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Nash Equilibrium Topology of Multi-Agent
Systems With Competitive Groups

Jingying Ma, Yuanshi Zheng, and Long Wang

Abstract—Competition is ubiquitous in nature. This pa-
per studies competition phenomena of multi-agent systems
consisting of three groups of agents. In order to achieve
maximal influence, the first and the second groups send
information to the third group, which leads to competition.
First, we formulate this competition as a noncooperative
game in which the first and the second groups are two play-
ers. Players decide agents who send and receive informa-
tion. Consequently, the interaction topology of the system
is generated from players’ strategies. Therefore, we define
the interaction topology decided by Nash equilibrium of the
game as the equilibrium topology of the system. Second,
the necessary condition is established for equilibrium topol-
ogy. For the case that the third group’s interaction graph is
a tree or has a center vertex, interchangeable Nash equilib-
rium solutions are obtained. Moreover, due to competition,
the agents of the third group might reach consensus under
the equilibrium topology. Finally, when the third group’s in-
teraction graph is bidirected, the necessary and sufficient
condition is given for the equilibrium topology. The equi-
librium topology is also presented for the scenario where
the third group’s interaction graph is a bidirected circulant
graph.

Index Terms—Equilibrium topology, multi-agent systems,
noncooperative game.

I. INTRODUCTION

IN THE last decade, distributed coordination and coopera-
tive control of multi-agent systems (MASs) have captured

tremendous attention from a wide range of academic disciplines,
such as biology, engineering, social science, etc. [1]–[3]. This is
mainly due to their diverse applications, such as tracking control
of robotic teams [2], unmanned air vehicles (UAVs) formations
[4], distributed power dispatch, and distributed energy manage-
ment of smart grids [5]–[7]. Fundamental aspects of multi-agent
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systems pertain to consensus problem [1], [8], [9], formation
control problem [4], containment control problem [10], [11],
controllability analysis [12], [13], flocking [14], and so on.

In multi-agent systems, each agent is an individual who makes
decision independently. When agents have the same interest,
agents will cooperate with their local neighbors by sharing in-
formation. Consensus is a fundamental cooperative behavior,
which means that a team of agents agree on a common goal
of interest, e.g., the incremental cost in power generations, the
heading of a UAV formation, or the target position of a robotic
team. In [1], a simple model was introduced to study the behav-
ior of consensus. Subsequently, some theoretical explanations
were provided by using graph theory [8]. Cooperative game
theory is also utilized to ensure consensus reaching [15]. Up to
now, numerous results on consensus were reported, to name but
a few, consensus with switching topologies [16], finite-time con-
sensus [17], [18], optimal consensus problem [19]–[21], group
consensus [22], consensus for heterogeneous multi-agent sys-
tems [23], and for switched multi-agent systems [24], [25]. In
[6], a consensus protocol was proposed for smart-grid comput-
ing. By selecting the incremental cost of each generation unit
as the consensus variable, Zhang and Chow [7] gave an incre-
mental cost consensus algorithm to solve economic dispatch
problem in a distributed manner. As an extension of consensus,
containment control of multi-agent systems has also been widely
studied recently. Some researchers considered this problem un-
der a leader-based framework. Ji et al. [26] proposed a hybrid
stop-go strategy to achieve containment with fixed topology.
Notarstefano et al. [27] investigated containment control of first-
order MASs with switching topologies. Other researchers inves-
tigated containment control problem by classifying the agents
into boundary agents and internal agents. Liu et al. [10] showed
that the states of internal agents converge to a convex combina-
tion of the boundary agents with weakly connected topologies.

What will happen when agents have different interests? This
may produce noncooperation behaviors. For examples, price ne-
gotiation in a smart grid consisting of electric power companies
and their customers and competition of two political parties,
which run for election in social networks. Some methodologies,
such as noncooperation game theory, signed graph theory, and
optimization theory might be applied to analyze their behaviors.
By virtue of game theory, Mohsenian-Rad et al. [28] presented
a distributed demand-side energy management system for smart
grids with digital communication infrastructure. Gu [29] em-
ployed differential game theory to achieve formation control.
The notion of graphic game was introduced in [30]. Gharesifard
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and Cortés [31] considered a zero-sum game for two networks
engaged in a strategic scenario. Clark and Poovendran [32] for-
mulated the problem of maximizing influence in social networks
with competitive ideas as a Stackelberg game. In [33], signed
graph theory was employed to consider group synchronization
problem for multi-agent systems with competitive interactions.
Ma et. al investigated noncooperative behaviors of multi-agent
systems with two competitive leaders in [34] and [35]. For a
leader and its opponent, the authors considered the problem of
minimizing the influence of the opponent. The problem was for-
mulate as three optimization problems [34]. In [35], Ma et al.
proposed a zero-sum game where two competitive leaders are
players. Both of the two leaders want to maximize their influ-
ence on the followers. The Nash equilibrium solutions are given
when the followers’ interaction graph is a bidirected star graph
or a circulant graph.

Inspired by the aforementioned papers, we investigate com-
petition behavior of multi-agent systems, which consist of three
groups of agents: V1 , V2 , and V3 . Agents of V1 and V2 can
send information to at most m (≥ 1) agents of V3 . Then, they
can influence agents in V3 . Agents of V1 and V2 want to exert
maximum influence on V3 , which leads to competition between
them. Since agents of V1 (V2) cooperate and reach consensus,
they have the same interests. Consequently, the competition be-
tween agents ofV1 andV2 is actually a competition between two
groups—V1 and V2 . We can formulate a finite noncooperative
game to analyze the competition between two groups. The main
contribution of this paper is threefold. First, we develop a non-
cooperative game where V1 and V2 are two players and their in-
fluence power on V3 are payoffs. Because the players’ decisions
will determine the interaction topology of the system, seeking
Nash equilibrium solution of the game is equivalent to choos-
ing equilibrium topology for the system. Second, the necessary
condition is established for equilibrium topology. It should be
noticed that the game might have Nash equilibria, which are
not interchangeable, whereas, when the graph of V3 is a tree
or has a center vertex, exchangeable equilibrium topologies are
obtained. Furthermore, agents of V3 might reach consensus un-
der the equilibrium topology, which is different from the existed
results of containment control. Third, the necessary and suffi-
cient condition is obtained for the equilibrium topology when
the graph of V3 is bidirected. Moreover, for the scenario where
V3 is a bidirected circulant graph, we prove that all strategy
pairs are interchangeable Nash equilibria. It is worth empha-
sizing that the current work differs from that in [35], which is
extended to a general framework in this paper, mainly in the
following two points. First, in this paper, competition between
two groups is considered, whereas Ma et al. [35] focuses on the
case of competition between two leaders. Second, in this paper,
the interaction graph of V3 is a direct graph, whereas in [35],
the interaction graph of followers is bidirected.

This paper is organized as follows. In Section II, we introduce
some notions of graph theory and noncooperative game, and
state our problem. In Sections III and IV, we present our main
results and give some illustrative examples. Some conclusions
are drawn in Section V.

Notation: Throughout this paper, we denote the set of real
numbers by R, the set of n × m real matrices by Rn×m . Denote
by 1n (or 0n ) the column vector with all entries equal to one
(or all zeros). In denotes an n-dimensional identity matrix. For
a column vector b = [b1 , b2 , . . . , bn ]T , diag{b} is a diagonal
matrix with bi , i = 1, . . . , n, on its diagonal. ‖ b ‖1=

∑n
i=1 |bi |

is 1-norm of b. Let ei denote the canonical vector with a 1
in the ith entry and 0s elsewhere. A matrix is positive (resp.
nonnegative) if all its entries are positive (resp. nonnegative).
For a square matrix A, adj A and det A are the adjugate and
the determinant of A, respectively. For two matrices A and B,
A ⊗ B is Kronecker product of A and B. For two sets S1 and
S2 , denote S1 × S2 as the Cartesian product and S1 \ S2 =
S1 − S2 . Let In = {1, 2, . . . , n}.

II. PRELIMINARIES

A. Graph Theory

In this section, we present some basic notions of algebraic
graph, which will be used in this paper. For more details, inter-
ested readers are referred to [36] for a thorough study of graph
theory.

Let G = {V, E} be a directed graph consisting of a vertex set
V = {v1 , v2 , . . . , vn} and an edge set E = {(vj , vi) ∈ V × V}.
In this paper, we assume that there are no self-loops. For an
edge (vj , vi), vj is called the parent vertex of vi . A directed tree
is a graph, where every vertex, except the root, has exactly one
parent. A directed path in a graph G is a sequence vi1 , . . . , vik

of vertices such that for s = 1, . . . , k − 1, (vis
, vis + 1 ) ∈ E . A

graph G is strongly connected if between every pair of distinct
vertices vi , vj , there is a directed path that begins at vi and ends at
vj . A = [aij ] is the adjacency matrix with aij = 1 if (vj , vi) ∈
E and aij = 0 otherwise. The Laplacian matrix is defined by
L = [lij ] with lii =

∑n
j=1 aij and lij = −aij for i �= j. It is

easy to see that L1n = 0.G is a bidirected graph, if AT = A.
For a connected bidirected graph G, we have: 1) detL = 0; and
2) adjL = τ(G)1n1T

n , where τ(G) is the number of spanning
trees in graph G [36]. A spanning tree of G is a directed tree,
which consists of all the vertices and some edges in G. A vertex
is called the root vertex of G if it is the root of a spanning
tree. Suppose that graph G has a spanning tree. Denote by V(r)

the set of root vertices. It is easy to see that, by arranging
the indices of agent, the Laplacian matrix of G can be written
as L = ( L( r )

L( r f )
0

L( f ) ), where L(r) is the Laplacian matrix of the
graph induced by V(r) . A vertex vi∗ is called the central root
vertex of G if it satisfies: 1) V(r)={vi∗}; and 2) it is the parent
vertex of all other vertices.

Lemma 1: Suppose that G has a spanning tree. Δ(r) and
Δ(f ) are two nonnegative and nonzero diagonal matrices with
same dimensions with L(r) and L(f ) , respectively. Then, the
following conditions are satisfied.

1) L(r) + Δ(r) , L(f ) , and L(f ) + Δ(f ) are invertible.
2) (L(r) + Δ(r))−1 is positive.
3) (L(f ))−1 and (L(f ) + Δ(f ))−1 are nonnegative.
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Proof: The proof is similar to that of [35, Lemma 2], and it
is omitted. �

B. Noncooperative Finite Games

In this section, we recall basic theoretic notions of noncoop-
erative finite game following [37].

A two-person noncooperative finite game is denoted by G =
(P, S, U), where P = {P1 , P2} is the set of players, S = S1 ×
S2 , Sk is the set of pure strategies of player Pk ∈ P , and U =
(u1 , u2), uk : S → R is the payoff function of player Pk ∈ P .
Each player makes decision to maximize its payoff function by
considering the possible rational choice of the other player. A
strategy pair (s1 , s2) ∈ S means that P1 and P2 independently
choose strategies s1 ∈ S1 and s2 ∈ S2 , respectively. For player
P1 , ŝ1(s2) is the best response strategy to a strategy s2 ∈ S2 ,
if u1(ŝ1(s2), s2) ≥ u1(s1 , s2) holds for all s1 ∈ S1 . Likewise,
ŝ2(s1) is the best response strategy to a strategy s1 ∈ S1 , if
u2(s1 , ŝ2(s1) ≥ u2(s1 , s2) holds for all s2 ∈ S2 .

Definition 1: [37] A strategy pair (s∗1 , s
∗
2) is said to consti-

tute a noncooperative (pure) Nash equilibrium solution for a
two-person nonzero-sum game G = (P, S, U), if s∗1 is the best
strategy to s∗2 , and vice versa.

A pair of strategies (s1 , s2) ∈ S is said to be better than an-
other pair of strategies (s′1 , s

′
2) ∈ S, if u1(s1 , s2) ≥ u1(s′1 , s

′
2)

and u2(s1 , s2) ≥ u2(s′1 , s
′
2) hold and at least one of these in-

equalities is strict. A Nash equilibrium strategy pair is said to
be admissible if there exists no better Nash equilibrium strategy
pair. Let (s1 , s2) and (s′1 , s

′
2) be two Nash equilibrium solutions.

(s1 , s2) and (s′1 , s
′
2) are said to be interchangeable, if (s′1 , s2)

and (s1 , s
′
2) are also two Nash equilibrium solutions. When a

game has at least two admissible and noninterchangeable Nash
equilibrium solutions, there exist dilemmas, i.e., each player’s
decision for seeking the maximum payoff may lead to a lower
payoff for both two players [37]. This kind of dilemmas cannot
be completely avoided unless changing the mechanism of the
game, e.g., some cooperation is allowed, or there is a hierarchy
in decision making.

Let u1 , u2 be payoff functions of G1 , and w1 , w2 be payoff
functions of G2 . Two finite two-person games G1 and G2 are
said to be strategically equivalent, if 1) each player has the same
strategy set, in both games; and 2) ui(s1 , s2) = αiwi(s1 , s2) +
βi, for all (s1 , s2) ∈ S1 × S2 , where αi > 0 and βi ∈ R, i ∈
{1, 2} are constants.

A game G is said a two-person zero-sum game, if u1(s1 ,
s2) + u2(s1 , s2) = 0 holds for all (s1 , s2) ∈ S. For two-person
zero-sum games, we refer to U = maxs1 ∈S1 mins2 ∈S2 u1(s1 ,
s2) and U = mins2 ∈S2 maxs1 ∈S1 u1(s1 , s2).

Lemma 2: [37] All strategically equivalent finite games have
the same set of Nash equilibria. Moreover, if the sum of payoff
functions is a constant, then the game is strategically equivalent
to a two-person zero-sum game.

Lemma 3: [37] Suppose that a two-person zero-sum game
G satisfies U = U . Then, the following statements hold.

1) G has a (pure) Nash equilibrium point.

2) The strategy pair (s∗1 , s
∗
2) is a Nash equilibrium if and

only if s∗1 ∈ {s∗ ∈ S1 ,mins2 ∈S2 u1(s∗1 , s2) = U} and
s∗2 ∈ {s∗2 ∈ S2 ,maxs1 ∈S1 u1(s1 , s

∗
2) = U}.

3) All Nash equilibrium solutions are interchangeable.

C. Problem Statement

Consider a multi-agent system consisting of n1 + n2 + n3
agents. The agents are categorized into three groups: V1 =
{v(1)

1 , v
(1)
2 , . . . , v

(1)
n1 }, V2 = {v(2)

1 , v
(2)
2 , . . . , v

(2)
n2 }, and V3 =

{v(3)
1 , v

(3)
2 , . . . , v

(3)
n3 }. The interaction of V1 is modeled by

a directed graph G1 = (V1 , E1). Likewise, G2 = (V2 , E2) and
G3 = (V3 , E3) are the interaction graphs of V2 and V3 , re-
spectively. Denote A1 = {a(1)

ij }n1 ×n1 , A2 = {a(2)
ij }n2 ×n2 , and

A3 = {a(3)
ij }n3 ×n3 as the adjacent matrices of G1 , G2 , and G3 ,

respectively. The following assumptions are made throughout
this paper.

A1: G1 , G2 , and G3 have a spanning tree.
A2: There does not exist any information flow between V1

and V2 , and from V3 to V1 or V2 .
A3: There exist information flows from V1 and V2 to V3 .
Remark 1: A1 describes the network structure of three

groups.A2 andA3 indicate the information interaction among
three groups.

According to A3, we define two matrices B and D to de-
scribe information flows from V1 and V2 to V3 , respectively.
Define B = {bij}n3 ×n1 where bij = 1 if agent v

(1)
j ∈ V1 sends

information to agent v
(3)
i ∈ V3 , while bij = 0 otherwise. Let

D = {dik}n3 ×n2 where dik = 1 if agent v
(2)
k ∈ V2 sends infor-

mation to agent v
(3)
i ∈ V3 , while dik = 0 otherwise.

By A1 , we know that G3 has a root vertex set. Without loss
of generality, we assume that

A4: V(r)
3 = {v(3)

1 , . . . , v
(3)
nr } is the root vertex set of G3 .

Denote G(r)
3 by the subgraph of G3 induced by V(r)

3 . It follows
that the Laplacian matrix of G3 is

L3 =

( L(r)
3 0

L(rf )
3 L(f )

3

)

(1)

where L(r)
3 is the Laplacian matrix of G(r)

3 . As a result, we
have B = (B1

B2
) and D = (D1

D2
), where B1 ∈ Rnr ×n1 and D1 ∈

Rnr ×n2 indicate the information flows from V1 and V2 to V(r)
3 ,

respectively.
It is easy to see that all agents of V1 , V2 , and V3 consist of

a graph G = (V, E) where V = V1 ∪ V2 ∪ V3 , E = E1 ∪ E2 ∪
E3 ∪ {edges fromV1 andV2 toV3}. The Laplacian matrix of G
can be written as

⎛

⎜
⎜
⎜
⎜
⎝

L1 0 0 0

0 L2 0 0

−B1 −D1 L(r)
3 + K 0

−B2 −D2 L(rf )
3 L(f )

3 + H

⎞

⎟
⎟
⎟
⎟
⎠

(2)
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Fig. 1. Graph G decided by B and D.

where Li is the Laplacian matrix of Gi , i = 1, 2, K = diag{B1
1n1 + D11n2 }, H = diag{B21n1 + D21n2 }.

Remark 2: If G1 , G2 , and G3 are given, we can easily find
that G is decided by B and D (see Fig. 1). Moreover, we have
following conditions.

1) If V1 and V2 do not send information to V(r)
3 , then B1 =

0nr ×n1 and D1 = 0nr ×n2 .
2) If there exists at least one agent of V1 (V2) who sends

information to V(r)
3 , then B1 �= 0nr ×n1 (D1 �= 0nr ×n2 ).

Let xi(t) ∈ R, yj (t) ∈ R, and zk (t) ∈ R be the states of

v
(1)
i ∈ V1 , v(2)

j ∈ V2 , and v
(3)
k ∈ V3 , respectively. The dynamics

of agents are represented by
⎧
⎪⎪⎨

⎪⎪⎩

ẋi = u
(x)
i , i ∈ In1

ẏj = u
(y )
j , j ∈ In2

żk = u
(z )
k , k ∈ In3

(3)

where u
(x)
i , u

(y )
j , u

(z )
k ∈ R are control protocols of agents v

(1)
i ,

v
(2)
j , and v

(3)
k , respectively. In this paper, we propose the fol-

lowing control protocols:
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

u
(x)
i =

∑n1
h=1 a

(1)
jh (xh − xi), i ∈ In1

u
(y )
j =

∑n2
h=1 a

(2)
jh (yh − yj ), j ∈ In2

u
(z )
k =

∑n3
h=1a

(3)
kh (zh − zk) +

∑n1
h=1bkh(xh − zk)

+
∑n2

h=1 dkh(yh − zk ), k ∈ In3 .
(4)

Define vector notations X = [x1 , . . . , xn1 ]
T , Y = [y1 , . . . ,

yn2 ]
T , and Z = [ZT

r , ZT
f ]T , where Zr = [z1 , . . . , znr

]T and
Zf = [znr +1 , . . . , zn3 ]

T . By [10, Th. 1], the following results
are given.

Lemma 4: Suppose that A1–A4 hold. Then, agents of V1 and
agents of V2 achieve consensus, respectively, i.e.

lim
t→∞X(t) = 1n1 f

T
1 X(0) and lim

t→∞Y (t) = 1n2 f
T
2 Y (0)

where f1 ∈ Rn1 and f2 ∈ Rn2 are the left eigenvector of L1
and L2 corresponding to eigenvalue 0, respectively.

1) Assume that B1 = 0nr ×n1 and D1 = 0nr ×n2 . Agents

of V(r)
3 achieve consensus, i.e., limt→∞ Zr (t) = 1nr

fT
r

Zr (0), where fr ∈ Rnr is the left eigenvector of L(r)
3

corresponding to eigenvalue 0. Agents v
(3)
nr +1 , . . . , v

(3)
n3

will converge to convex combinations of X(t), Y (t), and
Zr (t), i.e.,

lim
t→∞ zk (t) =

n1∑

i=1

α
(1)
ki xi(t) +

n2∑

j=1

α
(2)
kj yj (t) +

nr∑

s=1

βkszs(t)

k = nr + 1, nr + 2, . . . , n3

where
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
α

(1)
k1 , . . . , α

(1)
k,n1

]

= eT
k−nr

(
L(f )

3 + diag{B21n1 + D21n2 }
)−1

B2
[
α

(2)
k1 , . . . , α

(2)
k,n2

]

= eT
k−nr

(
L(f )

3 + diag{B21n1 + D21n2 }
)−1

D2

[βk1 , . . . , βk,nr
]

= eT
k−nr

(
L(f )

3 + diag{B21n1 + D21n2 }
)−1

L(rf )
3 .

(5)
2) Assume thatB1 �= 0nr ×n1 orD1 �= 0nr ×n2 . Then, agents

of V3 will converge to convex combinations of X(t) and
Y (t), i.e.,

lim
t→∞ zk (t) =

n1∑

j=1

α
(1)
ki xi(t) +

n2∑

j=1

α
(2)
kj yj (t),

i = 1, 2, . . . , n3

where
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

[
α

(1)
k1 , . . . , α

(1)
k,n1

]
= eT

k (L3 + diag{B1n1

+D1n2 })−1B
[
α

(2)
k1 , . . . , α

(2)
k,n2

]
= eT

k (L3 + diag{B1n1

+D1n2 })−1D.

(6)

Remark 3: From (5) and (6), we find that the convergence
states of V3 can be written as

lim
t→∞ zk (t) =

n1∑

i=1

α
(1)
ki xi(t) +

n2∑

j=1

α
(2)
kj yj (t) +

nr∑

s=1

βkszs(t),

i = 1, 2, . . . , n3 . (7)

When B1 = 0nr ×n1 andD1 = 0nr ×n2 , we have
⎧
⎨

⎩

α
(1)
ki = 0, α

(2)
kj = 0,

∑nr

s=1 βks = 1, k ∈ Inr
, i∈ In1 , j∈ In2

∑n1
i=1 α

(1)
ki +

∑n2
j=1 α

(2)
kj +

∑nr

s=1 βks = 1, k ∈ In3\Inr

(8)
whereas if B1 �= 0nr ×n1 orD1 �= 0nr ×n2 , then

n1∑

i=1

α
(1)
ki +

n2∑

j=1

α
(2)
kj = 1, βks = 0, k ∈ In3 , s ∈ Inr

. (9)

By (7), we have the convergence state of agent v
(3)
k decided

by xi(t), yj (t), and zk (t), i ∈ In1 , j ∈ In2 , k ∈ Inr
. Thus, it

is easy to know that coefficients α
(1)
ki and α

(2)
kj measure how
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agents of v
(1)
i and v

(2)
j exert influence on the agent v

(3)
k , re-

spectively. Therefore,
∑n3

k=1 α
(1)
ki (

∑n3
k=1 α

(2)
kj ) represents agent

v
(1)
i ’s (v(2)

j ’s) influence on V3 . According to Lemma 4, agents
of V1 (V2) will reach consensus, which implies that they have
the same interest of maximizing the influence.

∑n1
i=1
∑n3

k=1 α
(1)
ki

(
∑n2

j=1
∑n3

k=1 α
(2)
kj ) can be employed to measure the influence

power of V1 (V2) on V3 . Note that the greater
∑n1

i=1
∑n3

k=1 α
(1)
ki

(
∑n2

j=1
∑n3

k=1 α
(2)
kj ) is, the more powerful influence of V1 (V2)

is. Since an agent ofV1 and an agent ofV2 have different conver-
gence states, they influence agents of V3 by different manners.
This produces conflict between V1 and V2 . Inspired by this fact,
we propose the following noncooperative finite game where V1
and V2 are two competitive player.

Definition 2: For multi-agent system (3) and (4), we define
the following.

1) Players: Let V1 and V2 be two players, i.e., P =
{V1 ,V2}. Players make their decisions independently and
simultaneously. Meanwhile, each one unilaterally seeks
the maximum payoff, by also taking into account the
possible rational choice of the other player.

2) Strategies: Each player choose at most m pairs of
agents (v(r)

j , v
(3)
k )(r = 1, 2) where v

(r)
j will send in-

formation to v
(3)
k . In other words, the strategy sets

of V1 and V2 are S1 = {B |1T
n3
B1n1 ≤ m} and S2 =

{D |1T
n3
D1n2 ≤ m}, respectively.

3) Payoffs: Payoff functions of V1 and V2 are u1(B,D) =
∑n1

i=1
∑n3

k=1 α
(1)
ki and u2(B,D) =

∑n2
j=1

∑n3
k=1 α

(2)
kj , re-

spectively.
We denote this game as G = (P, S, U), where S = S1 × S2

and U = (u1 , u2).
Remark 4: In game G, players are two groups V1 and V2 .

A strategy pair (B,D) corresponds with an interaction graph of
multi-agent system (3)–(4) (see Fig. 1). Let this graph be G(B,D) .
The Laplacian matrix of G(B,D) is written in (2).

Remark 5: This game is common in real world. Consider two
political parties run for election. The decision of a voter might
be influenced by his/her neighbors in social networks. Aiming
to win the election, each party reach consensus among their
members. Meanwhile, they choose some members to broadcast
their political opinion to some voters who will exercise a great
influence on others.

III. PROPERTIES OF GAME G

In the following context, we will develop some properties of
game G.

Property 1: The sum of two players’ payoffs is not greater
than n3 .

Proof: It suffices to prove

u1(B,D) + u2(B,D) ≤ n3 (10)

holds for all (B,D) ∈ S1 × S2 . Recalling Lemma 4, there are
two cases that should be considered.

Case 1: If B1 = 0nr ×n1 and D1 = 0nr ×n2 , by Lemma 4 and
(8), we have

n3∑

k=1

⎛

⎝
n1∑

i=1

α
(1)
ki +

n2∑

j=1

α
(2)
kj +

nr∑

s=1

βks

⎞

⎠ = n3 .

Consequently,

u1(B,D) + u2(B,D) = n3 −
n3∑

k=1

nr∑

s=1

βks ≤ n3 − nr < n3 .

(11)
Case 2: If B1 �= 0nr ×n1 or D1 �= 0nr ×n2 , by Lemma 4 and (9),
we have

u1(B,D) + u2(B,D) = n3 . (12)

Thus, it follows from (11) and (12) that (10) holds. �
Property 2: Suppose that G3 is strongly connected. Then, the

following statements hold.
1) Game G is equivalent to a zero-sum game.
2) All Nash equilibrium solutions are interchangeable.
Proof: Since the interaction graph of V3 is strongly con-

nected, we have V(r)
3 = V3 . Hence, we have B1 �= 0nr ×n1 and

D1 �= 0nr ×n2 . As a result,

u1(B,D) + u2(B,D) = n3 (13)

holds for each strategy pair (B,D) ∈ S1 × S2 , which means
that the sum of payoff functions is a constant. Therefore, it
follows from Lemma 2 that game G is equivalent to a zero-sum
game. By Lemma 3, we can obtain straightforward that all Nash
equilibrium solutions are interchangeable. �

Remark 6: By Property 2, u1(B,D) + u2(B,D) < n3
when B1 = 0nr ×n1 and D1 = 0nr ×n2 . It means that the sum of
payoffs varies with strategy pair. Consequently, the game may
not be a zero-sum game. By Property 3, we obtain that the game
is equivalent to a zero-sum game when G3 is strongly connected.
Recalling [35], the graph of followers is undirected connected
and the game is equivalent to a zero-sum game. Hence, we
extend the work of [35] to a general framework in this paper.

Property 3: Suppose that strategies B,B′ ∈ S1 and D,D′ ∈
S2 .

1) If B1n1 = B′1n1 and D1n2 = D′1n2 , then

u1(B,D) = u1(B′,D) and u2(B,D) = u2(B,D′).
(14)

2) If B1n1 = D′1n2 and D1n2 = B′1n1 , then

u1(B,D) = u2(B′,D′). (15)

3) If B1n1 = D1n2 , then

u1(B,D) = u2(B,D). (16)

Moreover, if B11n1 = D11n2 �= 0nr
, then the agents of

group V3 will reach consensus asymptotically to

1
2

[
lim
t→∞ (x1(t) + y1(t))

]
. (17)
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Proof: It follows from (5) and (6) that

u1(B,D) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1T
n3 −nr

(
L(f )

3 + diag{B21n1 + D21n2 }
)−1

B21n1 ,

for B1 = 0nr ×n1 andD1 = 0nr ×n2

1T
n3

(L3 + diag{B1n1 + D1n2 })−1 B1n1 ,

for B1 �= 0nr ×n1 orD1 �= 0nr ×n2

(18)

and

u2(B,D) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1T
n3 −nr

(
L(f )

3 + diag{B21n1 + D21n2 }
)−1

D21n2 ,

for B1 = 0nr ×n1 andD1 = 0nr ×n2

1T
n3

(L3 + diag{B1n1 + D1n2 })−1 D1n1 ,

for B1 �= 0nr ×n1 orD1 �= 0nr ×n2 .

(19)

Thus, we can straightforward obtain that (14)–(16) hold.
By Lemma 4, we have

∑n1
i=1 α

(1)
ki = eT

k (L3 + diag{B1n1 +
D1n2 })−1B1n1 ,

∑n2
j=1 α

(2)
kj = eT

k(L3 + diag{B1n1 +D1n2})−1

D1n2 ,
∑n1

i=1 α
(1)
ki +

∑n2
j=1 α

(2)
kj = 1, and

lim
t→∞x1(t) = lim

t→∞x2(t) = · · · = lim
t→∞xn1 (t)

lim
t→∞ y1(t) = lim

t→∞ y2(t) = · · · = lim
t→∞ yn2 (t).

Therefore, we know that
∑n1

i=1 α
(1)
ki =

∑n2
j=1 α

(2)
kj = 1

2 if
B1n1 = D1n2 �= 0, which implies that (17) holds. �

Property 4:
1) Suppose that player V2 do not change its strategy. Then,

player V1 can increase its payoff by adding new edges
from V1 to V3 .

2) Suppose that player V1 do not change its strategy. Then,
player V2 can increase its payoff by adding new edges
from V2 to V3 .

Proof: For a strategy B ∈ S1 , let B′ be the new strategy,
which is obtained by adding new edges from V1 to V3 . Likewise,
for a strategy D ∈ S2 , let D′ be the new strategy gotten by
adding new edges from V2 to V3 . It follows that B′ − B and
D′ − D are nonzero nonnegative matrices. It suffices to prove
u1(B′,D) > u1(B,D) and u2(B,D′) > u2(B,D) hold for all
B ∈ S1 , D ∈ S2 .

Since B′ − B is a nonzero nonnegative matrix, we have
(B′ − B)1n1 = ei1 + · · · + eik

. Without loss of generality, we
assume that (B′ − B)1n1 = ej . Recalling Lemma 4, we will
consider three situations: 1) B1 �= 0nr ×n1 or D1 �= 0nr ×n2 ; 2)
B1 = B′

1 = 0nr ×n1 and D1 = 0nr ×n2 ; and 3) B1 = 0nr ×n1 ,
D1 = 0nr ×n2 and B′

1 �= 0nr ×n1 .
Case 1: We assume that B1 �= 0nr ×n1 or D1 �= 0nr ×n2 .

It follows from (18) that u1(B′,D) − u1(B,D) = 1T
n3

[(Q +
diag{ej})−1 − Q−1 ]B1n1 + 1T

n3
(Q + diag{ej})−1ej , where

Q = L3 + diag{B1n1 + D1n2 }. By the matrix inversion

lemma in [38], we obtain

(Q + diag{ej})−1 − Q−1 =
Q−1ejeT

j Q−1

1 + eT
j Q−1ej

. (20)

It follows from Lemma 1 that Q−1 and (Q + diag{ej})−1

are nonnegative matrices. Together with (20), we can obtain
that 1T

n3
[(Q + diag{ej})−1 − Q−1 ]B1n1 ≥ 0 and 1T

n3
(Q +

diag{ej})−1ej > 0. Hence, u1(B′,D) > u1(B,D).
Case 2: We assume that B1 = B′

1 = 0nr ×n1 and D1 =
0nr ×n2 . Similar to the proof of case 1, we can prove that
u1(B′,D) > u1(B,D).

Case 3: Suppose that B1 = 0nr ×n1 , D1 = 0nr ×n2 , and B′
1

�= 0nr ×n1 . It follows that B′ = (B
′
1B2
) and B′

11n1 = pj , where pj

is an nr -dimensional canonical vector with 1 in the jth entry and
0s elsewhere. Therefore, we get L3 + diag{B′1n1 + D1n2 } =
( R
L( r f )

3

0n r ×(n 3 −n r )
Q

) and (L3 + diag{B′1n1 + D1n2 })−1 =

( R−1

−Q−1 L( r f )
3 R−1

0n r ×(n 3 −n r )

Q−1 ), where R = L(r)
3 + diag{pj} and

Q = L(f )
3 + diag{B21n1 + D21n2 }. Together with (18), we

have

u1(B′,D)− u1(B,D)= 1T
nr

R−1pj − 1T
n3 −nr

Q−1L(rf )
3 R−1pj .

According to Lemma 1, we know that R−1 is a positive ma-
trix and Q−1 is a nonnegative matrix. As a result, we have
1T

nr
R−1pj > 0 and −1T

n3 −nr
Q−1L(rf )

3 R−1pj ≥ 0, which im-
plies that u1(B′,D) > u1(B,D).

Similar to the above proof, we can prove that u2(B,D′) >
u2(B,D) holds for all B ∈ S1 . �

By Property 4, we can straightforward obtain the following
result.

Property 5: A best response strategy of game G always con-
tains m agents of V3 .

IV. EQUILIBRIUM TOPOLOGIES

According to Remark 4, a strategy pair (B,D) corresponds to
an interaction graph G(B,D) . Therefore, the following definition
is given.

Definition 3: If a strategy pair (B∗,D∗) is a Nash equilibrium
solution of game G, then the corresponding interaction graph
G(B∗,D∗) is called the equilibrium topology of system (3)–(4).

A. Necessary Condition for Being an Equilibrium
Topology

Theorem 1: Suppose that G(B∗,D∗) is the equilibrium topol-
ogy. Then, the following statements hold.

1) G(B∗,D∗) contains m edges that begin at V1 and end at V3 ,
and m edges that begin at V2 and end at V3 .

2) G(B∗,D∗) contains at least one edge that begins at V1 or V2
and ends at the root vertex set of G3 .

Proof: First, we know that B∗ is the best response of D∗, and
vice versa. By Property 5, it follows that G(B∗,D∗) contains m
edges that begin at V1 and end at V3 , and m edges that begin at
V2 and end at V3 .

Second, we assume that neither B∗ nor D∗ contains root
vertices of G3 . According to the definition of Nash equilibrium
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Fig. 2. Directed graph G3 for Example 1.

solution, we have
{

u1(B∗,D∗) ≥ u1(B,D∗),B ∈ S1

u2(B∗,D∗) ≥ u2(B∗,D),D ∈ S2 .
(21)

Assume that (B′,D′) ∈ S satisfies B′1n1 = D∗1n2 and D′1n2

= B∗1n2 . By Property 3, it is easy to know that (B′,D′) is also
a Nash equilibrium solution. Therefore, we have

{
u1(B′,D′) ≥ u1(B,D′),B ∈ S1

u2(B′,D′) ≥ u2(B′,D),D ∈ S2 .
(22)

Assume that strategy B̂ contains a root agent of G3 . It follows
that B̂1 �= 0nr ×n1 . By Property 1, we have

u1(B∗,D∗) + u2(B∗,D∗) = n3 − nr < n3 = u1(B̂,D∗)

+ u2(B̂,D∗).

Consequently, we obtain that

u1(B∗,D∗) < u1(B̂,D∗) (23)

or

u2(B∗,D∗) < u2(B̂,D∗). (24)

When inequality (23) holds, it conflicts with (21). Let D̂
∈ S2 satisfy D̂1n2 = B̂1n1 . When (24) holds, it follows that
u1(B′,D′) < u1(B′, D̂). Since u1(B′,D′) + u2(B′,D′) = n3
− nr and u1(B′, D̂) + u2(B′, D̂) = n3 , we have u2(B′,D′) <
u2(B′,D′) + nr < u2(B′, D̂), which conflicts with (22). Con-
sequently, G(B∗,D∗) contains at least one edge that begins at V1
or V2 and ends at the root vertex set of G3 . �

Theorem 1 proposes a necessary condition for a strategy pair
(B∗,D∗) being Nash equilibrium solution.

Example 1: Suppose V1 = {v(1)
1 }, V2 = {v(2)

1 }, and V3 =
{1, 2, 3, 4, 5, 6, 7, 8}. G3 is shown in Fig. 2. Therefore, strategy
sets of V1 and V2 are S1 = S2 = {ei , i = 1, 2, . . . , 8}, where ei

is the canonical vector of R8 . By using (18) and (19), we have

U1 = [u1(ei , ej )]8×8

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

4 3.67 4.5 4.5 4.5 4.5 4.5 4.5
4.33 2.6 3 3 3 3 3 3.8
3.5 2 2 2.33 2.33 2.33 2.33 3
3.5 2 2.33 2 2.33 2.33 2.33 3
3.5 2 2.33 2.33 2 2.33 2.33 3
3.5 2 2.33 2.33 2.33 2 2.33 3
3.5 2 2.33 2.33 2.33 2.33 2 3
3.5 1.6 2 2 2 2 2 2.33

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and U2 = [u2(ei , ej )]8×8 = UT
1 . It is easy to see that this game

has two Nash equilibria (e1 , e2) and (e2 , e1). It is shown that
two Nash equilibria contain vertex 1, which is the root vertex of
G3 . This result illustrates the effectiveness of theoretical results
in Theorem 1. Since u1(e1 , e2) < u1(e2 , e1) and u2(e1 , e2) >
u2(e2 , e1), we have G admits two admissible Nash equilibrium
solutions, which are obviously not interchangeable.

Remark 7: In Example 1, it is shown that G has multiple ad-
missible Nash equilibrium solutions, which are not interchange-
able. Considering that there is not cooperation between players
by the nature of the problem, two players make decisions inde-
pendently and simultaneously. Hence, V1 might stick to e2 , and
V2 might also adopt e2 , thus yielding an outcome of (e2 , e2),
which is not a Nash equilibrium solution. This is indeed one
of dilemmas of noncooperative nonzero-sum decision making
[37]. In this example, the reason of being a dilemma is that Nash
equilibrium solutions of game G are not interchangeable. There
is really no remedy for it unless changing the mechanism of the
game, for instance, players are admitted to communicate and
negotiate before making decisions when facing such dilemmas.

Although Example 1 exists multiple admissible Nash equi-
librium solutions that are not interchangeable, Nash equilibrium
solutions might be interchangeable under some situations. In the
next content, we will give some special cases where the game
has interchangeable Nash equilibria.

B. Equilibrium Topologies Under Some Special Cases

1) G3 is a Directed Tree:
Theorem 2: Suppose that G3 is a directed tree and m = 1.

Then, the following statements hold.
1) Graph G(B,D) is the equilibrium topology, if and only if

both of two strategies contain the root vertex of G3 .
2) All Nash equilibrium solutions are interchangeable.
Proof: Without loss of generality, we assume that v

(3)
1 is

the root vertex of G3 . Suppose that B∗ and D∗ contain v
(3)
1 .

It follows that B∗1n1 = D∗1n2 = [1 0 0 . . . 0]T . By Property 3,
we have u1(B∗,D∗) = u2(B∗,D∗) = n3

2 . Thus, from the
definition of Nash equilibrium solution, it is suffices to prove
u1(B,D∗) ≤ n3

2 and u2(B∗,D) ≤ n3
2 hold for all B ∈ S1 ,

D ∈ S2 . Suppose that strategy B contains v
(3)
i . Then, we have

B1n1 = ei . Let Ti = {v(3)
j ∈ V3 | there exists a path begins at

v
(3)
i and ends in v

(3)
j } and |Ti | = ki , where |·| is the cardinality

of a set. Since G3 is a tree, we have { ki =n3 −1,i=1,
ki <n3 −1,i �=1 . If i =

1, it is obviously to see that u1(B,D∗) = ki +1
2 = n3

2 . For the
case of i �= 1, by Theorem 1 in [10], we know limt→∞ zj (t) =
{ 1

2 x1 (t)+ 1
2 y1 (t), j∈Ti ∪{i}

x1 (t), else
for strategy pair (B,D∗). It follows that

u1(B,D∗) = ki +1
2 < n3

2 . Therefore, we have u1(B,D∗) ≤ n3
2

holds for all B ∈ S1 . Similarity, it is easy to prove that
u2(B∗,D) ≤ n3

2 holds for all D ∈ S2 . Thus, together with The-
orem 1, we have: 1) (B,D) is a Nash equilibrium solution if
both of two strategies contain v

(3)
1 ; and 2) (B,D) is not a Nash

equilibrium solution if at least one strategy does not contain
v

(3)
1 . Therefore, a strategy pair is a Nash equilibrium if and only

if both of the two strategies contain the root agent of G3 .
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Fig. 3. (a) Interaction graph G(B∗,D∗) and (b) state trajectories of all the
agents for Example 2.

Let (B∗
1 ,D∗

1) and (B∗
2 ,D∗

2) be two Nash equilibrium solutions.
We have B∗

1 ,B∗
2 ,D∗

1 , and D∗
2 that contain the root agent of G3 .

Consequently, we observe that (B∗
1 ,D∗

2) and (B∗
1 ,D∗

2) are also
two Nash equilibrium solutions, which means that (B∗

1 ,D∗
1) and

(B∗
2 ,D∗

2) are interchangeable. �
Corollary 1: Suppose that G3 is a tree and m = 1. Then,

agents ofV3 will achieve consensus under the equilibrium topol-
ogy.

Proof: By Property 3 and Theorem 2, we can obtain this
result straightforward. �

Remark 8: A tree structural graph means that there exist
a hierarchy among agents. In a hierarchical system, the most
powerful agent is the root agent. As a result, each player will
choose this agent to propagate its information. Therefore, the
results of Theorem 2 seems intuitional.

Example 2: G1 ,G2 , and G3 are shown in Fig. 3(a). It is obvi-
ous that G3 is a directed tree. Assume that V1 and V2 can only
select one agent in V3 to connect, respectively, i.e., m = 1.
Therefore, strategy sets of V1 and V2 are S1 = S2 = {B =
[bij ]4×2 , bij ∈ {0, 1},1T

4 B12 = 1}. We know that each player
has eight strategies. Therefore, we have

U1 = [u1(B,D)]8×8 =

⎛

⎜
⎜
⎝

2 1.5 0.5 0.5
2.5 1 0.5 0.5
3.5 1.25 0.33 0.5
3.5 1.25 0.5 0.33

⎞

⎟
⎟
⎠⊗

(
1 1
1 1

)

and U2 = [u2(B,D)]8×8 = UT
1 . It is easy to see that this game

has four Nash equilibrium solutions. A strategy pair (B,D) is a
Nash equilibrium solution, if and only if B ∈ S∗ and D ∈ S∗,
where

S∗ =

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜
⎜
⎝

1 0
0 0
0 0
0 0

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

0 1
0 0
0 0
0 0

⎞

⎟
⎟
⎠

⎫
⎪⎪⎬

⎪⎪⎭

.

It is obvious that all Nash equilibrium solutions are interchange-
able. Consider a Nash equilibrium solution

(B∗,D∗) =

⎛

⎜
⎜
⎝

⎛

⎜
⎜
⎝

1 0
0 0
0 0
0 0

⎞

⎟
⎟
⎠,

⎛

⎜
⎜
⎝

1 0
0 0
0 0
0 0

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎠ .

The corresponding interaction graph is shown in Fig. 3(a). The
state trajectories of agents are presented in Fig. 3(b), where
agents of V3 achieve consensus. Those results illustrate the ef-
fectiveness of theoretical results in Theorem 2 and Corollary 1.

2) G3 has a Central Root Vertex:
Theorem 3: Suppose that G3 has a central root vertex and

m = 1. Then, the following statements hold.
1) Graph G(B,D) is the equilibrium topology if and only if

both of two strategies contain the central root vertex.
2) All Nash equilibrium solutions are interchangeable.
Proof: Without loss of generality, we assume that the cen-

tral root vertex is v
(3)
1 . We need to prove that (B∗,D∗) is a

Nash equilibrium if and only if B∗1n1 = D∗1n2 = e1 . Accord-
ing to the definition of Nash equilibrium, it suffices to prove
u1(B∗,D∗) ≥ u1(B,D∗) and u2(B∗,D∗) ≥ u2(B∗,D) hold for
all B ∈ S1 and D ∈ S2 .

Let strategies B and D contain v
(3)
j (j �= 1). This implies

B1n1 = D1n2 = ej . Since v
(3)
1 is a central root vertex, we have

L3 = ( 0
−1n 3 −1

0T
n 3 −1

L( f )
3

). As a result, u1(B∗,D∗) = 1
2 [1 + 1T

n3 −1

(L(f )
3 )−11n3 −1 ] and u1(B∗,D) = 1 + 1T

n3 −1(L(f )
3 + diag

{pj−1})−11n3 −1 , where pj−1 is a (n3 − 1)-dimensional
canonical vector with 1 in the j − 1th entry and 0s elsewhere.
It follows that

u1(B∗,D) − u1(B∗,D∗)

=
1
2

{

1 + 1T
n3 −1

(
L(f )

3 + diag{pj−1}
)−1

1n3 −1

+1T
n3 −1

[(
L(f )

3 + diag{pj−1}
)−1

−
(
L(f )

3

)−1
]

1n3 −1

}

.

From the matrix inversion lemma [38], we obtain
(
L(f )

3 + diag{pj−1}
)−1

−
(
L(f )

3

)−1

=

(
L(f )

3

)−1
pj−1pT

j−1

(
L(f )

3

)−1

1 + pT
j−1

(
L(f )

3

)−1
pj−1

.

By Lemma 1, we know that (L(f )
3 )−1 and (L(f )

3 + diag
{pj−1})−1 are nonnegative matrices. Consequently, we
have u1(B∗,D) > u1(B∗,D∗). Since B∗1n1 = D∗1n2 = e1
and B1n1 = D1n2 = ej , it follows from Properties 1
and 3 that u1(B∗,D∗) = n3

2 and u1(B,D∗) = u2(B∗,D) =
n3 − u1(B∗,D) < u1(B∗,D∗). Likewise, we can prove that
u2(B∗,D) < u2(B∗,D∗). The above proof yields the follow-
ing observation: 1) (B,D) is a Nash equilibrium solution if both
of two strategies contain v

(3)
1 ; and 2) (B,D) is not a Nash equi-

librium solution if at least one strategy does not contain v
(3)
1 .
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Fig. 4. (a) Interaction graph G(B∗ ,D∗) and (b) state trajectories of all the
agents for Example 3.

Therefore, (B∗,D∗) is a Nash equilibrium if and only if both of
two strategies contain the central root vertex.

Similar to the proof of Theorem 2, we can prove that all Nash
equilibrium solutions are interchangeable. �

Remark 9: The results in Theorem 3 is reasonable since the
center root agent can send information to all other agents, which
leads to its biggest influence power in G3 . Thus, both of the two
players choose this agent to spread their information.

Remark 10: It should be mentioned that there is an intersec-
tion of case 1 and case 2. For example, a directed star graph is
a directed tree with center root vertex.

Corollary 2: Suppose that G3 has a central root vertex and
m = 1. Then, agents of V3 will achieve consensus under the
equilibrium topology.

Proof: By Property 3 and Theorem 3, we can obtain this
result straightforward. �

Remark 11: According to previous theoretical results of
multi-agent systems, agents ofV3 cannot reach consensus. How-
ever, by Corollaries 1 and 2, we know that agents of V3 might
reach consensus under equilibrium topologies. The main reason
might be the competition between V1 and V2 .

Example 3: The interaction graphs G1 , G2 , and G3 are de-
picted in Fig. 4(a). It is not difficult to observe that G3
has a central root vertex. Suppose that V1 and V2 can se-
lect one agent in V3 to connect, respectively, i.e., m = 1.
It follows that S1 = {B = [bij ]5×3 , bij ∈ {0, 1},1T

5 B13 = 1}
and S2 = {D = [dij ]5×5 , dij ∈ {0, 1},1T

5 D15 = 1}. By com-
puting the payoff functions of two players, we have U1 =
[u1(B,D)]15×25 = G ⊗ (131T

5 ) and U2 = [u2(B,D)]15×25 =
GT ⊗ (131T

5 ), where

G =

⎛

⎜
⎜
⎜
⎜
⎝

2.5 4.5556 4.4444 3.9167 4.75
0.4444 0.3333 0.4444 0.4444 0.4167
0.5556 0.4815 0.4167 0.5556 0.5417
1.0833 1.0278 0.9444 0.7222 1.0312
0.25 0.25 0.25 0.25 0.2

⎞

⎟
⎟
⎟
⎟
⎠

.

We find that all strategy pairs satisfyingB13 = D15 = e1 are
the interchangeable Nash equilibrium solutions. This is con-
sistent with theoretical results in Theorem 3. Let us consider
the Nash equivalent solution (B∗,D∗). The corresponding in-
teraction graph G(B∗,D∗) is described in Fig. 4(a). The states of
agents are presented in Fig. 4(b). We see that consensus can be
achieved among agents of V3 . This illustrates the effectiveness
of the conclusion of Corollary 2.

3) G3 is a Bidirected Graph:
In what follows, we assume that
A5. G3 is a connected bidirected graph and m = 1.
Let E = {ek , k ∈ In3 | ‖(L3 + diag{el})−1ek‖1 ≥ ‖(L3 +

diag{ek})−1el‖1 , l ∈ In3 }.
Theorem 4: Suppose that A5 holds. Then, graph G(B,D) is the

equilibrium topology, if and only if B1n1 ∈ E and D1n2 ∈ E.
Proof: For a strategy pair (B,D), denote B1n1 = ei and

D1n2 = ej . From (18), we obtain u1(B,D) = 1T
n3

[L3 +
diag{ei + ej}]−1ei . Let det[L3 + diag{ej}] = τ . It follows
from adj[L3 + diag{ei + ej}]ei = adj[L3 + diag{ej}]ei that

u1(B,D) = τ 1T
n [L3 +diag{ej }]−1 ei

det[L3 +diag{ei +ej }] . Since [L3 + diag{ej}]−1 is
a nonnegative matrix, we have

u1(B,D) =
τ
∥
∥
∥[L3 + diag{ej}]−1 ei

∥
∥
∥

1

det [L3 + diag{ei + ej}] . (25)

Likewise, we have

u2(B,D) =
τ
∥
∥
∥[L3 + diag{ei}]−1 ej

∥
∥
∥

1

det [L3 + diag{ei + ej}] . (26)

Recalling (13), it is easy to get that B1n1 ∈ E if and only
if B ∈ S∗

1 � {B ∈ S1 |minD∈S2 u1(B,D) = n3
2 },D1n1 ∈ E if

and only if D ∈ S∗
2 � {D ∈ S2 |minB∈S1 u2(B,D) = n3

2 }.
By Lemma 2, game G is equivalent to a zero-sum game G′ =

(P, S,W ) where W = (w1 , w2), w1(B,D) = 1
n3

u1(B,D),
and w2(B,D) = − 1

n3
w1(B,D) = 1

n3
u2(B,D) − 1.Therefore,

it suffices to prove that (B,D) is a Nash equilibrium for G′ if
and only if B ∈ S∗

1 and D ∈ S∗
2 . From the definition of S∗

1 , we
have w1(B,D) ≥ 1

2 for all B ∈ S∗
1 , D ∈ S2 , which implies that

U ≥ 1
2 . Similarly, w1(B,D) ≤ 1

2 for all D ∈ S∗
2 and B ∈ S1 ,

thereby resulting in U ≤ 1
2 . On the other hand, from the defini-

tions of U and U , we know that U ≥ U . Consequently, it fol-
lows that U = U = 1

2 , S∗
1 = {B ∈ S1 ,minD∈S2 w1(B∗,D) =

U} and S∗
2 = {D ∈ S2 ,maxB∈S1 w1(B,D) = U}. By Lemma

3, we know that (B,D) is a Nash equilibrium for G′ if and only
if B ∈ S∗

1 and D ∈ S∗
2 . Equivalently, graph G(B,D) is a Nash

equilibrium topology if and only if B1n1 ∈ E and D1n2 ∈ E.
�

Theorem 5: Suppose that A5 holds and G3 is a circulant
graph. Then, all topologies of the system are equilibrium topolo-
gies.

Proof: Let B1n1 = ei and D1n2 = ej . For the case of
ei = ej , it is obvious from Properties 1 and 2 that u1(B,D) =
u2(B,D) = n3

2 . For the case of ei �= ej , without loss of general-
ity, we assume that i < j. SinceG3 is a circulant graph, it follows
that L3 is a circulant matrix. Denote Qi = L3 + diag{ei} and
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Fig. 5. (a) Interaction graph G(B,D) and (b) state trajectories of all the
agents for Example 4.

Qj = L3 + diag{ej}. For a permutation matrix

P =

⎛

⎝
Ii−1 0 0
0 0 In3 +1−j

0 Ij−i 0

⎞

⎠ ,

we have Qi = PQjP
T .

Noticing that P is orthogonal, we obtain that 1T
n (Qi)−1ej =

1T
n P (Qj )−1PT ej .Because PT ej = ei and 1T

n P = 1T
n , we

know1T
n (Qi)−1ej = 1T

n (Qj )−1ei . Hence, from (25) and (26),
u1(B,D) = u2(B,D) = n3

2 . Consequently, we have S∗
1 = S1

and S∗
2 = S2 . In other words, graph G(B,D) is the equilibrium

topology for every (B,D) ∈ S1 × S2 . �
Example 4: The interaction graphs G1 , G2 , and G3 are de-

picted in Fig. 5(a) where G3 is a circulant graph. It fol-
lows that S1 = {B = [bij ]5×3 , bij ∈ {0, 1},1T

5 B13 = 1} and
S2 = {D = [dij ]5×2 , dij ∈ {0, 1},1T

5 D12 = 1}. By comput-
ing the payoff functions of two players, we have U1 =
[u1(B,D)]15×10 = 2.51151T

10 and U2 = [u2(B,D)]15×10 =
U1 . Therefore, all strategy pairs are Nash equilibria, which il-
lustrate the effectiveness of theoretical results in Theorem 5.
In particular, consider a strategy pair (B,D) whose interaction
graph G(B,D) is shown in Fig. 5(a). The state trajectories of
agents are shown in Fig. 5(b). By Property 3, we know that if
two players choose same agents of G3 as their strategies, agents
of G3 will reach consensus. In this example, two players choose
different agents, which gives rise to the result of not reaching
consensus among agents of G3 .

V. CONCLUSION

In this paper, the agents of the multi-agent system were clas-
sified into three groups. Since the first and the second groups
could influence the third group, there exists competition between
them. We studied this competitive behavior in a noncoopera-
tive game theoretical framework. A two-player noncooperative
game was proposed, where a strategy pair corresponds an in-
teraction topology of the system. The necessary condition was

obtained for Nash equilibrium. When the third group is a tree or
has a center vertex, interchangeable equilibrium solutions were
given. It was shown that the agents of third group might reach
consensus under the equilibrium topology, which is different
from previous theoretical results of containment control. In the
future, we may consider this game for multi-agent systems with
more than two competitive groups.
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