

detM(21)
−detM(12)

≥ 0. Since (9),wehavedetM(21)
−detM(12)

=0 1Tn−2
r Q

 where Q = L[3,4,...,n] and r = [l31 − l32, l41 − l42, . . . ,

ln1 − ln2]T . If N1 \ {2} = N2 \ {1}, then lj1 − lj2 = 0, j ∈

{3, 4, . . . , n}. It follows that detM(21)
− detM(12)

= 0. Hence
u12 =

1
2 . If N1 \ {2} ⊃ N2 \ {1}, denote N2 \ {1} = {i1, i2,

. . . , ik} and N1 \ {2} = {i1, i2, . . . , ik, ik+1, . . . , ik+h}, then lj1 −

lj2 = 0 for j ∉ {1, 2, ik+1, . . . , ik+h} and lj1 − lj2 = −1 for
j ∈ {ik+1, . . . , ik+h}. Therefore, detM(21)

− detM(12)
=

k+h
m=k+1n

j=3(−1)j+imQ(im−2;j−2). It is easy to find that (−1)j+imQ(im−2;j−2)

is the (j − 2, im − 2)th entry of adjQ . By Lemma 2, we know that
Q is positive definite and Q−1 is a nonnegative matrix. Then, it
follows that adjQ is an invertible nonnegative matrix. Hence, for
all j ∈ {3, 4, . . . , n} and m ∈ {k + 1, k + 2, . . . , k + h}, we have
(−1)j+imQ(im−2;j−2) ≥ 0 and the inequality holds at least with one
j ∈ {3, 4, . . . , n} which implies that detM(21)

− detM(12) > 0.
Consequently, we can make a conclusion that u12 < 1

2 . �

Theorem 16. For game G1(GF ),

(1) if GF is a circulant graph, then G̃(ei, ej) is the equilibrium topology
for every (ei, ej) ∈ S × S;

(2) if GF has a center vertex ic , then G̃(eic , eic ) is the equilibrium
topology.

Proof. Firstly, we will prove (1). If GF is a circulant graph, adjA
is a circulant matrix. It follows that L is also a circulant matrix.
Without loss of generality, we assume that i < j. Denote L̃i =

L + diag{ei} and L̃j = L + diag{ej}. Then for a permutation matrix

P =


Ii−1 0 0
0 0 In+1−j
0 Ij−i 0


,we have L̃i = PL̃jPT . Noticing that P is

orthogonal, we obtain that 1T
n(L̃i)

−1ej = 1T
nP(L̃j)−1PTej. Thus, it

follows from PTej = ei and 1T
nP = 1T

n that 1T
n(L̃i)

−1ej = 1T
n(L̃j)

−1ei.
Hence, by Lemma 11, we get uij =

1
2 for all i, j ∈ V , i.e., U =

1
21n1T

n .
Therefore, we can deduce that the strategy set is S∗

= S. In another
words, the graph G̃(ei, ej) is the equilibrium topology for every
(ei, ej) ∈ S × S.

Next, we will give the proof of (2). For simplicity, we may take
ic = n. Owing toNn = {1, 2, . . . , n−1}, one hasNj \{n} ⊆ Nn \{j}
for all j ∈ {1, 2, . . . , n − 1}. By Theorem 15, we have unj ≤

1
2
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Fig. 2. The interaction graph.
Fig. 3. The followers’ states and average distances under two strategy pairs for the game G1(GF ).
Fig. 4. The followers’ states and average distances under three strategy pairs for the game G2(GF ).
for all j ∈ {1, 2, . . . , n − 1}. Hence, V (U) = V (U) =
1
2 and

en ∈ S∗. By Theorem 9, it follows that the strategy pair (en, en)
is a Nash equilibrium point. Thus, we can conclude that G̃(en, en)
is the equilibrium topology. �

Remark 6. The results of Theorem 16may be used to shed light on
some phenomena in reality. Firstly, if the interaction graph of the
followers is a circulant graph, then it implies that every follower’s
influence is equal. Consequently, everyone is the optimal strategy
to both two leaders and every strategy pair is a Nash equilibrium
strategy pair. Secondly, for a ‘center’ followerwho can influence all
the others in GF , its influence power is biggest among all followers.
As a result, both two leaders will choose connecting with it to
minimize their payoff. As a result, the corresponding strategy pair
is a Nash equilibrium.

4. Simulations

Suppose that there are 6 followers labeled as 1–6 and two
leaders labeled as l0 and l1. The followers’ interaction graph GF
is a circulant graph depicted in Fig. 2(a). Let the leaders’ initial
states be −1 and 1, respectively. Let d0(t) =
1
6

6
i=1 |xi + 1| and

d1(t) =
1
6

6
i=1 |xi − 1| be the average distances function of l0 and

l1, respectively. Obviously, we have limt→∞ dr(t) = Ur , r = 0, 1.

Example 1. Consider game G1(GF ). It is easy to obtain that the
outcome matrix is U =

1
2161T

6 , which implies that all 36 strategy
pairs are Nash equilibrium points. This result illustrates the
effectiveness of theoretical results in Theorem 16. Consider two
strategy pairs (e1, e2) and (e1, e1). The corresponded interaction
graphs are described in Fig. 2(b) and (c), respectively. Fig. 3(a) and
(b) show the followers’ states, d0(t) and d1(t) under those two
strategy pairs, respectively, where d0(t) and d1(t) are depicted by
dashed lines in Fig. 3. Since (e1, e2) and (e1, e1) are Nash strategy
pairs, limt→∞ d0(t) = limt→∞ d1(t) = 1. For (e1, e1), we can find
that all followers converge to the middle point of two leaders’
initial states, which is consistent with the result of Property 8.

Example 2. Consider game G2(GF ). Then, it follows from N =2
m=1 C

m
6 = 21 that the outcomematrixU is 21×21-dimensional.

By computing U , we can obtain V (U) =
1
2 and the set of secu-

rity strategies S∗
= {e1 + e4, e2 + e5, e3 + e6}. It is shown that ev-

ery security strategy has exactly 2 followers which is consistent
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with the result of Theorem 10. By Theorem 9, we have a strategy
pair (si, sj) is a Nash equilibrium if and only if (si, sj) ∈ S∗

× S∗.
Consider three strategy pairs (s1, s2) = (e3 + e6, e2 + e5), (s1,
s3) = (e3 + e6, e1 + e2), and (s1, s4) = (e3 + e6, e2). The corre-
sponded interaction graphs are described in Fig. 2(d), (e) and (f),
respectively. Fig. 4(a), (b) and (c) show the followers’ states, d0(t)
and d1(t) under those three strategy pairs, respectively. It is
easy to show that limt→∞ d0(t) = limt→∞ d1(t) = 1 since (s1, s2)
is a Nash equilibrium. One can observe that limt→∞ d0(t) <
limt→∞ d1(t) because s1 is a security strategy and s3 and s4 are not
security strategies.

5. Conclusions

In this paper, we made use of game theory to tackle the con-
tainment control problemwith conflicting leaders. We formulated
a standard two-player zero-sum game denoted as Gk(GF ). For
G1(GF ), we presented a necessary and sufficient condition for an
interaction graph to be the equilibrium topology. Moreover, if GF
was a circulant graph or a graphwith a center vertex, then the equi-
librium topology can be obtained directly. This work puts contain-
ment control in a game theoretical framework. This perspective
will foster the understanding of the interactions between leaders.
In the future, we may consider this game for the case where GF is
a directed graph or for MASs with constraints, such as MASs with
switching topologies, MASs under measurement noises, etc.
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