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ABSTRACT
This paperdealswith thequantised consensusproblem for switchedmulti-agent systemwhich is composed
of continuous-time and discrete-time subsystems. We adopt the distributed consensus protocols based on
the quantised relative statemeasurements of agents. By using the properties of Laplacianmatrix, it is shown
that the switchedmulti-agent system can reach consensus exponentially with logarithmic quantiser under
arbitrary switching. It is also proved that the distance between the states of any pair of neighbouring agents
just converges to a bounded set when uniform quantisers are utilised. Simulation examples are presented
to illustrate the effectiveness of the theoretical results.

1. Introduction
In recent years, much attention has been paid to distributed con-
trol of multi-agent systems due to its broad applications in vehi-
cle systems, sensor networks, social networks and so on. Con-
sensus problem is an important research topic in distributed
multi-agent coordination, which aims to design a consensus
protocol based on the local information of agents to make all
agents reach an agreement on certain quantities of interest. Until
now, many interesting results on the consensus problem have
been obtained for multi-agent systems under different contexts,
such as time delay, communication noises, switching topology,
etc. (Cao, Xiao, &Wang, 2015; Cheng, Hou, Tan, &Wang, 2011;
Huang & Manton, 2009; Li & Zhang, 2010; Lin & Jia, 2009;
Olfati-Saber &Murray, 2004; Ren & Beard, 2005; Wang, Cheng,
Ren, Hou, & Tan, 2015; Xiao, Wang, & Chen, 2014; Zheng, Zhu,
& Wang, 2014).

As digital sensors and wireless network are widely used in
practical systems, the information available to each agent is
not accurate and might have been quantised. Because of the
quantisation, some undesirable system behaviour, e.g. oscilla-
tions, may happen even if the same system is stable without
quantisation (Liu, Cao, & Persis, 2012). Thus, the quantisation
effects have to be considered inmulti-agent systems. Early works
mainly focused on the quantised consensus of discrete-time
(DT)multi-agent systems (Carli, Bullo, & Zampieri, 2010; Carli,
Fagnani, Frasca, & Zampieri, 2010; Kashyap, Basar, & Srikant,
2007; Li, Fu, Xie, & Zhang, 2011; Li & Xie, 2012). In Kashyap
et al. (2007), the authors introduced the notion of quantised
consensus and studied the problem for DT multi-agent sys-
tems with uniform quantisers under undirected graphs, where
each agent’s state is always an integer. Carli et al. extended the
results in Kashyap et al. (2007) to the case that each agent’s
initial state is real in Carli et al. (2010). In Carli et al. (2010),
the coding/decoding scheme was introduced for multi-agent
systems to transmit the logarithmic quantised information.
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Recently, increasing attention has also been focus on the quan-
tised consensus of continuous-time (CT) multi-agent systems.
By constructing proper Lyapunov functions, consensus prob-
lem involving quantised relative states was studied for CTmulti-
agent systems with first-order dynamics in Guo and Dimarog-
onas (2013), second-order dynamics in Liu et al. (2012), Guo
and Dimarogonas (2013), general linear dynamics in Xu and
Wang (2013), and nonlinear dynamics in Zhu, Zheng, & Wang
(2015b). In Ceragioli, De Persis, and Frasca (2011), the consen-
sus protocol was designed based on the relative quantised states,
instead of quantised relative states. Ceragioli et al. investigated
the consensus problem for first-order multi-agent systems with
uniform quantisers and hysteretic quantisers under static com-
munication topology. In Frasca (2012), the author extended the
results in Ceragioli et al. (2011) to time varying communication
topology.

For multi-agent systems, there have been many results on
consensus under switching topologies. In this case, multi-agent
systems often can be viewed as switched systems, which are
composed of only CT subsystems or DT ones. However, in
Zheng and Wang (2016), the authors proposed the switched
multi-agent system which is composed of both CT and DT sub-
systems. In practice, it is very easy to find many applications
involving switched systems, which are composed by both CT
and DT subsystems. For example, CT plant is controlled either
by a physically implemented regulator or by a digitally imple-
mented one together with a switching rule between them (Zhai,
Lin, Michel, & Yasuda, 2004; Zhai, Liu, & Imae, 2006). For a CT
multi-agent system, if sometimes computers are used to activate
all the agents in aDTmanner, then the entiremulti-agent system
can be seen as a switched multi-agent system (Zheng & Wang,
2016). Based on graph theory and Lyapunov theory, some neces-
sary and sufficient conditions were given for the switchedmulti-
agent system to achieve consensus under arbitrary switching in
Zheng and Wang (2016). In Lin and Zheng (2016), the authors
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studied the finite-time consensus of switched multi-agent sys-
tem. As an extension of consensus problem (Zheng & Wang,
2014), containment control problem was also investigated for
switchedmulti-agent systems in Zhu, Zheng, andWang (2015a).
Inspired by the work above, we try to study the consensus of
switched multi-agent system in the presence of quantised infor-
mation. Distributed protocol using the quantised relative states
was proposed for the switched multi-agent system. By utilising
graph theory and non-smooth analysis, we give some sufficient
conditions for the switched multi-agent system with logarith-
mic quantiser to exponentially achieve consensus under arbi-
trary switching in undirected and directed graphs, respectively.
We also show that when uniform quantisers are used, all the
states of agents in an undirected graph enter into a ball which
is centred at the desired consensus value in finite time.

This paper is organised as follows. In Section 2, some math-
ematical preliminaries are presented. The quantised consensus
of the switched multi-agent system is discussed in Section 3. In
Section 4, the simulation results are given to show the effective-
ness of the obtained results. Section 5 is a brief conclusion.
Notation 1.1: Let Rn be the n-dimensional Euclidean space, Z
be the set of integer numbers, In be the n-dimensional identity
matrix, 1n be the n-dimensional vector with each entry being 1.
In = {1, 2, . . . , n}. The superscript ‘T’ represents the transpose.
‖ · ‖ denotes the 2-norm both for vectors and matrices. sign( ·
) represents the signum function. Let B(x, δ) be the open ball of
radius δ centred at x, μ(S) be the Lebesgue measure of S and c̄o
be the convex closure. Given a complex number λ, Re(λ) and |λ|
are the real part and the modulus of λ, respectively.

2. Preliminaries
In this section, we introduce some basic concepts and results
which will be used in this paper (Filippov, 1988; Godsil & Royal,
2001; Paden & Sastry, 1987; Ren & Cao, 2010; Zeng, Wang, &
Zheng, 2016).

2.1. Graph theory
Let G = (V, E ) be a weighted directed graph with vertex set
V = {s1, s2, . . . , sn} and edge set E = {e1, e2, . . . , em} ⊆ V × V .
A directed path from si to sj is a finite-ordered sequence of dis-
tinct edges (si, sk1 ), (sk1 , sk2 ), . . . , (skh−1 , s j). The neighbouring
set of si is Ni = {s j : (s j, si) ∈ E}. A directed tree is a directed
graph, where there exists a vertex called the root such that there
exists a unique directed path from this vertex to every other ver-
tex. A directed spanning tree is a directed tree, which consists
of all the nodes and some edges in G. In contrast to a directed
graph, the pairs of nodes in an undirected graph are unordered.
An edge (si, s j) in an undirected graph corresponds to the edges
(si, s j) and (s j, si) in the directed graph. An undirected graph
G is called connected if between any two distinct vertices, there
is a path between them. The adjacencymatrixA = (ai j) ∈ Rn×n

of a directed graph G is defined such that adjacency element aij
> 0 if (s j, si) ∈ E , and aij = 0 otherwise. The adjacency matrix
A of an undirected graph is define analogously except that aij =
aji for all i � j. The Laplacian matrix L = (lij) � Rn × n of graph
G is defined as lij = −aij, i � j, and lii = ∑n

j=1, j �=i ai j. For every
ek = (si, s j) ∈ E in a directed graph, si is called the head of ek,
while sj is called the tail of ek. The incidence matrix B � Rn × m

is defined as [B]ik = 1, if si is the head of ek, [B]ik = −1, if si is
the tail of ek and [B]ik = 0, otherwise. The weighted in-directed
matrix B� � Rn × m is defined as [B�]ik = −1, if si is the tail
of ek, and [B�]ik = 0, otherwise. Define weighting matrix W =
diag{w1,… , wm}, where wk is the adjacency element associated
with edge ek. The edge Laplacian of directed graph G is defined
as Le = BTB�W.

Lemma 2.1: (Ren & Cao, 2010): Let L be the Laplacian matrix
associated with the directed graph G (respectively, the undirected
graph G). Then for the directed graph G (respectively, the undi-
rected graph G), L has at least one zero eigenvalue and all its non-
zero eigenvalues have positive real parts (respectively, are positive
real numbers). Furthermore, L has a simple zero eigenvalue and
all other eigenvalues have positive real parts (respectively, are pos-
itive real numbers) if and only if G has a directed spanning tree
(respectively, is connected).

2.2. Differential inclusion
For the vector differential equation

ẋ(t ) = f (x(t )),

where x � Rm, f: Rm → Rm is measurable and locally essentially
bounded. We say x(t) is a Filippov solution to the differential
equation on [t0, t1] if x(t) is absolutely continuous and satis-
fies ẋ ∈ F[X](x) at almost every t � [t0, t1], where F[X](x) =⋂

δ>0
⋂

μ(S)=0 c̄o{ f (B(x, δ))\S}.
Lemma 2.2: (Paden& Sastry, 1987): If f1, f2: Rm →Rn are locally
bounded and f3: Rm → Rs × n be C0, then F[f1](x)= {f1(x)}, F[f1 +
f2](x)�F[f1](x) + F[f2](x) and F[f3f1](x) = f3(x)F[f1](x), where
f3f1(x) = f3(x)f1(x).

3. Main results
Consider a switched multi-agent system which is composed of a
CT subsystem

ẋi(t ) = ui(t ), i ∈ In, (1)

and a DT subsystem

xi(t + h) = xi(t ) + hui(t ), i ∈ In, (2)

where xi, ui � R are the state and control input of agent i, respec-
tively, and h > 0 is the sampling period. All results in this paper
still hold for xi, ui � Rm by using the Kronecker product opera-
tions.

In this paper, we study the consensus problem for switched
multi-agent system with quantised data. The uniform and
logarithmic quantisers are adopted. The uniform quantiser
is defined as qu(x) = δu[ x

δu
], where parameter δu > 0, [a],

a � R denotes the nearest integer to a and [ 12 ] = 1. From
the definition, we have qu( − x) = −qu(x), xqu(x) � 0
and q2u(x) ≥ 2xqu(x). The logarithmic quantiser is defined as
ql (x) = sign(x)equ(ln |x|), when x � 0 and ql(0) = 0. Similarly,
we have xql(x) � 0, ql( − x) = −ql(x), 1

1+δl
x2 ≤ xql (x) ≤

(1 + δl )x2 and 1
1+δl

q2l (x) ≤ xql (x) ≤ (1 + δl )q2l (x), where δl =
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e
δu
2 − 1. For a vector x = (x1,… , xn)T � Rn, let q(x) =

(q(x1),… , q(xn))T.

Definition 3.1: The switched multi-agent system (1)–(2) is said
to reach consensus if there exists x* such that

lim
t→+∞ ‖ xi(t ) − x∗ ‖= 0, i ∈ In.

We adopt the following distributed protocol:

ui(t ) = k
∑
j∈Ni

ai jq(x j(t ) − xi(t )), (3)

where q( · ) is a logarithmic or uniform quantiser, k > 0 is the
control gain.

First, we study the case when logarithmic quantisers are
utilised. One can show that the switchedmulti-agent system can
reach consensus under protocol (3).

When the communication topology G among agents is undi-
rected and connected, we use λ2(L), λn(L) to denote the min-
imum and maximum non-zero eigenvalue of Laplacian matrix
L, respectively. Let wmax = max(i, j)∈E {ai j}. Orient each edge in
undirected graph G arbitrarily to make it have a head and tail.
B is the incidence matrix of the oriented graph. Let x(t) =
(x1(t),… , xn(t))T and x̂(t ) = BTx(t ). Then, the switchedmulti-
agent system (1)–(2) with protocol (3) is composed of a CT sub-
system

ẋ(t ) = −kBWq(x̂(t )), (4)

and a DT subsystem

x(t + h) = x(t ) − khBWq(x̂(t )). (5)

Because of the discontinuity of the quantised signals, we con-
sider the solution of CT subsystem in Filippov sense, which is
defined as an absolutely continuous solution of the differential
inclusion

ẋ(t ) ∈ F
[−kBWq

]
(x̂(t )) = −kBWF

[
q
]
(x̂(t )), (6)

where the final equality follows from Lemma 2.2.

Lemma 3.1: Suppose that the communication topologyG is undi-
rected and connected. Let x(t) be a solution of switched multi-
agent system (1)-(2) with protocol (3) under arbitrary switching.
Then x(t) satisfies c(t ) = 1

n1
T
n x(t ) = c(0) for all t � 0.

Proof: According to Equation (6), we have

ċ(t ) ∈ − k
n
1Tn BWF

[
q
]
(x̂(t )) = {0},

where the final equality follows from 1Tn B = 0.
By Equation (5), we obtain that

c(t + h) = 1
n
1Tn x(t + h) = 1

n
1Tn (x(t ) − khBWq(x̂(t )))

= 1
n
1Tn x(t ) = c(t ).

Therefore, c(t) is constant. �
Theorem 3.1: Suppose that the communication topology G is
undirected and connected. Then switchedmulti-agent system (1)–
(2) with protocol (3) can solve the consensus problem under arbi-
trary switching if k < 2

(1+δl )hλn(L)
.

Proof: Let y(t) = x(t) − c(t)1n, from Equations (5) and (6), we
have

ẏ(t ) = ẋ(t ) ∈ −kBWF
[
ql

]
(x̂(t )),

y(t + h) = x(t + h) − c(t + h)1n
= x(t ) − khBWql (x̂(t )) − c(t )1n
= y(t ) − khBWql (x̂(t )).

Take V (t ) = 1
2y

T (t )y(t ). When CT subsystem is activated, let
v(t ) ∈ F[ql](x̂(t )) and we obtain

∇V (y)ẏ(t ) = −kyT (t )BWv(t )
= −k (x(t ) − c(t )1n)T BWv(t )
= −kxT (t )BWv(t )
= −kx̂T (t )Wv(t ).

From the definition of the Filippov set-valued map, we have, if
a� 0, F[ql](a)= ql(a), when x �= e(k− 1

2 )δu , k ∈ Z and F[ql](a) =[
e(k−1)δu , ekδu

]
, otherwise. Moreover, F[ql]( − a) = −F[ql](a).

Therefore, it has aF[ql](a) ≥ 1
1+δl

a2. Hence,

∇V (y)ẏ(t ) ≤ − k
1 + δl

x̂T (t )Wx̂(t )

= − k
1 + δl

xT (t )BWBTx(t )

= − k
1 + δl

xT (t )Lx(t ).

It follows from L1n = 0 that

yT (t )Ly(t ) = (x(t ) − c(t )1n)T L (x(t ) − c(t )1n) = xT (t )Lx(t ).

Owing to minε �=0,1Tn ε=0
εt Lε
εT ε

= λ2, one obtains

∇V (y)ẏ(t ) ≤ − k
1 + δl

yT (t )Ly(t )

≤ −kλ2(L)

1 + δl
yT (t )y(t )

= −2kλ2(L)

1 + δl
V (t ).

When DT subsystem is activated, we have

V (t + h) = 1
2
(y(t ) − khBWql (x̂(t )))T (y(t ) − khBWql (x̂(t )))

= 1
2
yT (t )y(t ) − khyT (t )BWql (x̂(t ))

+ 1
2
k2h2qTl (x̂(t ))WBTBWql (x̂(t )).
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Note that

yT (t )BWql (x̂(t )) = (x(t ) − c(t )1n)T BWql (x̂(t ))
= xT (t )BWql (x̂(t )))
= x̂T (t )Wql (x̂(t )),

and

qTl (x̂(t ))WBTBWql (x̂(t )) ≤ λn(L)qTl (x̂(t ))Wql (x̂(t ))
≤ (1 + δl )λn(L)x̂T (t )Wql (x̂(t )).

Hence, we have

V (t + h) ≤ 1
2
yT (t )y(t )

+ 1
2

(
(1 + δl )λn(L)k2h2 − 2kh

)
x̂T (t )Wql (x̂(t )).

Note that

x̂T (t )Wql (x̂(t )) ≥ 1
1 + δl

x̂T (t )Wx̂(t )

= 1
1 + δl

xT (t )Lx(t )

= 1
1 + δl

yT (t )Ly(t ).

Since k < 2
(1+δl )hλn(L)

, we have (1 + δl)λn(L)k2h2 − 2kh < 0.
Thus,

V (t + h) ≤ 1
2
yT (t )

(
I + λn(L)k2h2L − 2kh

1 + δl
L
)
y(t )

≤ 1
2

(
1 + λn(L)λ2(L)k2h2 − 2λ2(L)kh

1 + δl

)
yT (t )y(t ),

= αV (t ),

where α = 1 + λn(L)λ2(L)k2h2 − 2λ2(L)kh
1+δl

. From 0 < k <
2

(1+δl )hλn(L)
, it is easy to obtain that 0 < α < 1.

For any time t > 0, we can divide the time interval [0, t] as
t = tc + rh, where tc � R � 0 is the total duration time on CT
subsystem and rh, r � Z � 0 is the total duration time on DT
subsystem. Then, one has

V (t ) ≤ e−
2kλ2 (L)

1+δl
tcαrV (0) ≤ e−2βtV (0),

where β = min{ kλ2(L)

1+δl
,− lnα

2h }. Therefore, ‖y(t)‖ � e−βt‖y(0)‖,
i.e. ‖x(t) − c(0)1n‖ � e−βt‖y(0)‖. Thus, the switched multi-
agent system can reach consensus exponentially under arbitrary
switching. �

If the communication topology among agents is switching
among different undirected connected topologies, to describe
the switching topology G(t ), we define a piece-wise constant
switching function σ (t): [0, +�) → P = {1, 2,… ,M}, whereM
denotes the total number of all possible connected graphs. Let
{ts}∞s=1 denote the set of switching instants, which satisfies 0 =
t0 < t1 < · · · < ts < ts+1 < · · · , lims→+∞ ts = +∞. To avoid
infinitely frequent switching, we define a strictly positive dwell

time τ > 0 such that ts + 1 − ts > τ . Then following the proof
of Theorem 3.3, we can easily obtain the following convergence
results on switching topology.

Corollary 3.1: Suppose that the communication topology G(t )
remains undirected and connected for all intervals [ts, ts + 1).
Then switched multi-agent system (1)–(2) with protocol (3) can
solve the consensus problem under arbitrary switching if k <

mins∈P 2
(1+δl )hλn(Ls)

.

Remark 3.1: If td = 0, the switched multi-agent system is actu-
ally the CTmulti-agent system considered inGuo andDimarog-
onas (2013), where the communication topology is switching
among different undirected tree topologies. Compared with
it, the switching graphs are undirected and connected in this
paper.

When the communication topology G among agents is
directed, some techniques used in Zeng et al. (2016) are
borrowed here to solve the quantised consensus problem.
For a directed graph G containing a spanning tree, the
graph G can be rewritten as G = Gτ

⋃Gc, where Gτ = (V,E1)
denotes the directed spanning tree and Gc = (V, E−E1).
Thus, the incidence matrix B can be rewritten as B =
(Bτ , Bc) and there exists a linear transformation such that
BτT = Bc. Let R = (

I, T
)
, and then we have B = BτR.

Define x̂τ (t ) = BT
τ x(t ), x̂c(t ) = BT

c x(t ) = TT x̂τ (t ) and x̂(t ) =
(x̂Tτ (t ), x̂Tc (t ))T = BTx(t ) = RT x̂τ (t ), the switchedmulti-agent
system (1)–(2) with protocol (3) can be written as

˙̂x(t ) = −kLeq(x̂(t )), (7)

and

x̂(t + h) = x̂(t ) − khLeq(x̂(t )). (8)

According to Zeng et al. (2016), there exists transformation
matrix Se, such that S−1

e x̂ = (
x̂τ

0 ),S−1
e Le = (

Lc
0 ) and S−1

e LeSe =
( L̂e ∗
0 0 ), where Lc = BT

τ B�W and L̂e = LcRT . Using the transfor-
mation, we can obtain a reduced model of switched multi-agent
system (7)–(8) as

˙̂xτ (t ) = −kLcq(x̂(t )), (9)

and

x̂τ (t + h) = x̂τ (t ) − khLcq(x̂(t )). (10)

For Equation (9), we consider the absolutely continuous solution
of the differential inclusion

˙̂xτ (t ) ∈ −kLcF
[
q
]
(x̂(t )). (11)

Lemma3.2: (Zeng et al., 2016): For a graphG containing directed
spanning tree, the essential edge Laplacian L̂e contains exactly all
the non-zero eigenvalues of Laplacian L.

From the above Lemma, we can get that the matrix I − khL̂e
is Schur stable if and only if kh < mini=2,...,n

2Re(λi)
|λi|2 , where λi is
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the eigenvalue of Laplacian L. Construct the following Lyapunov
equations as

L̂Te P + PL̂e = Q, (12)

Q − (I − khL̂e)TQ(I − khL̂e) = H, (13)

where H is an arbitrary positive definite matrix and P, Q
are the unique positive definite solutions. Let M = P − (I −
khL̂e)TP(I − khL̂e) and we can get M > 0 by substituting Q in
Equation (13) into Equation (12). Define d1 =‖ (I − khL̂e)T ‖‖
P ‖‖ Lc ‖‖ RT ‖ and d2 = ‖P‖‖Lc‖2‖RT‖2.
Theorem 3.2: Suppose that the communication topol-
ogy G contains a directed spanning tree. Select arbitrary
kh < mini=2,...,n

2Re(λi )
|λi|2 , then switchedmulti-agent system (1)–(2)

with protocol (3) can solve the consensus problem under arbitrary
switching if δl < min{ λmin(Q)

2‖P‖‖Lc‖‖RT‖ ,
λmin(M)

kh(d1+
√

d21+d2λmin(M))
}.

Proof: Take V (t ) = x̂Tτ (t )Px̂τ (t ). When CT subsystem is acti-
vated, let v(t ) ∈ F[ql](x̂(t )) and we obtain

∇V (x̂τ )ẋτ (t ) ≤ −kx̂Tτ (t )(LTc P + PLc)v(t )
= −kx̂Tτ (t )(LTc P + PLc)x̂(t ) − 2kx̂Tτ (t )PLce(t ),

where e(t ) = v(t ) − x̂(t ).
Note that x̂(t ) = RT x̂τ (t ) and ‖ e(t ) ‖≤ δl ‖ x̂(t ) ‖≤ δl ‖

RT ‖‖ xτ (t ) ‖, and thus it obtains that

∇V (x̂τ )ẋτ (t ) = −kx̂Tτ (t )(L̂Te P + PL̂e)x̂τ (t ) − 2kx̂Tτ (t )PLce(t )
≤ −k(λmin(Q)

− 2δl ‖ P ‖‖ Lc ‖‖ RT ‖) ‖ xτ (t ) ‖2
= −α ‖ xτ (t ) ‖2 .

where α = k(λmin(Q) − 2δl‖P‖‖Lc‖‖RT‖). Moreover, one can
obtain that ∇V (x̂τ )ẋτ (t ) ≤ − α

λmax(P)
V (t ).

For DT subsystem, we can rewrite Equation (10) as

x̂τ (t + h) = (I − khL̂e)x̂τ (t ) + khLcw(t ),

where w(t ) = x̂(t ) − q(x̂(t )). Then, when DT subsystem is
activated, it obtains that

V (t + h) −V (t ) = −x̂Tτ (t )Mx̂τ (t )

+ 2khx̂Tτ (t )(I − khL̂e)TPLcw(t )
+ k2h2wT (t )LTc PLcw(t ).

Since ‖ w(t ) ‖≤ δl ‖ x̂(t ) ‖≤ δl ‖ RT ‖‖ xτ (t ) ‖, we have

V (t + h) −V (t )
≤ −(λmin(M) − 2khd1δl − k2h2d2δ2l ) ‖ xτ (t ) ‖2 .

Let β = λmin(M) − 2khd1δl − k2h2d2δ2l , and it obtains that
V (t + h) ≤ (1 − β

λmax(P)
)V (t ). It follows from 0 < δ <

λmin(M)

kh(d1+
√

d21+d2λmin(M))
that 0 < β < λmin(M). Notice λmin(M)

< λmax(P) from the definition ofM. Then, 0 < 1 − β

λmax(P)
< 1.

2

13

4

Figure . An undirected graph.

Thus, similar to the proof in Theorem 3.3, we can get that the
switched multi-agent system can reach consensus exponentially
under arbitrary switching. �

Next, we discuss the consensus problemwhen uniformquan-
tisers are used.
Theorem 3.3: Suppose that the communication topology G is
undirected and connected. Let x(t) be a solution of switchedmulti-
agent system (1)–(2) with protocol (3) under arbitrary switching.
Then x(t) converges to the set {x | |xi − x j| ≤ δu

2 , (i, j) ∈ E} if
k < 1

hλn(L)
.

Proof: Similar to the proof of Theorem 3.3, we take V (t ) =
1
2y

T (t )y(t ). When CT subsystem is activated, let v(t ) ∈
F[qu](x̂(t )) and we can get

∇V (y)ẏ(t ) = −kyT (t )BWv(t ) = −kx̂T (t )Wv(t ) ≤ 0,

where the equality holds onlywhen qu(x̂(t )) = 0,which implies
|xi − x j| < δu

2 , (i, j) ∈ E .
When DT subsystem is activated, one has

V (t + h) −V (t ) = −khyT (t )BWqu(x̂(t ))

+ 1
2
k2h2qTu (x̂(t ))WBTBWqu(x̂(t ))

≤ −khx̂T (t )Wqu(x̂(t ))
+ λn(L)k2h2x̂T (t )Wqu(x̂(t )).

From k < 1
hλn(L)

, it obtains that

V (t + h) −V (t ) ≤ (
λn(L)k2h2 − kh

)
x̂T (t )Wqu(x̂(t )) ≤ 0.

where the equality holds onlywhen qu(x̂(t )) = 0,which implies
|xi − x j| < δu

2 , (i, j) ∈ E .
Based on the Lasalle’s invariance principle, the solutions of

switched multi-agent system (1)–(2) with protocol (3) converge
to a set {x | |xi − x j| ≤ δu

2 , (i, j) ∈ E}. �
Corollary 3.2: Suppose that the communication topology G is
undirected and connected. Let x(t) be a solution of switched
multi-agent system (1)–(2) with protocol (3) under arbitrary
switching. Then for any 0 < ϵ < 1, x(t) converges to the set
{x | ‖x(t ) − 1

n
∑n

i=1 xi(0)1n‖ ≤ δu
√
mλn(L)wmax

2(1−ε)λ2(L)
} in finite time if

k < 1
hλn(L)

.
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Figure . (Top) Switching law of system ()–(), the (middle) state trajectories of all the agents under logarithmic quantisers and the (bottom) state trajectories of all the
agents under uniform quantisers.

Figure . A directed graph.

Proof: Take V (t ) = 1
2y

T (t )y(t ). Note that if v(t ) ∈
F[qu](x̂(t )), then ‖v(t ) − x̂(t )‖ ≤ δu

2
√
m. When CT sub-

system is activated, then

∇V (y)ẏ(t ) = −kyT (t )BWv(t )
= −kyT (t )BW

(
x̂(t ) + v(t ) − x̂(t )

)
= −kyT (t )BWx̂(t ) − kyT (t )BW (v(t ) − x̂(t ))
= −kx(t )TBWx̂(t ) − kyT (t )BW (v(t ) − x̂(t ))
= −kx(t )TLx(t ) − kyT (t )BW (v(t ) − x̂(t ))
= −kyT (t )Ly(t ) − kyT (t )BW (v(t ) − x̂(t ))
≤ −kλ2(L)‖y(t )‖2

+ k‖y(t )‖‖BW 1
2 ‖‖W 1

2 ‖‖v(t ) − x̂(t )‖
≤ −kλ2(L)‖y(t )‖2 + k‖y(t )‖

√
λn(L)wmax

δu

2
√
m

= −kλ2(L)‖y(t )‖
(

ε‖y(t )‖ + (1 − ε)‖y(t )‖

− δu
√
mλn(L)wmax

2λ2(L)

)
,

where ϵ > 0 is a constant which can be chosen as small as pos-
sible.

Thus, we see that, if ‖y(t )‖ >
δu

√
mλn(L)wmax

2(1−ε)λ2(L)
,

∇V (y)ẏ(t ) ≤ −εkλ2(L)‖y(t )‖2 = −2εkλ2(L)V (t ).

When DT subsystem is activated, similar to the proof of
Theorem 3.7, we obtain

V (t + h) −V (t ) ≤ −k1x̂T (t )Wqu(x̂(t ))
= −k1xT (t )BWqu(x̂(t ))
= −k1yT (t )BWqu(x̂(t )),

where k1 = kh − λn(L)k2h2. From 0 < k < 1
hλn(L)

, we have 0 <

k1 < 1
4λn(L)

. Then, as before,

V (t + h) −V (t ) ≤ −k1λ2(L)‖y(t )‖
(

ε‖y(t )‖

+ (1 − ε)‖y(t )‖ − δu
√
mλn(L)wmax

2λ2(L)

)
.

Thus, if ‖y(t )‖ >
δu

√
mλn(L)wmax

2(1−ε)λ2(L)
,

V (t + h) ≤ (1 − 2εk1λ2(L))V (t ),

where 0 < 1 − 2ϵk1λ2(L) < 1 since 0 < k1 < 1
4λn(L)

.

If ‖y(0)‖ >
δu

√
mλn(L)wmax

2(1−ε)λ2(L)
, there exists t = tc + rh such that

V (t ) ≤ e−2εkλ2(L)tc (1 − 2εk1λ2(L))rV (0) ≤ e−2βtV (0), where
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Figure . (Top) Switching law of system ()–() and the (bottom) state trajectories of all the agents under logarithmic quantisers.

β = min{εkλ2(L),− ln(1−2εk1λ2(L))

2h }. Therefore, one can easily
obtain that there is T > 0 dependent on y(0) and ϵ such that
‖y(t )‖ ≤ δu

√
mλn(L)wmax

2(1−ε)λ2(L)
for all t � T. �

Remark 3.2: If td = 0 and wmax = 1 in switched multi-
agent system (4)–(5), we can easily get the, x(t) converges
to the set {x | ‖x(t ) − 1

n
∑n

i=1 xi(0)1n‖ ≤ δu
√
mλn(L)

2(1−ε)λ2(L)
} with uni-

form quantisers in finite time. In Xu and Wang (2013), the
bound is δuλn(L)

√
m

2(1−ε)λ2(L)
√

λ2(L)
.

4. Simulations
In this section, we will provide computer simulations to demon-
strate the effectiveness of the theoretical results.
Example 4.1: Consider a group of agents with connected com-
munication topology G shown in Figure 1. For simpleness, each
edge weight is assumed to be 1. We can easily calculate the
max non-zero eigenvalue of Laplacian matrix is λ4(L) = 4. Set
sampling period h = 1, δu = 1 and δl = e0.5 − 1. Take con-
trol gain k = 0.1, which satisfies the condition in Theorem 3.3
and Theorem 3.8. The switching law is shown in the top panel
in Figure 2. State trajectories of agents of switched multi-agent
system under logarithmic and uniform quantisers are shown

in the middle and bottom planes in Figure 2, respectively. We
can see that when logarithmic quantisers are used, the switched
multi-agent system can reach consensus, while when uniform
quantisers are used, due to the constraint of uniform quan-
tisation, state trajectories of all the agents just converge to a
bound set.
Example 4.2: Suppose that the communication topology con-
tains a directed spanning tree depicted in Figure 3. Each edge
weight is also assumed to be 1. We choose h = 0.1 and k =
0.8 to satisfy kh < mini=2,...,n

2Re(λi )
|λi|2 . Take H = I3. By cal-

culation, we choose δl = 0.04 to satisfy the conditions in
Theorem 3.7. We can see from Figure 4 that all agents can reach
consensus.
Example 4.3: Suppose that the communication topology is
switching among the three undirected and connected graphs
depicted in Figure 5, where each edge weight is assumed to be
1. By calculation, we choose k = 0.1 to satisfy the condition in
Corollary 3.4. The switching law of communication topology is
shown in the top panel in Figure 6. The switching lawof switched
multi-agent system is depicted in the middle panel in Figure 6.
From the state trajectories of agents under logarithmic quantis-
ers, shown in the bottom plane in Figure 6, we can see the con-
sensus is achieved as desired.

13

4

2

13

4

2

13

4

2

Figure . Three undirected connected graphs.
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Figure . (Top) Switching law of the communication topology depicted in Figure  , the (middle) switching law of system ()–() and the (bottom) state trajectories of all
the agents under logarithmic quantisers.

5. Conclusion
In this paper, we have considered the consensus problem for
switched multi-agent system with quantised information com-
munication. It has been shown that when logarithmic quantis-
ers are used, the switched multi-agent system can reach con-
sensus exponentially under static and time-varying undirected
communication topologies by choosing proper control gain. It
has also been pointed out that the switched multi-agent system
with logarithmic quantiser can reach consensus exponentially
under arbitrary switching if the communication topology con-
tains a directed spanning tree and δl is small enough. In addition,
we have shown that when uniform quantisers are used under
static undirected communication topologies, if k < 1

hλn(L)
, all

the states of agents enter into a ball which is centred at the
desired consensus value in finite time. The future work will
focus on the consensus of switchedmulti-agent systemwith time
delays and communication noise.
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