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ABSTRACT
This paper studies the consensus problem of the switched multi-agent system composed of
continuous-time and discrete-time subsystems. Communication among agents is modelled as a ran-
dom network where the existence of any information channel is probabilistic and independent of
other channels. Then, some necessary and sufficient conditions are presented for solving average
consensus of the switchedmulti-agent system under arbitrary switching. Furthermore, we show that
the average consensus in different sense (mean square, almost surely and in probability, respec-
tively) are equivalent. Finally, simulations are provided to illustrate the effectiveness of our theoretical
results.

1. Introduction

Over the past several years, multi-agent systems have
received considerable attention due to their potential
applications in many areas including flocking in biol-
ogy (Olfati-Saber, 2006), rendezvous problem of mobile
autonomous robots (Lin, Morse, & Anderson, 2006), atti-
tude alignment of satellite clusters (Lawton & Beard,
2002), etc. Therefore, the study of multi-agent coordina-
tion has been an important research field in the scientific
community and attracted multi-disciplinary researchers’
attention. Many results have been obtained about multi-
agent coordination, such as consensus (Olfati-Saber &
Murray, 2004; Ren & Beard, 2005; Wang & Xiao, 2010;
Zheng & Wang, 2012), containment control (Zheng
& Wang, 2014), controllability (Ji, Lin, & Yu, 2015),
rendezvous (Xiao, Wang, & Chen, 2012), and optimal
control (Ma, Zheng, & Wang, 2015).

Consensus plays an important role in cooperative con-
trol of multi-agent systems, which aims to design appro-
priate distributed protocol that enables all agents to con-
verge to a consistent state. As a fundamental research
topic, consensus problem has a long history in the field
of multi-agent systems. By graph theory, Jadbabaie, Lin,
and Morse (2003) first gave theoretical analysis for the
observed behaviour of the Vicsek model (Vicsek, Czirok,
Jacob, Cohen, & Schochet, 1995). Olfati-Saber and Mur-
ray (2004) investigated the consensus for networks of
dynamic agents with fixed and switching topologies.
Some relaxed conditions were obtained for multi-agent
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consensus in Ren and Beard (2005). Furthermore, the
second-order consensus protocols based on the abso-
lute and relative velocity information were studied in Xie
and Wang (2007) and Ren and Atkins (2007), respec-
tively. Zheng, Zhu, and Wang (2011) studied the consen-
sus of multi-agent systems with heterogeneous dynamics.
With rapid development of this issue in the past decade,
a tremendous amount of interesting results have been
obtained under various circumstances, such as discrete-
time consensus (Wang & Xiao, 2007), asynchronous con-
sensus (Xiao & Wang, 2008), leader-following consen-
sus (Hong, Hu, & Gao, 2006), group consensus (Zheng
& Wang, 2015), etc. It should be noted that afore-
mentioned works only analysed consensus problem of
multi-agent systems under fixed and switching topolo-
gies. However, the realistic communication among agents
may change with time due to link failures, packet drops,
node failure, etc. Such variations in the network can hap-
pen randomly, which attracts researchers’ great atten-
tion concerning random networks. The consensus prob-
lem of multi-agent systems under random networks
was considered in Hatano and Mesbahi (2005). Porfiri
and Stilwell (2007) extended the results in Hatano and
Mesbahi (2005), and presented more relaxable condi-
tions for solving consensus problem. Tahbaz-Salehi and
Jadbabaie (2008, 2010) gave some necessary and suffi-
cient conditions for almost sure convergence to consen-
sus. Other research topics of consensus with random net-
works have also been addressed (Kar &Moura, 2008; Lin,
Hou, Yan, & Yu, 2015).
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Switched system is a kind of system that consists of a
series of subsystems, and these subsystems obey a logical
rule to switch. For multi-agent systems, there have been
numerous results related to the consensus with switch-
ing topologies (Olfati-Saber & Murray, 2004; Wang &
Xiao, 2007; Zheng &Wang, 2012). By utilising graph the-
ory and Lyapunov theory, Olfati-Saber andMurray inves-
tigated the consensus of continuous-time multi-agent
systems with switching topologies in Olfati-Saber and
Murray (2004). Wang and Xiao investigated the consen-
sus of discrete-time multi-agent systems with switching
topologies in Wang and Xiao (2007). For such multi-
agent systems, it is composed of only continuous-time
subsystems or discrete-time subsystems. To the best
of our knowledge, the multi-agent system which has
been researched only consists of continuous-time sub-
systems or discrete-time subsystems. However, switching
behaviour exists not only in the topologies but also on the
dynamical behaviours of agents. In this paper, we con-
sidered a kind of switched multi-agent systems, in which
dynamics of every agent switches between continuous-
time dynamics and discrete-time dynamics. In practice,
many applications contain such switched systems. For
example, the system controlled either by a physically
implemented regulator or by a digitally implemented
one with a switching rule between them, i.e. the sys-
tem is composed of both continuous-time and discrete-
time subsystems (Zhai, Lin, Michel, & Yasuda, 2004).
Zheng andWang (2016) investigated the consensus prob-
lem of such switched multi-agent system which is com-
posed of continuous-time and discrete-time subsystems
under deterministic networks. By using graph theory and
Lyapunov theory, they prove that the consensus prob-
lem can be solved if the graph is undirected connected
or has a directed spanning tree. Moreover, containment
control of such switched multi-agent system with fixed
topology was investigated in Zhu, Zheng, and Wang
(2015). Inspired by above works, we further investigate
the consensus of the switched multi-agent system com-
posed of continuous-time and discrete-time subsystems
with random networks. Different from Zheng and Wang
(2016), we mainly explore that the uncertainty is embed-
ded in the network where the existence of any informa-
tion channel is probabilistic and independent of other
channels. Comparing with deterministic networks, it is
more practical significance to study the random net-
works. Due to the random nature of networks, we need
to solve the consensus problem under sense of proba-
bility. Owing to switching behaviour of dynamics and
the random variation of the network, it is difficult to
analyse the consensus by using classical methods. The
main contribution of this paper is threefold. First, by
using random graph theory and stochastic analysis tools,
we prove that the consensus in different sense (mean

square, almost surely and in probability, respectively) can
be achieved if and only if the expected graph is connected.
Second, the equivalent relation of the average consensus
of switched multi-agent system in different sense (mean
square, almost surely and in probability, respectively) is
established under the connected expected graph. Finally,
the per-step convergence factor in the mean square sense
is given.

The structure of this paper is given as follows. In
Section 2, we present some random graph theory con-
cepts and some definitions. In Section 3, we present the
main results. In Section 4, simulation examples are pro-
vided to illustrate the effectiveness of our theoretical
results. Finally, we give a short conclusion in Section 5.

Throughout this paper, the following notations will
be used: we denote by 1n the column vector of all ones.
R denotes the set of real number. Rn denotes the n
dimensional real vector space. ‖ · ‖ denotes the stan-
dard Euclidean norm. In is the n × n identity matrix. i.o.
stands for infinitely often. For a given vector or matrix
A, AT denotes its transpose. In = {1, 2, . . . , n} and d̄ =
maxi∈In{dii}. B = [bi j] ∈ Rn×n, B � 0 if all bij � 0, and
B > 0 if bij > 0. If B � 0, we say that B is a nonnegative
matrix, and if B > 0, we say that B is a positive matrix.

2. Preliminaries

2.1 RandomGraphs

In this subsection, we present some basic concepts of
algebraic graph theory which will be used in this paper.

The information flow among the nodes of an undi-
rected randomnetwork can be described by a sequence of
undirected random graphsGi. At each time i, the random
graph is Gi = (V ,Ei), where V = {vi, i = 1, . . . , n} is a
determinate vertex set and Ei = {ei j} ⊆ V × V is the set
of edges where eij denotes that agents i and j can com-
municate with each other. In the random graph on n ver-
tices, we assume that the existence of ei j ∈ Ei is deter-
mined randomly and independently of other edges with
probability pij � [0, 1] for i, j = 1,… , n, and j � i. In this
paper, we do not consider self-loops and multiple edges.
We define the edge probability matrix P = PT = [pi j] ∈
Rn×n, 0 � pij � 1 and pii = 0. The adjacency matrix
Ai = [ai j] ∈ Rn×n of Gi can be defined as

ai j =
{
1, with probability pi j,
0, with probability 1 − pi j,

(1)

where i � j, and aii = 0 for all i. The degree matrix
Di ∈ Rn×n is a diagonal matrix with dii = ∑

j∈Ni
ai j, and

maxi∈In{dii} is maximum degree of agent under any ran-
dom network. The Laplacian matrix is defined as Li =
[li j]n×n = Di − Ai. Due to the random nature of Ai,
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Laplacian matrix Li is also random. It is easy to see that
Li1 = 0 and 1TLi = 0. Let G, A, and L denote the sam-
ple spaces of all random graphs, all adjacency matrices,
and all Laplacian matrices, respectively.

The matrices ¯A = E[Ai] = P and L̄ = E[Li] =
[l̄i j]n×n denote the expected value of the adjacency
matrix and Laplacian matrix, respectively. Then, it can be
obtained

l̄i j =
⎧⎨
⎩

n∑
j=1

pi j, if i = j,

−pi j, otherwise.
(2)

Matrix L̄ corresponds to graph Ḡ which does not nec-
essarily belong to G. This graph Ḡ denotes the expected
graph, i.e. the average graph over time. Expected graph
Ḡ is connected if and only if λ2(L̄ ) > 0 (Kar & Moura,
2008, Lemma 1). Moreover, the eigenvalues of Li can
be denoted as 0 = λ1(Li) ≤ λ2(Li) ≤ · · · ≤ λn(Li).
Matrix Li is positive semi-definite and has a simple zero
eigenvalue when Gi is connected undirected graph.

2.2 Systemmodel

In this subsection, we consider a multi-agent system
which consists of n agents. Suppose that agent i takes the
switched dynamics, it switches between continuous-time
dynamics and discrete-time dynamics. The continuous-
time dynamics is

ẋi(t ) = ui(t ), i ∈ In, (3)

and discrete-time dynamics is

xi(t + h) = xi(t ) + hui(t ), i ∈ In, (4)

where xi(t ) ∈ R and ui(t ) ∈ R are the position and con-
trol input of agent i, respectively. h > 0 is the sampling
period and x0 = [x1(0),… , xn(0)]T is the initial value.
We apply the consensus protocol for switchedmulti-agent
system (3 − 4) as follows

ui(t ) =
n∑
j=1

ai j(x j(t ) − xi(t )). (5)

Suppose that the dynamics of each agent switches simul-
taneously from one to another and the agents with
discrete-time dynamics finish integer sampling. Then,
switched multi-agent system (3 − 4) with protocol (5)
which is composed of continuous-time subsystem

ẋ(t ) = −L x(t ), (6a)

and discrete-time subsystem

x(t + h) = (In − hL )x(t ), (6b)

i.e. the switched multi-agent system can be viewed as a
system which is composed of (6a) and (6b) at different
time interval.

Switchedmulti-agent system (6) switches arbitrarily in
the random network. We assume that the network which
consists of random edges is constant over each time inter-
val � > 0. The topology structure at time point tk is
independent of topology structure at the previous time-
intervals. By introducing the sequence of column vec-
tors {x(tk)}, the problem may be cast in a sample-data
system setting. From subsystem (6a), we know that
x(t ) = eL (t−t0)x(t0). Let the sequence of column vec-
tors {x(tk)} be the subsequence of {x(t)}. Due to eL t (In −
hL ) = (In − hL )eL t , the trajectory x(tk) of switched
multi-agent system (6) is expressed by

x(tk+1) = Wtkx(tk), k = 0, 1, . . . , (7)

whereWtk is the random state transition matrix defined
by

Wtk = e−Ltk tck (I − hLtk )
dk . (8)

Ltk is the Laplacian matrix of random graph Gtk at time
point tk. Note that graph Gtk is invariant during the time
interval �. MatrixWtk at time point tk is independent of
matrix Wtk-1 at time point tk-1. The total duration time
on subsystem (6a) and the total sampling times on sub-
system (6b) under time interval tk + 1 − tk are denoted
as tck and dk, respectively. For the discrete-time subsys-
tem, when the integer sampling of discrete-time sub-
system are completed under time interval � or time
interval � + h, we make a sampling at time tk. For the
continuous-time subsystem, we can make arbitrary sam-
pling at time tk under a network, i.e. before the network
changes randomly at the transition instant. We know that
state x(tk) of system (7) at each moment is sampled from
state variables of system (6). Therefore, system (7) can be
used to monitor the partial state of switched multi-agent
system (6).

The objective of this paper is to make the switched
multi-agent system to achieve average consensus inmean
square (or almost surely) under arbitrary switching with
random networks. The vector of averages v(x0) is written
as v(x0) = 1Tx0

n 1. The following notions of consensus will
be used.
Definition 2.1: We say that switched multi-agent system
(6) converges to average consensus
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(a) in mean square if for any x0 ∈ Rn it holds that

lim
t→∞E

[‖x(t ) − v(x0)‖2
] = 0; (9)

(b) almost surely if for any x0 ∈ Rn it holds that

P
{
lim
t→∞ ‖x(t ) − v(x0)‖ = 0

}
= 1; (10)

(c) in probability if �ϵ > 0 and any x0 ∈ Rn it holds
that

lim
t→∞ P {‖x(t ) − v(x0)‖ > ε} = 0; (11)

(d) in mean if for any x0 ∈ Rn it holds that

lim
t→∞E [x(t )] = v(x0). (12)

Definition 2.2: The per-step convergence factor, in the
mean square sense, for system (7) is defined as

γs = sup
ξ (tk)�=0, k∈N

(
E[‖ξ (tk+1)‖2|ξ (tk)]

‖ξ (tk)‖2
)

, (13)

where ξ (tk) = x(tk) − v(x0).

Next, we will give some properties of state transition
matrix of system (7) for solving the consensus problem.

Lemma 2.1: MatrixWtk is doubly stochastic matrix if the
sampling period 0 < h < 1

d̄
.

Proof: Due to

Wtk1n = e−Ltk tck (In − hLtk )
dk1n

=
(

∞∑
j=0

(−tck ) j

j! L j
tk

) (
In − hLtk

)dk 1n
= 1n,

and L T
tk = Ltk , it is obvious that 1TnWtk = 1Tn . Laplacian

matrix Ltk can be rewritten as Ltk = d̄In − Ãk. Because
0 < h < 1

d̄
and Ãk is nonnegative matrix, it is clear that

e−d̄Intck ≥ 0, eÃktck ≥ 0, and (In − hd̄In + hÃk) ≥ 0.
Note that

Wtk = e(−d̄In+Ãk)tck (In − hd̄In + hÃk)
dk

= e−d̄Intck eÃktck (In − hd̄In + hÃk)
dk,

thus, matrix Wtk is nonnegative. Hence, Wtk is a doubly
stochastic matrix. �

Lemma 2.2: The i-th eigenvalue of matrix Wtk − 1n1Tn
n is

λi = e−λi(Ltk )tck (1 − hλi(Ltk ))
dk , i = 2,… , n.

Proof: Since Ltk is symmetric matrix, there
exists a unitary matrix U such that Ltk =
UT�U , where � is the diagonal matrix con-
sisting of λi(Ltk ), i = 1,… , n. Hence, Wtk =
e−UT�Utck (In − hUT�U )dk = UTe−�tck (In − h�)dkU ,
and λi(Wtk ) = e−λi(Ltk )tck (1 − hλi(Ltk ))

dk , i = 1,… , n.
According to Lemma 2.1, it follows that Wtk

1n1Tn
n =

1n1Tn
n Wtk . By virtue of Theorem 4.5.15 in Horn and

Johnson (2012), it can be obtained 1n1Tn
n = Ū T�1Ū

and Wtk = Ū T�2Ū where Ū = [ū1, . . . , ūn]. �1 and
�2 are the diagonal matrices consisting of λi(

1n1Tn
n )

and λi(Wtk ), respectively. Obviously, Wtk − 1n1Tn
n =

Ū T (e−�tck (In − h�)dk − �1)Ū . Note that there exists
the normalised eigenvector of ū1 corresponding to
λ1(Wtk ) = 1 and λ1(

1n1Tn
n ) = 1 where ū1 = 1√

n1. Hence,
λi = e−λi(Ltk )tck (1 − hλi(Ltk ))

dk , i = 2,… , n. �

Remark 2.1: When tck = 0 or dk = 0, the i-th eigenvalue
of matrix ofWtk − 1n1Tn

n are λi≥2 = e−λi(Ltk )tck and λi≥2 =
(1 − hλi(Ltk ))

kd , respectively.

Lemma 2.3: Expected matrix E[Wtk] is irreducible and
nonnegative if λ2(L̄ ) > 0 and the sampling period 0 <

h < 1
d̄
.

Proof: Matrix ¯A is irreducible due to λ2(L̄ ) > 0. The
irreducibility of ¯A shows that there exists the graph
with non-zero probability for which λ2(Ltk ) > 0. The
adjacency matrix Atk corresponding to λ2(Ltk ) > 0 is
irreducible and nonnegative. By Lemma 2.1, it can be
obtained

Wtk = e−d̄Intck eÃktck (In − hd̄In + hÃk)
dk

= e−d̄Intck (In + Ãktck + 1
2! (Ãktck )2 + · · · )(K + hÃk)

dk,

where Ãtk = Atk + M ≥ 0, and K = In − hd̄In > 0. It is
obvious that Wtk is irreducible and nonnegative when
tck = 0 or dk = 0. Hence,

Wtk = e−d̄Intck (In + Ãktck + 1
2! (Ãktck )2 + · · · )(K + hÃk)

dk

= e−d̄Intck (Kdk + hKdk−1Ãk + · · · ).

Thus,Wtk is irreducible and nonnegative. Consequently,
E[Wtk] is irreducible and nonnegative. �

Based on Lemma 2.1 and 1Tn x(k + 1) = 1Tn x0, we can
straightly obtain the following result.

Lemma 2.4: For system (7), we have ‖x(tk+1) −
v(x0)‖2 ≤ ρ2(Wtk − 1n1Tn

n )‖x(tk) − v(x0)‖2.
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3. Main results

In this section, the average consensus problem of the
switched multi-agent system will be investigated. More-
over, we further derive the per-step (mean square) con-
vergence factor for system (7).

Theorem 3.1: Assume that the sampling period 0 < h ≤
1
2d̄
. Then, switched multi-agent system (6) reaches average

consensus in mean square (or almost surely) if and only if
system (7) reaches average consensus in the same sense.

Proof: (Sufficiency) We firstly analyse the state of
continuous-time subsystem. The state transition matrix
of the continuous-time subsystem matrix is e−L t . By
Lemma 2.2 and 0 < h ≤ 1

2d̄
, we have ρ2(e−L t − 1n1Tn

n ) ≤
1. By Lemma 2.4, it can easily be verified that the state
at any moment such that ‖x(tki+1 ) − v(x0)‖2 ≤ ‖x(tki ) −
v(x0)‖2 where tki is any sampling time for continuous-
time subsystem. The state of discrete-time subsystem
also possesses the same property and the proof is omit-
ted. This implies that the sequence ‖x(t) − v(x0)‖ is
monotonic. Therefore, the convex combination E[‖x(t)
− v(x0)‖2] is bounded monotonic sequence. It contains
a convergent subsequence E[‖x(tk) − v(x0)‖2] such that
limtk→∞ E[‖x(tk) − v(x0)‖2] = 0. It follows that

lim
t→∞E[‖x(t ) − v(x0)‖2] = 0.

Therefore, switched multi-agent system (6) reaches aver-
age consensus in mean square.

(Necessity) Since the sequence {x(tk)} is a subse-
quence of {x(t)}, it is obvious that limtk→∞ E[‖x(tk) −
v(x0)‖2] = 0 if limt → �E[‖x(t) − v(x0)‖2] = 0.

We only show the equivalence of average consensus
in mean square. The equivalence of average consensus
almost surely can be proved similarly. Thus, it is omitted
here. �

According to Theorem 3.1, it is shown that we analyse
the average consensus of system (6) is equivalent to anal-
yse the average consensus of system (7). Next, we mainly
discuss the average consensus of system (7).

Theorem 3.2: Assume that the sampling period 0 < h ≤
1
2d̄
. Then, system (7) can solve average consensus in mean

square under arbitrary switching if and only if the expected
graph Ḡ is connected.

Proof: (Sufficiency) By Lemma 2.4, we know that

‖x(tk+1) − v(x0)‖2 ≤ ρ2
(
Wtk − 11T

n

)
‖x(tk) − v(x0)‖2,

(14)

which implies that

‖x(tk) − v(x0)‖2 ≤ ρ2
(
Wt0 − 11T

n

)
· · · ρ2

×
(
Wtk−1 − 11T

n

)
‖x(0) − v(x0)‖2. (15)

Taking expectation on both sides of (15) and using the
independent property of the randommatrixWtk , we have

E[‖x(tk) − v(x0)‖2] ≤ E
[
ρ2

(
Wt0 − 11T

n

)]
· · ·

×E
[
ρ2

(
Wtk−1 − 11T

n

)]
‖x(0) − v(x0)‖2

≤ max
i=0,...,k−1

E
[
ρ2

(
Wti −

11T

n

)]k

‖x(0) − v(x0)‖2.
(16)

In order to prove that the state vector sequence of sys-
tem (7) converges in mean square, we only need to prove
that E[ρ2(Wti − 11T

n )] < 1 for i= 0, 1, …. By Lemma 2.2,
we have the eigenvalues λi(Wti − 11T

n ) = e−λi(Lti )tci (1 −
hλi(Lti ))

di , i � 2. Based on Gers̆gorin Disc theorem,
we have the sampling period 0 < h ≤ 1

2d̄
≤ 1

λ̄n
with

non-zero probability where λ̄n = maxi=0,...,k−1{λn(Lti )}.
This also implies that e−λi(Lti )tci (1 − hλi(Lti ))

di ≥ 0
and ρ2(Wti − 11T

n ) = e−2λ2(Lti )tci (1 − hλ2(Lti ))
2di ) ≤ 1.

Indeed, the expected graph Ḡ which is connected shows
that there is at least one graph G with non-zero prob-
ability for λ2(L ) > 0. It is obvious that (e−2λi(L )tc (1 −
hλi(L ))2d ) < 1, i.e., E[ρ2(Wti − 11T

n )] < 1. It is shown
that

lim
tk→∞E[‖x(tk) − v(x0)‖2] = 0. (17)

(Necessity) If the expected graph is Ḡ which is not
connected, there exist at least two components with zero
probability of communication between each other. This
implies that there is no path between two components.
Hence, the information of these two components cannot
reach consensus for any initial condition (Ren & Beard,
2005). �

Remark 3.1: In fact, the expected graph Ḡ is connected
which implies λ2(L̄ ) > 0. Under sampling period 0 <

h ≤ 1
2d̄
, switched multi-agent system (6) can solve aver-

age consensus in mean square if λ2(L̄ ) > 0. For λ2(L̄ ),
we just need to know the edge probability matrix P to cal-
culate it.
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Next, we show that both average consensus almost
surely and average consensus in mean can be achieved.
Theorem 3.3: Assume that the sampling period 0 < h ≤
1
2d̄
. Then, system (7) can solve average consensus almost

surely under arbitrary switching if and only if the expected
graph Ḡ is connected.
Proof: (Sufficiency) As a result of Markovapo’s inequal-
ity (Sheldon, 1976), for any a > 0,

P
{‖x(tk) − v(x0)‖2 ≥ a2

} ≤ E[‖x(tk) − v(x0)‖2]
a2

.

(18)

Because ‖x(tk) − v(x0)‖2 � a2 is equivalent to ‖x(tk) −
v(x0)‖ � a, inequality (18) can be written as

P {‖x(tk) − v(x0)‖ ≥ a} ≤ E[‖x(tk) − v(x0)‖2]
a2

.

(19)

By Theorem 3.2, it is easy to know that ‖x(tk+1) −
v(x0)‖2 ≤ ρ2(Wtk − 11T

n )‖x(tk) − v(x0)‖2. Therefore,
∞∑
k=0

P {‖x(tk) − v(x0)‖ ≥ a} ≤ E[‖x0 − v(x0)‖2]
a2(1 − β)

< ∞,

(20)
where β = maxk=0,1,...{E[ρ2(Wtk − 11T

n )]}.
Using the Borel–Cantelli Lemma (Durrett, 2010) leads

to

P (‖x(tk) − v(x0)‖ ≥ a i.o.) = 0. (21)

Thus, we conclude that the agents reach average consen-
sus almost surely.

(Necessity) The proof is similar to the argument used
in Theorem 3.2. �
Corollary 3.1: Assume that the sampling period 0 < h ≤
1
2d̄

and the expected graph Ḡ is connected. Then, the fol-
lowing statements are equivalent.

(1) switchedmulti-agent system (6) reaches average con-
sensus in mean square;

(2) switchedmulti-agent system (6) reaches average con-
sensus almost surely;

(3) switchedmulti-agent system (6) reaches average con-
sensus in probability.
Proof: Based on Theorems 3.2 and 3.3, it is obvious that
(1)⇔(2). It is well known that convergence in probability
can be obtained by using convergence almost surely, i.e.,
(2)⇒(3). From Theorem 3.1, we know that the sequence
{‖x(t) − v(x0)‖} is bounded monotonic. Thus, it fol-
lows from the dominated convergence theorem (Durrett,
2010) that (3)⇒(1). �

Corollary 3.2: Assume that the sampling period 0 < h ≤
1
2d̄
. Then, switchedmulti-agent system (6) can solve average

consensus inmeanunder arbitrary switching if the expected
graph Ḡ is connected.

Proof: Let � =
n∑
j=1

(x j(t )). Then we take expectation on

both sides of it, it follows thatE[�] = E[1Tx(t )].Wehave

lim
t→∞E[1Tx(t )] =

n∑
j=1

(x j(0)).

Moreover, by Theorem 3.3, we know that switchedmulti-
agent system (6) reaches consensus almost surely. By
using the property of expectation E[X + Y] = E[X] +
E[Y] and the Lebesgue’s Dominated Convergence
Theorem (Rudin, 1987), we can get

lim
t→∞E[x j(t )] = 1

n

n∑
j=1

(x j(0)).

�

In the following, we consider switched multi-agent
system (6) with switching topologies {Gs : s ∈ ζ0}, where
ζ 0 is a finite index set, the topologies are fixed, and switch-
ing is probabilistic. The topology switches randomly and
independently with probability 0 � pi � 1.

Theorem 3.4: Assume that the sampling period 0 < h ≤
mins∈ζ0

1
2d̄s

. Then, system (7) can solve average consensus
in mean square under arbitrary switching if the expected
graph Ḡ is connected.

Proof: Let ξ (tk) = x(tk) − v(x0). By Lemma 2.1, it can be
obtained that

E[ξT (tk)ξ (tk)]

= E
[
ξT (tk−1)

(
WT

tk−1
Wtk−1 − 11T

n

)
ξ (tk−1)

]

= E
[
ξT (tk−1)E

[
WT

tk−1
Wtk−1 − 11T

n

]
ξ (tk−1)|ξ (tk−1)

]

≤ ρ

(
E

[
WT

tk−1
Wtk−1 − 11T

n

])
E[ξT (tk−1)ξ (tk−1)].

(22)

Recursive application of (22) yields

E[‖ξ (tk)‖2] ≤ max
i=0,...,k−1

ρk
(
E

[
WT

ti Wti −
11T

n

])
‖ξ (0)‖2.

(23)
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By Lemma 2.3, we can see that

WT
tk Wtk = e−2d̄Intck

(
In + 2Ãktck + 1

2!
(2Ãktck )

2 + · · ·
)

× (K + hÃk)
2dk

= e−2d̄Intck (K2dk + hK2dk−1Ãk + · · · )
≥ Ãk,

where  > 0 is a diagonal matrix. Because the
expected graph Ḡ is connected, we can have that
the union of the graphs Gs is connected. Hence,
the union of the graphs of Ãk is connected. Con-
sequently, we can obtain that matrix E[WT

ti Wti] is
irreducible. It can also be verified that the matrix
E[WT

ti Wti] is stochastic. By virtue of E[WT
ti Wti]1 = 11

and Horn and Johnson (2012, Theorem 8.4.4), we have
|λi(E[WT

ti Wti])| < 1, i = 2,… , n. By Lemma 2.2, we
know that λi(E[WT

ti Wti − 11T
n ]) = λi(E[WT

ti Wti]), i =
2,… , n. Thus, it is obvious that ρ(E[WT

ti Wti − 11T
n ]) < 1.

Hence, it follows that limtk→∞ E[‖x(tk) − v(x0)‖2] = 0.
�

Remark 3.2: Note that switched multi-agent system (6)
constructs a unified form by combining continuous-
time multi-agent system (3) and discrete-time multi-
agent system (4). Switched multi-agent system (6) can
be a continuous-timemulti-agent systemor discrete-time
multi-agent system when tc = 0 and dk = 0, respectively.
The above results remain valid for multi-agent system (6)
when tc = 0 or dk = 0.

In the following, we give the convergence factor of sys-
tem (7). We focus on per-step convergence factor in the
mean square sense.

Theorem 3.5: Assume that the sampling period 0 < h ≤
1
2d̄
. Then, the per-step (mean square) convergence factor for

system (7) under the connected expected graph Ḡ is

γs = βs = E
[
ρ2

(
Wtk − 11T

n

)]
. (24)

Proof: From Theorem 3.2 and (14), we get
E[‖ξ (tk+1)‖2|ξ (tk)] ≤ E[ρ2(Wtk − 11T

n )]‖ξ (tk)‖2.
Hence, we have γ s � βs where γ s defined in Definition
2.2. Note that all eigenvalues of matrix (Wtk − 11T

n )

is nonnegative and thus ρ(Wtk − 11T
n ) is the largest

eigenvalue. Hence, there exists a eigenvector ϑ cor-
responding to ρ(Wtk − 11T

n ). It is obtained that
E[‖ξ (tk+1)‖2|ξ (tk)] = E[ρ2(Wtk − 11T

n )]‖ξ (tk)‖2 and
βs � γ s. Obviously, we have βs = γ s. �

Remark 3.3: Note that from Theorem 3.2, we can con-
clude that the per-step convergence factor is correspond-
ing to E(e−2λ2(Ltk )tck (1 − hλ2(Ltk ))

2dk ). It is obvious that
the convergence speed of the average consensus is influ-
enced by the second eigenvalue of the Laplacian matrix
Ltk . We know that βs is a decreasing function of λ2(Ltk )

for fixed p.
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4. Simulations

In this section, we provide two numerical simulations to
demonstrate the effectiveness of the theoretical results in
this paper.

Example 4.1: Case I: We consider the random net-
work with edge probability matrix P where pii = 0 and
pij = 0.2 for i, j = 1,… , 8. The expected network is con-
nected under edge probability matrix P. By calculation,

we can get the sampling period 0 < h ≤ 1
14 . We choose

h = 0.01. The evolution of network from 0 second to 8
second is shown in Figure 1. The switching law of
switched multi-agent system (6) is shown in Figure 2(a).
The state trajectories of all the agents are shown in
Figure 2(b). We can see that switched multi-agent system
(6) reaches consensus.

Case II: We consider the unconnected expected net-
work with edges probability matrix P where pj1 = p1j =

0 2 4 6 8 10
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Figure . The switching law of system () and the state trajectories of all the agents.

pj2 = p2j = 0 for j = 3,… , 8, pii = 0, and pij = 0.2 for i,
j= 1,… , 8. By calculation, themultiplicity of λ1(L̄ ) = 0
is 2 and the sampling period 0 < h ≤ 1

14 . The sampling
period h and switching law are the same as Case I. Under
unconnected expected network, the state trajectories of
all the agents are shown in Figure 2(c). From Figure 2(c),
we can see that switched multi-agent system (6) cannot
reach consensus.

Example 4.2: We consider that the communication net-
work is chosen as in Figure 3. Note that the union of
switching topologies is connected. The network switches
randomly where p = 0.25 and � = 1. By calculation, we
can get the sampling period 0 < h � 0.125. We choose
h = 0.1. The switching law of switched multi-agent sys-
tem (6) is depicted in Figure 4(a). The state trajectories of
all the agents are shown in the Figure 4(b).We can see the
state trajectories of all the agents reach consensus which
is consistent with the sufficiency of Theorem 3.4.

5. Conclusions

This paper investigated the consensus problem of the
switched multi-agent system which is composed of
continuous-time and discrete-time subsystems with ran-
dom networks. An equivalent discrete-time system was
proposed to solve the average consensus problem of the
switched multi-agent system. Then, we derived some
necessary and sufficient conditions for solving average

consensus in mean square (or almost surely) under arbi-
trary switching. Moreover, we showed that the average
consensus in different sense (mean square, almost surely
and in probability, respectively) are equivalent if the sam-
pling period satisfies certain condition and the expected
graph is connected. Finally, we analysed the per-step con-
vergence factor in the mean square sense. The future
work will focus on the containment control problem of
switchedmulti-agent systems with random networks, the
consensus problem of switched multi-agent systems with
disturbances under random networks, etc.
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