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of the theoretical results.

This paper studies the consensus of second-order continuous-time multi-agent systems with quantized
interaction. For static consensus, a hybrid impulsive protocol is proposed using the quantized relative
position information. We prove that for any quantizer accuracy, the multi-agent systems can reach con-
sensus if impulsive intervals are less than a given value. For dynamical consensus, an impulsive protocol
is presented using both the quantized relative position and velocity information. It is shown that for any
given impulsive interval, the multi-agent system can achieve consensus by selecting appropriate control
gains and sufficiently small quantizer accuracy. The simulation results are given to verify the effectiveness
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1. Introduction

Recently, considerable attention has been paid to multi-agent
systems (MASs) and lots of work has been done, such as consensus,
containment control, controllability, optimization, fault detection,
oscillator synchronization problem.  Consensus is a fundamental
and important problem in distributed coordination control and has
been widely studied due to its wide applications in many fields,
such as distributed estimation, distributed time synchronization,
etc [1-7]. In practice, as digital networks are widely used, we have
to consider some network-induced problems, such as time-delay
[2,8], packet loss [9], quantization [10,11]. Early works on quantized
consensus mainly focuses on discrete-time (DT) MASs. The no-
tion of quantized was introduced in [12]. Using encoding-decoding
scheme, quantized consensus problem was studied for DT MASs
under undirected graph in [10,13] and directed graph in [14]. In
[15], the leader-following consensus based on encoding-decoding
is investigated in directed graph. Recently, increasing attention has
also been focus on the quantized consensus of continuous-time
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(CT) MASs. Because of the discontinuity of the quantized signals,
the tools from nonsmooth analysis were often used for consensus
analysis of CT MASs. Consensus with relative quantized state mea-
surements were studied for first-order MASs under static topol-
ogy in [16] and time-varying topology in [17]. Using incidence ma-
trix, consensus with quantized relative state measurements was
studied for MASs with first-order dynamics in [18,19] and second-
order dynamics in [19]. By constructing a novel Lyapunov func-
tion, [20] improved the results in [18] for second-order MASs and
proved that the consensus can been achieved for any quantizer
accuracy under undirected and connected communication topol-
ogy. In [21], the authors dealt with consensus problem for pas-
sive systems in the presence of quantized relative state mea-
surements. Consensus of MASs with general linear dynamics un-
der quantized relative states measurements was investigated in
[22]. In [23], quantized consensus of heterogeneous MASs was
investigated.

In practice, impulsive control strategy has many advantages,
such as simple structure, small control cost, etc. There has been
many works devoted to studying impulsive consensus problems. In
[24], the author used a novel impulsive control method for MASs
to reach consensus and the performance of the closed-loop system
was improved. Impulsive consensus protocols were proposed for
MASs with second-order dynamics using velocity information in
[25] and without using any velocity information in [26,27]. In [28],
the authors showed that by synthesizing the coupling weights and
the average impulsive intermittence, MASs can achieve guaranteed
performance.
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In [18-23], the authors proved that the MASs can reach con-
sensus asymptotically with the CT consensus protocol and quan-
tized information. However, the Zeno behavior, i.e., the transmis-
sion times of quantized information accumulate in finite time,
which is resulted from logarithmic quantized interactions between
agents was not discussed in these papers. Motivated by impulsive
control strategy, in this paper, we exclude the occurrence of Zeno
behavior via impulsive control, which only need the quantized rel-
ative state information of agents at impulsive instance. First, a hy-
brid impulsive protocol is proposed for static consensus. By using
stability theory of impulsive systems and properties of the Lapla-
cian matrix, we prove that for any quantizer accuracy, the MASs
can reach static consensus if impulsive intervals are less that a
given value. Second, an impulsive protocol is presented and a suf-
ficient condition is given to guarantee the achievement of dynamic
consensus. Third, an intermittent consensus protocol is also pro-
posed to avoid the abrupt change of states in impulsive protocol.
Finally, the simulation results are given to verify the effectiveness
of the theoretical results.

Notation: Let R" be the set of n-dimensional real vectors and
N be the set of nonnegative integers . AT denotes the transpose
of matrix A. |-| stands for the absolute value of a real number. 0,
is an n x 1 column zero vector, I, is an n x n identity matrix,
diag{a,, ..., an} is a diagonal matrix, Z, = {1, 2, ..., n}. If the eigen-
values of a matrix A € R** ™ are real, they are ordered A{(A) <
Ay(A) < -+ < Ap(A) in this paper.

2. Preliminaries
2.1. Graph theory

Let G(A) = (V, &, A) be a weighted undirected graph, where
V=1{s1,82, ....sp} is a vertex set, £={ej.e3. ....em} SV xV
is an edge set, and A= (g;j)nxn is an adjacency matrix with
a; > 0 if (sj,s) €& and a;; =0 otherwise. We assume q; =
0. The graph G is called connected if for any two dis-
tinct vertices s; and s; there exists a sequence of distinct
edges (S;, Sk, ). (g, Sky)s -+ (Sk,_,»Sj) between them. Define D =
diag{d;.d,, ..., dn} with d; = Z?:Lj#i a;; and the Laplacian matrix
L =D — A. Orientate each edge in graph G arbitrarily to make it
have a head and tail. The incidence matrix B = (b,-j)nxm is defined
as bjj =1, if s; is the head of e;, b;j =—1, if s; is the tail of g;
and b;; =0, otherwise. Let W = diag{wy. ..., wm}, where w; de-
notes the weight of e;. Then, L = BWBT.

2.2. Quantizer

Define the set of quantization levels as

i
U= {:I:U,‘, Ui = <:i;g> Llo,i::t1,:|:2,...} U {£uq} U {0},

where ug > 0 and accuracy parameter 0 < § < 1.
A logarithmic quantizer q: R — R is a map defined as [29]:

u if 1 U <a< 1 u,a>0

i mi< _mh > U,
qg@ =10 ifa=0,

—q(—a) ifa<0.

From the definition, it can be easily derive that |a—q(a)| <
8lal, Ya € R. For a vector x=[xq,....x4]" € R, define q(x) =

CIE R TE DI

3. Main results

Consider a MAS which consists of n second-order agents as
Xi(6) =vi(t), v;(t) = u (), (1)
where x; € R, v; € R are the ith agent’s position and velocity, i € Z,.

Definition 1. Consensus in the MAS (1) is said to be achieved if
the states of agents satisfy

lim | x(t) —x;(t) |[=0, lim |v(t) —v;(t) |=0, Vi, jeI,.
t—+o00 t—+o00
3.1. Static consensus

When logarithmic quantizers are used, we adopt the following
hybrid impulsive protocol:

u;(t) = —av;(t) + kz |:Z a;;q(x;(t) Xi(t)):|5(t —t), (2)

1=0 | j=1

where the control gains o > 0, k > 0, §(-) is the Dirac function.
Impulsive instants satisfy 0=ty <ty <--- <ty <---,lim_ ;=
+00. We define 7 > 0 such that the sampling period h; =, —t; >
T.

Lemma 1 [30]. If G, H are Hermitian matrices and 1 <i; < iy < -+~
< i, < n, then

k k k
Y X (G+H) =Y A, (G)+ Y Ae(H).
t=1 t=1 t=1

Lemma 2. Let L; = BW;BT and L, = BW,BT, where B € R" * ™ is an
incidence matrix of graph G, W1, W, € R™ * ™ are nonnegative diag-
onal matrices. Then A;(Ly + Ly) > A;(L1),i € Tn.

Proof. From Lemma 1, we have A;(Lq +Ly) > A;(L1) + Aq1(Ly).
From Aq(Ly) =0, we get A;(L; +Ly) = A;(L;). O

Theorem 1. Suppose that the communication graph G is connected.
System (1) achieves consensus under protocol (2) if k(1 + 8)An(L) <

2 a+(1-8)kry (L)
aand hy < 5 1In 7(17(]75)“;(”.

Proof. Let X(t) = 1 Y1, x;(t), U(t) = £ Y1, vj(6), Xi(t) =x;(t) —
X(t), U;(t) =v;(t) —v(t). System (1) with protocol (2) can be
rewritten as
X(t) = hi(t),
Ui(t) = —abi(t),

aTi() = kY2 aa () —x(0).

where Ai),'(f[) = Af/i(ff—) — Af}i(fl).

Define  x(t) = [x1(¢), ..., xn (O, v(t) = [v1(0), ..., v (O], R(t)
= BTx(t), D(t) = BTw(t), R(t) = x(t) — 1ax(t) , D(t) = v(t) — 14D(t)
and q(x(t)) —x(t) = A(t)x(t), where A(t)=diag{e;(t),...,
em(t)} and g;(t) € [-8, +6],1 € ZT;m. Then, we have
AV(ty) = —kBWq(R(;))

—kBW (I + A (t))X(t;)
—kBW (I + A(t;))B"x(t))
—kBW (I + A (t))BTX(t)),
where the final equality is due to the fact that BT1, = 0.
The aggregate dynamics of system (3) is represented by
X(t) =0(t),
() = —aii(t),
A(t) = —KL(E)X(t),

where L(t;)) = BW (I + A(t;))B.

t#1, 3)

t#£t, (4)
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Let y(t) = (R (t), 9T (t))T. According to (4), we have for Vt e
(bl

1 — e—at=t)
L ————— L)\ (h 0
t) = n n
) (o s )(-kL(t,) 1,,)

-1 1- e_a(tsﬂ—[s)
(" ("
s=0 \\0 e ¢Ea-t[ —KkL(ts)

2))%)

-1
= @(t.t) [ [ P (tsa. ts)y(to), (5)
s=0
where
1— e*a(fsﬂ —ts) 1-— e*a(fsﬂ —ts)
D(tsy1,t5) = b= o KL (ts) f’” .
_e—‘x(fsﬂ—ts)kL(ts) e—a(ts+1—ts)1n
Inspired by the proof of [27], we note that y(t)=

(L ® Q)T (t), V" (t))T, where Q=1I,— 11,15, From Q?=0Q
and ®(t,1,t) (L ® Q) = (L ® Q)P (ts, 1, t5), an equivalent solution
of (5) is
-1
y(t) = O, 6) [ [ P(tss1, ) (lh ® Q) (X' (t), V" (t0))"
s=0
-1
= O(t, t) [ [ (P(tss1.t5) (I ® Q))y(to)

s=0

-1
= ®(t. ) [ [Hsy (o). (6)
s=0
where

1-— e—ozhS
H, — (Q - ——— kL)

1 —ehs
—aQ
o )
—e~hskL () e~ohsQ

Since the communication graph is undirected, the matrix
L(ts) is a real symmetric matrix and there exists an orthogonal
matrix U(ts) € R"* ™ such that UT (t5)L(ts)U(ts) = diag(0, A(ts)),
where A(ts) = diag(Ay (L(ts)), A3(L(ts)), ..., An(L(ts))). To calculate
the eigenvalues of Hs, we solve the following equation:

det(Aly — Hs) = det(Aly — (b ® UT (t:))Hs (h ® U(ts)))

1—eoh
kA(t) ==l

(A —eh)l, 4

1—eoh
= Dhyy + o

_ 12
= A"det A kA (1)

n

=2]] (v —(14eh -
i=2

=0.

Hence, the eigenvalues of Hs are AL(Hs) =0 and AL (H;s) = %51 +
3/ (PH2 —de~ahs . where Pl=1+e s — 1‘%"510»,»@(&)), i=
2,3,...,n. Note L(t;)=BW(I+ A(ts))BT. From Lemma 2, one
obtains that maxA;(L(ts)) = maxAq(L(ts)) = An((1 +8)BWBT) =
(1 +8)An(L) and min Ay (L(ts)) = A ((1 —8)BWBT) = (1 —8)A,(L).
Hence, from the condition k(1 + §)An(L) < o, we have kA;(L(ts))

1—eoh n
ML) 2 e

. Ai ~%h crs _
< a, that is %) 4 1725 The condition hs<2 In SH20
1-e 278
o o
. . 2 1 otk (L)) e 1oe 2 kULEs) g 1e 2l
implies that ns<ZIn RTG) that is e TR Since o
A —-4h, . L.
QD 1o 27 then (P2 -deahs—(1-e-hs)2 (ULED )2y _g-arh) (14

1-e 28
e-arhs) KiUs) 4 (7 o-ahsy2 o Thus, |r (Hs)|=v/e-ots </e @2 py<1,i=2.3....n.
Therefore, p(Hs) < po. Since for V& > 0, there must ex-
ist a matrix norm |||, such that | Hs|<p(Hs)+&. We can

take & sufficient small, such that || Hs ||< po+& £y < 1. Then,

1y 1<l (e, 6) | TIZg I Hs Il y(to) lI<ll @& &) Il y(to) I v
Since y < 1, we have lim;_, , || y(t) ||= 0, which implies that
the consensus is achieved.

We can further calculate the agents’ asymptotic states. Since
the communication graph is connected, one can check that
U(t) = —ab(t). Hence, ¥(t) =e~*C—0)y(ty). Combined with the
fact that lim, o | ¥;(6) —v;(t) |[=0, we have limi.v;(t) =
0, ieZ,. Since )?(t):l'/(t), then )?(t):)?(to)-#]’eﬂzﬁﬁ(to), it has
limg— o0 x; () = X(to) + L 0(tp). O

3.2. Dynamic consensus

In this section, we adopt the following impulsive protocol:

u;(t) = Z |:k1 ZaijQ(Xj(f) —xi(t)) +k ZaijQ(vj(t) - Ui(f))i|

1=0 j=1 j=1
X S(t — t[). (7)
Under protocol (7), system (1) can be rewritten as:
Xi(t) = vi(ty),
vi(t) =0, . t#1t,
avit) =k Y- aae () —x(t) (8)
ke Y] ayq(y(t) = vi(t).

Take t;,; —t;=h > 0, | € N. System (8) can be represented com-
pactly by

X(t1+l) _ In hIn X(t’) hk]BW hszW q()?(t,))
vt ) ~\0 I J\v@)) \kBW  kBW J\q@(®)))
(9)

Lemma 3. System (1) achieves consensus under protocol (7) if and
only if discrete-time system (9) achieves consensus.

Proof. Sufficiency. Since system (9) achieves consensus, we have
limy_, o | %i(t) — x;(t) [= 0, limp_, o | v3(8) —v;(t)) |= 0. For Vt
> tg, Al € N, such that t € (t;,t,1]. When t — oo, it means that
I - oo and t; — oo. Thus, lim¢, 1 | V;(t) —v;(t) |= 0,1, j € T and
lim;_, 100 | AV;(t;) |= 0, Vi€ Z,. For Vi, j € T, it has

[ETPOC |x;(t) —x; ()| = [ETPM %; (&) —x;(t) + (E—t) (i (&) —v;(t))
+ (£ — ) (Avi () — Av;())]
=0.

Necessity. The necessity is obvious and thus is omitted for
brevity. O

Theorem 2. Suppose that the communication graph G is connected.

System (1) achieves consensus under protocol (7) if h < ﬁ - %

2 , where dy and d, are defined in (13).

and 6 < ——=——
An(L)(dy+,/d3+4d;)

Proof. Define the quantization error by
qR(t)) = x(t) = AxX(t), q(0(6)) — (t) = A (t)),

where Ay =diag{eq,....em}, Ay =diag{enq,..
[-6, +8],1i € Ty. Then, system (9) is rewritten as

Xt (I —hkal bl — hkoL\ (X(t)\ (hkiBW  hk,BW
U(tl+1) - —le [n—kzL U(tl) k]BW szW

AX Ome x\(t)
. (omxm Ay )(ﬁ(tﬁ))' (10)

There exists an orthogonal matrix U = [%,Ul] € R™M"_ such that
UTLU = diag(0, A), where A = diag(A,(L), A3(L), ..., An(L)). Then,

., &m} and ¢g; e
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by applying the state transformation r(t) = UTx(t), p(t) = UTu(t)
and y(t) = (T (t), pT(t))T, the Eq. (10) becomes
V(1) = (My + Mp)y(t)), (11)
where
1 or | h or |
M On—l i1 — hk1 A On,1 hln,1 — hsz
1= ,
0 OL] 1 OLI
0n—1 -k A 051 I — kA
0 OLI 0 0571
M 0,_1 hkq UTBWAXBTU1 041 thU]TBWA,,BTU1
) =
0 OL] 0 OL1
041 k1U]TBWAxBTU1 041 szITBWA,,BTUl

Since the communication graph among agents is connected,
we know that lim;, . x;(t;) =lim;_, x;(t), Vi,jeZ, if and
only if lim;, Lx(t;) =0. From x(t) =Ur(t), the latter holds
if and only if lim,_, LUr(f) =0. Since LU =Udiag(0,A),
lim;_, , LUr(t;) = 0 holds if and only if lim,_, ,, diag(0, A)r(t;) =0,
equivalently lim;_ ri(t,) =0 for i=2,3,...,n. Similarly, we
have lim, v;(t;)) =lim_  vj(t;), Vi, jeZ, if and only if
lim_, , pi(t,)) =0 for i=2,3,...,n. Thus, we obtain that sys-
tem (10) can achieve consensus if the following system

y(ti 1) = (M3 + EAF)y(t)y(t), (12)

is stable, where

Ma — I_1— hk]A hln,1 — hsz
T kA Lot —keA )

_ hkl hkz T 1

A = diag(Ax. Ay)., F=hL® W32B'Uy).

It is easy to get that Amax(ETE)= (k2 +Kk3)(1+h®H)ry(D),
Amax (FTF) = An(L). To calculate the eigenvalues of M3, we solve
the following equation:

det(uly, 1)_M3)_det<(k—1)1n_1+hk1A —hIn_1+hk2A)
. -

ki A A=Dlpq + kA

n
l_[ ()»2 + (hkqA; + koXi —2)A +1 — kz)\,,‘)

=2

Il
e

Let a;(A) = A2+ (hk])n + ’(2)\.1' —2)A+1- kz)\i, i=2,3,...,n De-
fine rj(0)=(0—1)%a;({Z)=hki1jo% + 2A;ko0 — hky A — 2ky; + 4.
Then the Schur stable of a;(ut) is equivalent to the Hurwitz sta-
ble of r(o). The roots of rj(c) =0 are HLJ:E /(hk2 +1)27W Thus,
r,v(a) is Hurwitz stable if and only if (hk2 +1)2—4 <(hk2 )2, that is
h<- 53— % Therefore, M3 is Schur stable.

Smce Mj3 is Schur stable, there exists a matrix P > 0 satisfies
MIPM; — P = —I. Take V(t) = yT (t)Py(t). We have
V(ty) -V () =y (t;) (Ms+EAF) P(Ms+EAF)y(t;)—y" (t))Py(t;)
-y’ (t:)(MgPMs—P)y(tzHZyT (t)F" AE"PMsy(t;)
+y"(t))FT AETPEAFy(t))
= —y"(t)y(t;)) + 2y" (t; )FT AETPM3y(t))

+yT (t)FT AETPEAFy(t)).

Note that
2y" (t)FT AETPMsy (1)) < y" (t;))FT AFy(t;)
+y" (t;)MEPEAETPM3y (t;)

< [6)\41 (L) + akmax(ETE))\max(P) ()umax(P) - 1)]yT(tl)y(tl)
= diAa(L)SY" (t)y (1)),
and

V' (@)FT AETPEAFY () < [82hmax (P) mmax (ETE)hmax (FTF)

x yT (t)y(t)

= da A2 (L)%Y (t)y (1),
where
d =1+ (k% + k%)(l + hz))\max(P)()\max(P) -1),
dy = Amax(P) (k3 + K3)(1 + h?). (13)
Thus
V(ti1) = V(t) < (d2A2(L)8% + dian(L)S — Dy (t)y(t)).
It follows from s<m that V(t;,1) — V(t;) < 0. Therefore,

system (12) is stable, that is system (1) achieves consensus un-
der protocol (7). Following the proof of Theorem 1, we can obtain
that lim;_, o v;(t) = U(tg) and lim;_ o x;(t) = X(tg) + (t — to)V(ty),
ieZy. O

Remark 1. If we want to force the agents to reach a desired state,
we can consider the case that there is a leader in MASs. If the
communication graph among the followers is undirected and con-
nected, similar to the proof above, it is easy to get some sufficient
conditions for the states of all agents asymptotically approach the
state of the leader.

The impulsive consensus protocol needs the abrupt change of
states at sampling instants. However, in practice, some agents may
not bear the sudden changes of states. Thus, we propose the fol-
lowing consensus protocol:

k]

5 2=t Gq (X (6) = %)

u;(t) = +k2 Z; 1459 (&) — vi(6)),

O7 t1+5<t§tl+],
(14)

tl<t§tl+5,

where 0 < s < h.
Since the control input of each agent during (t;,t; + ] is time-
invariant, we have

{Xi(fl +5) = x(8) + svi(6) + Sui(8y).
Vit +5) = vi(ty) + su;(6).

Thus, the aggregate dynamics of the system (1) under consen-
sus protocol (14) is represented by

x+s)\ _( I s\ (x(t)
v(ti+5)) ~ \Onxn I v(ty)
_(GrBw SkoBw (q(’f“’))). (16)
GBW  kw ) \d@@)
and

Xt (L (=) (x( +3)
(v(rﬁi))‘(om h )(v(ﬁ,m) (17)

Thus, one obtains

x(ti41) _ I hIy \ (x(t;)
U(tl+1) Onxn In v(tl)
B ((h_;)lqgw (h—;)szW) (q()f(t,)))h as)

(15)

kyBW k,BW q((t))
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Fig. 1. The communication graph among agents.

Similarly, the system (18) achieves consensus if and only if the
following system

Y(tii1) = (Mg + E1 AF)y (),

is stable, where

(19)

N N
In,1 — (h — E)k]A hln,1 — (h — E)sz
—ki A I — kA

My =

)

N S

E =
! k] kz

Let P > 0 be the unique positive definite solution to the Lyapunov
equation MjPMy — P = —I. Define

d3 =1+ (k% +k%)(1 + (h _S)Z)Amax(P)()\max(P) - 1)7

dy = Amax(P) (k2 +K3) (1 + (h —5)?). (20)

Similar to the proof of Theorem 2, the following result can be ob-
tained directly.

Theorem 3. Suppose that the communication graph G is connected.
System (1) achieves consensus under intermittent protocol (14) if s <
2k, 4 2k, )

2h-s< S —"2and s<—2

ky AnDky Tk - An(D) 3+ [aF+4dy)

4. Numerical simulations

Example 1 (Static consensus). Consider a connected graph G given
by Fig. 1, where the weight of each edge is 1. We can easily get
Ao (L) =1 and A4(L) = 4. Take control gain o = 1 and accuracy pa-
rameter § = 0.1. According to Theorem 1, we can take k=0.2 <

m = 0.23. For simplicity, take the uniform impulsive inter-

val h, =0.5 < gln % = 0.73. The simulation results are
given in Fig. 2.

Example 2 (Dynamic consensus). We choose h =2 and k; =k, =
0.2 to satisfy the conditions in Theorem 2. Solve the Lyapunov
equation M;PM3 — P = —I, we get the matrix P > 0 and Apax(P) =
21.0139. According to definition in (13), we get d; = 169.2280 and
d, = 8.4056. Thus, we take § = 0.001. We can see from Fig. 3 that
all agents reach consensus.

5. Conclusion

In this paper, the quantized consensus problem was considered
for MASs with undirected communication graph. Impulsive con-
sensus protocols using the quantized relative state measurements
were proposed for MASs to achieve static and dynamic consen-
sus, respectively. We proved that all agents can achieve consen-
sus by selecting appropriate control gains, quantizer accuracy and
impulsive intervals. In addition, an intermittent consensus protocol
was also proposed to avoid the abrupt change of states. The future
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Fig. 2. Position and velocity trajectories of all the agents under protocol (2).
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Fig. 3. Position and velocity trajectories of all the agents under protocol (7).

work will focus on impulsive consensus problem for MASs with
more complex dynamics in presence of quantizers.

References

[1] R. Olfati-Saber, R.M. Murray, Consensus problems in networks of agents with
switching topology and time-delays, IEEE Trans. Autom. Control 49 (9) (2004)
1520-1533.

[2] Y. Zheng, J. Ma, L. Wang, Consensus of hybrid multi-agent systems, IEEE Trans.
Neural Networks Learn. Syst. (2017), doi:10.1109/TNNLS.2017.2651402.

[3] Y. Zheng, Y. Zhu, L. Wang, Consensus of heterogeneous multi-agent systems,
IET Control Theory Appl. 5 (16) (2011) 1881-1888.

[4] Y. Zheng, L. Wang, Consensus of switched multi-agent systems, IEEE Trans. Cir-
cuits Syst. Il Express Briefs 63 (6) (2016) 314-318.

[5] X. Lin, Y. Zheng, Finite-time consensus of switched multiagent systems,
IEEE Trans. Syst., Man, and Cybern.: Systems (2016), doi:10.1109/TSMC.2016.
2631659.

[6] J. He, P. Cheng, L. Shi, J. Chen, Y. Sun, Time synchronization in WSNs: a
maximum-value-based consensus approach, IEEE Trans. Autom. Control 59 (3)
(2014) 660-675.

[7] J. He, L. Duan, F. Hou, P. Cheng, ]J. Chen, Multiperiod scheduling for wireless
sensor networks: a distributed consensus approach, IEEE Trans. Signal Process.
63 (7) (2015) 1651-1663.

[8] J. Hu, D. Chen, J. Du, State estimation for a class of discrete nonlinear sys-
tems with randomly occurring uncertainties and distributed sensor delays, Int.
J. Gen. Syst. 43 (3-4) (2014) 387-401.

[9] Y. Zhang, Y.P. Tian, Consensus of data-sampled multi-agent systems with ran-
dom communication delay and packet loss, IEEE Trans. Autom. Control 55 (4)
(2010) 929-943.

[10] T. Li, M. Fu, L. Xie, ].F. Zhang, Distributed consensus with limited communica-
tion data rate, IEEE Trans. Autom. Control 56 (2) (2011) 279-291.

[11] J. Hu, Z. Wang, B. Shen, H. Gao, Quantized recursive filtering for a class of
nonlinear systems with multiplicative noises and missing measurements, Int.
J. Control 86 (4) (2013) 650-663.

[12] A. Kashyap, T. Basar, R. Srikant, Quantized consensus, Automatica 43 (7) (2007)
1192-1203.

[13] T. Li, L. Xie, Distributed coordination of multi-agent systems with quan-
tized-observer based encoding-decoding, IEEE Trans. Autom. Control 57 (12)
(2012) 3023-3037.

[14] H. Li, G. Chen, T. Huang, Z. Dong, W. Zhu, L. Gao, Event-triggered distributed
average consensus over directed digital networks with limited communication
bandwidth, IEEE Trans. Cybern. 46 (12) (2016) 3098-3110.

[15] H. Li, G. Chen, X. Liao, T. Huang, Leader-following consensus of discrete-time
multiagent systems with encoding-decoding, IEEE Trans. Circuits Syst. Il Ex-
press Briefs 63 (4) (2016) 401-405.

[16] E. Ceragioli, C. De Persis, P. Frasca, Discontinuities and hysteresis in quantized
average consensus, Automatica 47 (9) (2011) 1916-1928.

[17] P. Frasca, Continuous-time quantized consensus: convergence of Krasovskii so-
lutions, Syst. Control Lett. 61 (2) (2012) 273-278.

[18] D.V. Dimarogonas, K.H. Johansson, Stability analysis for multi-agent systems
using the incidence matrix: quantized communication and formation control,
Automatica 46 (4) (2010) 695-700.

[19] M. Guo, D.V. Dimarogonas, Consensus with quantized relative state measure-
ments, Automatica 49 (8) (2013) 2531-2537.

[20] H. Liu, M. Cao, C. De Persis, Quantization effects on synchronized motion of
teams of mobile agents with second-order dynamics, Syst. Control Lett. 61 (12)
(2012) 1157-1167.

[21] C.D. Persis, B. Jayawardhana, Coordination of passive systems under quantized
measurements, SIAM J. Control Optim. 50 (6) (2012) 3155-3177.

[22] Y. Xu, ]. Wang, The synchronization of linear systems under quantized mea-
surements, Syst. Control Lett. 62 (10) (2013) 972-980.

[23] Y. Zhu, Y. Zheng, L. Wang, Quantised consensus of heterogeneous multi-agent
systems, IET Control Theory Appl. 9 (17) (2015) 2553-2560.

[24] Q. Hui, Hybrid consensus protocols: an impulsive dynamical system approach,
Int. J. Control 83 (6) (2010) 1107-1116.

[25] Z.H. Guan, ZW. Liu, G. Feng, M. Jian, Impulsive consensus algorithms for sec-
ond-order multi-agent networks with sampled information, Automatica 48
(2012) 1397-1404.

[26] ZW. Liu, ZH. Guan, X.M. Shen, G. Feng, Consensus of multi-agent networks

with aperiodic sampled communication via impulsive algorithms using po-

sition only measurements, IEEE Trans. Autom. Control 57 (10) (2012) 2639-

2643.

H. Zhang, ]. Zhou, Distributed impulsive consensus for second-order multi-

-agent systems with input delays, IET Control Theory Appl. 7 (16) (2012)

1978-1983.

[28] Z.H. Guan, B. Hu, M. Chi, D.X. He, X.M. Cheng, Guaranteed performance con-
sensus in second-order multi-agent systems with hybrid impulsive control, Au-
tomatica 50 (9) (2014) 2415-2418.

[29] M. Fu, L. Xie, The sector bound approach to quantized feedback control, IEEE
Trans. Autom. Control 50 (11) (2004) 1689-1711.

[30] I Olkin, A.W. Marshall, Inequalities: Theory of Majorization and Its Applica-
tions, Academic Press, New York, 2016.

[27]


http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0001
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0001
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0001
http://dx.doi.org/10.1109/TNNLS.2017.2651402
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0003
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0003
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0003
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0003
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0004
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0004
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0004
http://dx.doi.org/10.1109/TSMC.2016. ignorespaces 2631659
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0006
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0006
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0006
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0006
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0006
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0006
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0007
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0007
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0007
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0007
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0007
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0007
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0008
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0008
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0008
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0008
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0009
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0009
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0009
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0010
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0010
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0010
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0010
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0010
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0011
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0011
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0011
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0011
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0011
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0012
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0012
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0012
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0012
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0013
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0013
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0013
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0014
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0014
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0014
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0014
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0014
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0014
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0014
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0016
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0016
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0016
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0016
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0016
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0017
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0017
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0017
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0017
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0018
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0018
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0019
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0019
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0019
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0020
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0020
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0020
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0021
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0021
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0021
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0021
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0022
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0022
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0022
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0023
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0023
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0023
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0024
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0024
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0024
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0024
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0025
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0025
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0026
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0026
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0026
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0026
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0026
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0027
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0027
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0027
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0027
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0027
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0028
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0028
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0028
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0029
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0029
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0029
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0029
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0029
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0029
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0030
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0030
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0030
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0031
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0031
http://refhub.elsevier.com/S0925-2312(17)31084-6/sbref0031

Y. Zhu et al./ Neurocomputing 270 (2017) 27-33

Yunru Zhu was born in Xian, Shaanxi Province. She re-
ceived the BS degree in automatic from Xidian University
in 2003, the MS degree from Huazhong University of Sci-
ence and Technology in 2006, and PhD degree from Xi-
dian University in 2015, respectively. Since 2006, she has
been working at the School of Mechano-Electronic Engi-
neering, Xidian University. Her current research interests
are in the fields of coordination of multi-agent systems,
quantized control and impulsive control.

Yuanshi Zheng was born in Jiangshan, Zhejiang Province,
China on February 19, 1985. He received his bachelor,
master, and doctorate degrees from Ningxia University
and Xidian University in 2006, 2009, and 2012, respec-
tively. He is currently a associate professor of Xidian Uni-
versity. His research interests are in the fields of coordi-
nation of multi-agent systems, consensus problems, con-
tainment control and coverage control.

33

Yonggiang Guan received his PhD degree in complex sys-
tems at Beihang University. He is currently a lecturer at
School of Mechano-Electronic Engineering, Xidian Univer-
sity. His current research interests are in the fields of co-
ordination of multiagent systems and complex networks.



	Quantized consensus of second-order multi-agent systems via impulsive control
	1 Introduction
	2 Preliminaries
	2.1 Graph theory
	2.2 Quantizer

	3 Main results
	3.1 Static consensus
	3.2 Dynamic consensus

	4 Numerical simulations
	5 Conclusion
	 References


