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In this paper, we consider the containment control problem for the switched multi-agent system which is composed of
continuous-time and discrete-time subsystems. Continuous-time protocol based on the relative state measurements of agents
are designed for the switched multi-agent system with multiple stationary and dynamic leaders, respectively. By using graph
theory and matrix theory, some necessary and sufficient conditions are obtained for solving the containment control problem
under arbitrary switching. When the leaders are dynamic, impulsive protocol are also proposed for the switched multi-agent
system. The simulation results are given to verify the effectiveness of the theoretical results.
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1. Introduction

In recent years, distributed cooperative control of multi-
agent systems has attracted a great deal of attention due to
its broad applications in vehicle systems, sensor networks,
social networks, and so on. To date, many research top-
ics about multi-agent systems have arisen, to name but a
few, consensus problem (Guan, Ji, Zhang, & Wang, 2013,
2014; Olfati-Saber & Murray, 2004; Ren & Beard, 2005;
Xiao & Wang, 2008; Zheng, Zhu, & Wang, 2011), con-
trollability analysis (Ji, Lin, & Yu, 2012; Liu, Xie, et al.,
2012, 2014), optimal control (Hengster-Movric & Lewis,
2014; Ma, Zheng, & Wang, 2014; Ma, Zheng, Wu, & Wang,
2014), rendezvous control (Xiao, Wang, & Chen, 2012).

Consensus problem is a key problem in these topics.
Consensus means that a group of agents reach an agree-
ment upon some quantities of interest using information
of neighbours. By using matrix theory, graph theory, Lya-
punov direct method, etc., consensus problem has been
widely investigated under different contexts, such as quan-
tised consensus (Li & Xie, 2012; Zhu, Zheng, & Wang,
2015), group consensus (Yu & Wang, 2010), sampled-data-
based consensus (Gao, Wang, Xie, & Wu, 2009; Gao, Ma,
Zou, Mo, & Yu, 2013). The references mentioned above of-
ten consider the consensus problems for a group of agents
without any leader. However, one or multiple leaders might
exist in the multi-agent systems in some practical applica-
tions. When a group of agents are led by one leader, they
will follow the leader under the consensus protocol. This is
the so-called leader-following consensus problem and there
have been numerous studies. In Hong, Hu, and Gao (2006),

∗
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tracking control problem was studied for multi-agent sys-
tems with an active leader under time-varying undirected
topology. The consensus problem of heterogeneous multi-
agent systems with a time-varying group reference velocity
was studied in Zheng and Wang (2012). When a group of
followers are led by multiple leaders, the objective is to
drive the followers into the geometric space formed by the
leaders, which is called containment control problem. Con-
tainment control has numerous potential applications. For
example, multiple mobile robots move from one place to
another. To save the cost, only a few of them are equipped
with vision sensors and take on leader roles to form a safety
area by detecting the dangerous obstacles, while the other
robots just need stay in the moving safety area formed by the
leaders. Then, all the mobile robots can arrive at the desti-
nation safely (Liu, Xie, et al., 2012). In Ji, Ferrari-Trecate,
Egerstedt, and Buffa (2008), a Stop–Go control strategy
was proposed to solve containment control problem for a
group of first-order agents under fixed undirected network
topology. Notarstefano, Egerstedt, and Haque (2011) in-
vestigated the containment control problem of first-order
multi-agent system under undirected switching topologies.
They proved that the containment could be achieved if the
time-varying graph was jointly connected. The containment
control of a group of double integrator agents was investi-
gated in the presence of both stationary and dynamic lead-
ers under directed fixed and switching topologies in Cao,
Stuart, and Ren (2011). Some necessary and sufficient con-
ditions were established to guarantee the achievement of
containment control in multi-agent systems with multiple
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stationary and dynamic leaders under fixed directed topolo-
gies in Liu, Xie, et al. (2012). The containment control of
heterogeneous multi-agent systems was discussed under
directed networks in Zheng and Wang (2013). Contain-
ment control of multi-agent systems with input saturation
was considered in Su, Jia, and Chen (2014), Su and Chen
(2015). In Li, Guan, Liao, and Zhang (2014), impulsive
protocols were designed for second-order multi-agent sys-
tems to solve containment control problem. Liu, Su, et al.
(2014) considered the containment control of second-order
multi-agent systems with communication delays.

In many practical systems, switching is a common phe-
nomenon. For example, those systems with abrupt param-
eter variations can be modelled as switched systems. For
multi-agent systems, lots of work have been done for dis-
tributed coordination of multi-agent systems with switch-
ing topologies (Guan et al., 2013, 2014; Olfati-Saber &
Murray, 2004; Ren & Beard, 2005; Zheng & Wang, 2012).
However, switching behaviours can occur not only in net-
work topology, but also can exist on the dynamical be-
haviours of agents. In this paper, we proposed a novel
type of switched multi-agent system, in which the dynam-
ics of agents switches between continuous-time dynamics
and discrete-time dynamics. In the real world, many ap-
plications contain such switched systems. For example, a
continuous-time plant controlled either by a physically im-
plemented regulator or by a computer-implemented one
together with a switching rule between them. Because in
any computer-aided systems, the controller only can be im-
plemented in a discrete-time model. When the sampling
period is not necessary small, we just need dealing with
the value changed on sampling points, and correspond-
ingly consider the discretisation model of the continuous
dynamics. Therefore, the entire system can be consid-
ered as a switched system composed of both continuous-
time and discrete-time subsystems (Zhai, Lin, Michel, &
Yasuda, 2004). For a continuous-time multi-agent system,
if we sometimes use computer to activate all the agents in
a discrete-time manner, then the entire multi-agent system
can be seen as a switched multi-agent system, which is com-
posed of a continuous-time subsystem and a discrete-time
subsystem. Since a switched system may be instable even
though all the subsystems are stable, convergence analysis
for such switched multi-agent system become more diffi-
cult than the multi-agent system only having continuous-
time dynamics or discrete-time dynamics. In Zhai et al.
(2004), the authors studied the stability of switched sys-
tems which are composed of a continuous-time subsystem
and a discrete-time subsystem. Some algebraic conditions
were given for solving the stability problem under arbitrary
switching. The controllability and observability of such
switched system have been investigated in Zhu, Xing, and
Guan (2008). Zheng and Wang (2014) investigated the con-
sensus problem of switched multi-agent system composed
of continuous-time and discrete-time subsystems. Inspired

by the work above, we try to study the containment control
problem of the switched multi-agent system with station-
ary and dynamic leaders, respectively. First, continuous-
time protocols based on the relative state measurements of
agents are proposed to solve the containment control prob-
lem under arbitrary switching by using the matrix theory
and the graph theory. Second, impulsive protocols are de-
signed for the switched multi-agent system with dynamic
leaders. Based on an impulsive control theory, necessary
and sufficient condition is given to guarantee the achieve-
ment of containment control. The simulation results are
given to verify the effectiveness of the theoretical results.

This paper is organised as follows. In Section 2, some
mathematical preliminaries are presented. The containment
control problem of the switched multi-agent system is dis-
cussed in Section 3. In Section 4, the simulation results
are given to show the effectiveness of the obtained results.
Section 5 is a brief conclusion.

Notation: Throughout this paper, we let C be the set of
all complex numbers, N be the set of non-negative integers,
N+ be the set of positive integers, Rn be the n-dimensional
Euclidean space, Rn × m be the set of n × m real matrix, In

be the n × n identity matrix. The superscript ‘T′ represents
the transpose. For λ ∈ C, the notation Re(λ), Im(λ) and |λ|
are the real part, the imaginary part and the modulus of
λ. For a matrix A, �(A) denotes the eigenvalue set of A.
triag{a1, . . . , an} represent the upper triangular matrices.
Given two matrices P and Q, we denote their Kronecker
product with P ⊗ Q.

2. Preliminaries

In this section, we first review some basic concepts and
properties from the graph theory, and then give some defi-
nitions which will be useful in the sequel (Godsil & Royal,
2001; Liu, Xie, et al., 2012; Rockafellar, 1970; Zheng &
Wang, 2013).

Let G = (V, E,A) be a weighted directed graph of or-
der N, with the set of nodes V = {v1, v2, . . . , vN }, a set
of edges E ⊂ V × V and a non-negative weighted adja-
cency matrix A = (aij ) ∈ RN×N with adjacency element
aij > 0 if (vj , vi) ∈ E , and aij = 0 otherwise. For every
(vj , vi) ∈ E , vj is called the parent of vi, while vi is called
the child of vj, and vj is a neighbour of vi. A graph with
the property that (vi, vj ) ∈ E implies (vj , vi) ∈ E is said
to be undirected. A directed path from vi1 to vik is a se-
quence vi1 , vi2 , vi3 , . . . , vik of vertices, such that any two
consecutive vertices with property that (vis , vis+1 ) ∈ E, s =
1, . . . , k − 1. A directed tree is a directed graph, where ev-
ery vertex, except one special vertex without any parent,
which is called the root, has exactly one parent. A directed
forest is a directed graph consisting of one or more
directed trees, no two of which have a vertex in common.
A directed spanning tree (directed spanning forest) is a
directed tree (directed forest), which consists of all the
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nodes and some edges in G. The matrix � = (�ij) of the
graph G is a diagonal matrix with �ii = ∑N

j=1 aij . The
Laplacian matrix L = (lij ) ∈ RN×N of the graph is defined
as L := � − A.

Definition 2.1 (Liu, Xie, et al., 2012): For an n agent sys-
tem, an agent is called a leader if the agent has no neighbour,
and an agent is called a follower if the agent has at least one
neighbour.

Suppose that the multi-agent systems has m followers
and n − m, n > m, leaders. Without loss of generality, we
assume that the agents indexed by 1, . . . , m are followers,
and the agents indexed by m + 1, . . . , n are leaders. Denote
the set of leaders as R and the set of followers as F , respec-
tively. The communication topology among the n agents
is presented by a directed graph G and L is the Laplacian
matrix of the graph. Since the leaders have no neighbours,

L can be partitioned as L =
( LFF LFR

0(n−m)×m 0(n−m)×(n−m)

)
,

where LFF ∈ Rm×m and LFR ∈ Rm×(n−m).

Lemma 2.2 (Liu, Xie, et al., 2012): Suppose that the
communication graph G has a directed spanning forest.
Then, all the eigenvalues of LFF have positive real parts,
each entry of −L−1

FFLFR is non-negative, and each row of
−L−1

FFLFR has a sum equal to 1.

By Lemma 2.2, if the graph G contains a directed span-
ning forest, the m eigenvalues of LFF can be ordered as 0
< Re(λ1) ≤ Re(λ2) ≤ · · · ≤ Re(λm).

Definition 2.3 (Rockafellar, 1970): A subset K of Rm is
said to be convex if (1 − λ)x + λy ∈ K whenever x ∈ K,
y ∈ K and 0 < λ < 1. The convex hull of a finite set of
points X = {x1, ..., xn} in Rm is the minimal convex set
containing all points in X, denoted by Co{X}. Particularly,
Co{X} = {∑n

i=1 aixi | xi ∈ X, ai ≥ 0,
∑n

i=1 ai = 1}
Definition 2.4 (Zheng & Wang, 2013): The multi-agent
system is said to solve the containment control problem if
for any initial conditions, the states of the followers con-
verge to the convex hull spanned by those of the leaders
under a certain control input.

Lemma 2.5 (Ogata, 1995 (Hermite–Biehler theorem)):
The polynomial γ (σ ) is Hurwitz stable if and only if the
related pair m(ω), n(ω) is interlaced, and m(0)n′(0) −
m′(0)n(0) > 0, where m(ω), n(ω) are the real and imag-
inary parts of γ (iω), respectively.

3. Main results

3.1 Containment control with stationary leaders

Consider a multi-agent system which consists of n
identical agents with first-order dynamics. Suppose that
agent i takes the switched dynamics, which is composed of

continuous-time dynamics as

ẋi(t) = ui(t), i ∈ {1, . . . , n} (1)

and discrete-time dynamics as

xi(t + 1) = xi(t) + ui(t), i ∈ {1, . . . , n}, (2)

where xi, ui ∈ R are the position and control input of agent
i, respectively. All results in this paper still hold for xi, ui ∈
Rm by using the Kronecker product operations.

The linear protocol has been widely applied to multi-
agent systems. We present a linear protocol for the switched
multi- agent system as follows:

ui(t) =
{

k
∑

j∈F ⋃R
aij (xj (t) − xi(t)), i ∈ F ,

0, i ∈ R,
(3)

where k > 0 is the control gain to be designed.
Let xF = [x1, x2, . . . , xm]T and xR = [xm+1, xm+2,

. . . , xn]T . Suppose that the dynamics of each agent switches
simultaneously from one to another. Then, the entire system
can be considered as a switched multi-agent system which
is composed of continuous-time subsystem,

{
ẋF (t) = −kLFFxF (t) − kLFRxR(t), i ∈ F ,

ẋR(t) = 0, i ∈ R,
(4)

and discrete-time subsystem

{
xF (t + 1) = (Im − kLFF )xF (t) − kLFRxR(t), i ∈ F ,

xR(t + 1) = xR(t), i ∈ R.

(5)

Theorem 3.1: The switched multi-agent system (4)–(5)
can solve the containment control problem under arbitrary
switching if and only if the communication graphG contains
a directed spanning forest and 0 < k < minλ∈�(LFF )

2Re(λ)
|λ|2 .

Proof: Sufficiency is proved as follows.
Let δ(t) = xF (t) + L−1

FFLFRxR(t). We can obtain from
(4) that

δ̇(t) = −kLFFδ(t) (6)

and from (5) that

δ(t + 1) = (I − kLFF )δ(t). (7)

For any time t > 0, we can always divide the time interval
[0, t] as t = tc + td, where tc ∈ R is the total duration time
on subsystem (4) and td ∈ N is the total duration time on
subsystem (5). Then, from (6) and (7) one has

δ(t) = e−kLFF tc (I − kLFF )td δ(0). (8)
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4 Y. Zhu et al.

Since the communication network G contains a
directed spanning forest, from Lemma 2.2, one has
limtc→∞ e−kLFF tc = 0. Note that 1 − kλi, i = 1, 2, . . . ,
m, are the eigenvalues of matrix I − kLFF and |1 −
kλi| < 1 if and only if 0 < k <

2Re(λi )
|λi |2 . Thus, if 0 <

k < minλ∈�(LFF )
2Re(λ)

|λ|2 , limtd→∞(I − kLFF )td = 0. When
t → ∞, it means that at least tc → ∞ or td → ∞.
Thus, we obtain limt→∞ δ(t) = 0, that is limt→∞ xF (t) =
−L−1

FFLFRxR(0). Therefore, the containment control prob-
lem of switched multi-agent system (4)–(5) is solved.

Necessity is proved as follows.
Similar to the proof of theorem 1 in Liu, Xie, et al.

(2012), we can get that the directed graph G has a di-
rected spanning forest is necessary for the switched system
(4)–(5) to achieve containment control. When the switched
multi-agent system can solve the containment control prob-
lem under arbitrary switching, the discrete-time multi-agent
system (5) can achieve containment control. Note that the
system (5) can solve the containment control problem if
and only if the positions of all the followers are deter-
mined by the leaders’s positions. If we rewrite system (5)
as x(t + 1) = M1x(t), where x(t) = [xT

F (t), xT
R(t)]T , M1 =( I − kLFF −kLFR

0 In−m

)
, then the rank of limt→∞ Mt

1 cannot ex-

ceed n − m. If the condition that 0 < k < minλ∈�(LFF )
2Re(λ)

|λ|2
does not hold, then at least one of the eigenvalues of
I − kLFF is on or outside the unit circle from the above
proof. As a result , limt→∞ Mt

1 has a rank greater that n −
m, which results in a contradiction. �

The undirected graph can be treated as a special directed
graph. If the communication topology among followers is
undirected, LFF is symmetric and the eigenvalues of LFF
are all real numbers. Therefore, we can easily get the fol-
lowing corollary.

Corollary 3.2: Suppose the communication topology
among followers is undirected. Then, the switched multi-
agent system (4)–(5) can exponentially solve the contain-
ment control problem under arbitrary switching if the com-
munication graphG contains a directed spanning forest and
0 < k < 2

λm
.

Proof: If 0 < k < 2
λm

, we obtain from the eigenvalues of

LFF that ‖e−kLFF tc‖ ≤ e−kλ1tc and ‖(I − kLFF )td ‖ ≤ (1 −
kλ1)td . Combining these two inequalities, we have

‖δ(t)‖ = ‖e−kLFF tc (I − kLFF )td δ(0)‖
≤ e−kλ1tc (1 − kλ1)td ‖δ(0)‖ ≤ e−αt‖δ(0)‖,

where α = min{kλ1, ln 1
1−kλ1

}. Hence, the switched multi-
agent system can exponentially solve the containment con-
trol problem under arbitrary switching. �
Remark 1: To avoid to calculate the Laplacian spectrum,
we have λm < 2 maxi∈F {�ii} from the Geršgorin disc the-
orem. Thus, the switched multi-agent system (4)–(5) can

solve the containment control problem under arbitrary
switching if 0 < k < 1

max
i∈F

{�ii } .

Remark 2: In this paper, we consider the network of the
leaders without communication. In the case where the lead-
ers interact with each other, inspired by the work in remark 1
of Zheng and Wang (2013), the distributed control inputs of
leaders can be designed as ui = k

∑
j∈R aij ((xj (t) − hj ) −

(xi(t) − hi)), i ∈ R. If the graphG contains a directed span-
ning tree, positions of the leaders in switched multi-agent
system (4)–(5) will converge to a desired formation and the
followers will converge to the convex hull of the leaders’
final positions.

3.2 Containment control with dynamic leaders

Consider a multi-agent system which consists of n
identical agents with second-order dynamics. Suppose that
agent i takes the switched dynamics, which is composed of
continuous-time dynamics as{

ẋi(t) = vi(t),
v̇i(t) = ui(t), i ∈ {1, . . . , n} (9)

and discrete-time dynamics as{
xi(t + 1) = xi(t) + vi(t),
vi(t + 1) = vi(t) + ui(t), i ∈ {1, . . . , n}, (10)

where xi, vi, ui ∈ R are the position, velocity and control
input of agent i, respectively.

First, we give a linear protocol as

ui(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

k1
∑

j∈F ⋃R
aij (xj (t) − xi(t))

+ k2
∑

j∈F ⋃R
aij (vj (t) − vi(t)), i ∈ F ,

0, i ∈ R,

(11)

where k1, k2 > 0 are the control gains to be designed.
Let zi = [xi, vi]T, zF = [zT

1 , . . . , zT
m]T and zR =

[zT
m+1, . . . , z

T
n ]T . Suppose that the dynamics of each agent

switches simultaneously from one to another. Then, we
get a switched multi-agent system which is composed of
continuous-time subsystem{

żF (t) = (Im ⊗ E − LFF ⊗ F )zF (t) − (LFR ⊗ F )zR(t),
żR = (In−m ⊗ E)zR(t)

(12)

and discrete-time subsystem

⎧⎨
⎩

zF (t + 1) = (Im ⊗ G − LFF ⊗ F )zF (t)
− (LFR ⊗ F )zR(t),

zR(t + 1) = (In−m ⊗ G)zR(t),
(13)

where E = ( 0 1
0 0

)
, F = ( 0 0

k1 k2

)
and G = ( 1 1

0 1

)
.
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Theorem 3.3: The switched multi-agent system (12)–(13)
can solve the containment control problem under arbitrary
switching if and only if the communication graphG contains
a directed spanning forest and

{
k2 > k1,(
(k1 − 2k2)|λi |2 + 4Re(λi)

)
(k2 − k1)2 >

4k1Im2(λi )
|λi |2 ,

(14)

where λi, i = 1, 2, . . . , m are the eigenvalues of LFF .

Proof: Sufficiency is proved as follows.
Let δ(t) = zF (t) + (L−1

FFLFR ⊗ I2)zR(t), we can ob-
tain from (12) that δ(t) satisfies the following dynamics:

δ̇(t) = żF (t) + (L−1
FFLFR ⊗ I2)żR(t)

= (Im ⊗ E − LFF ⊗ F )zF − (LFR ⊗ F )zR
+ (L−1

FFLFR ⊗ I2)(In−m ⊗ E)zR
= (Im ⊗ E − LFF ⊗ F )

(
δ(t) − (L−1

FFLFR ⊗ I2)zR(t)
)

− (LFR ⊗ F )zR + (L−1
FFLFR ⊗ E)zR

= (Im ⊗ E − LFF ⊗ F )δ(t)

= H1δ(t), (15)

where H1 = Im ⊗ E − LFF ⊗ F .
Similarly, from (13) we get δ(t) satisfies

δ(t + 1) = (Im ⊗ G − LFF ⊗ F )δ(t) = H2δ(t), (16)

where H2 = Im ⊗ G − LFF ⊗ F .
For any time t = tc + td, where tc ∈ R is the total

duration time on subsystem (12) and td ∈ N is the total
duration time on subsystem (13). Note that H1H2 = H2H1,
then from (15) and (16) we obtain

δ(t) = eH1tcH
td
2 δ(0). (17)

Since graph G is directed, there exists an invertible ma-
trix W, such that W−1LFFW = triag{λ1, . . . , λm}. Then,
we have

(W−1 ⊗ I2)H2(W ⊗ I2)

= Im ⊗ G − triag{λ1, . . . , λm} ⊗ F

= triag

{(
1 1

−k1λ1 1 − k2λ1

)
, . . . ,

(
1 1

−k1λm 1 − k2λm

) ⎫⎬
⎭.

Thus, the eigenvalues of H2 can be obtained by solving
the equation

det(μI2m − H2)

=
m∏

i=1

det

(
μ − 1 −1
k1λi μ − 1 + k2λi

)

=
m∏

i=1

(
μ2 − (2 − k2λi)μ + 1 + k1λi − k2λi

)
= 0.

Let ai(μ) = μ2 − (2 − k2λi)μ + 1 + k1λi − k2λi.
By applying the bilinear transformation μ = σ+1

σ−1 , we get a
new polynomial

ri(σ ) = (σ − 1)2ai

(
σ + 1

σ − 1

)
= k1λiσ

2

+ 2λi(k2 − k1)σ + k1λi − 2k2λi + 4.

Define r ′
i (σ ) = ri (σ )

k1λi
= σ 2+ 2(k2−k1)

k1
σ+ k1λi−2k2λi+4

k1λi
. Then,

the Schur stable of ai(μ) is equivalent to the Hurwitz stable
of r ′

i (σ ). Using Lemma 2.5, we get that r ′
i (σ ) is Hurwitz

stable if k1 and k2 satisfy the condition (14). Then, all the
eigenvalues of H2 are in the unit circle.

From 0 < k1 < k2 in (14), we obtain (k2 − k1)2 < k2
2 .

Thus,
(
(k1 − 2k2)|λi |2 + 4Re(λi)

)
(k2 − k1)2|λi |2 < 4k2

2
Re(λi)|λi |2. Since

(
(k1 − 2k2)|λi |2 + 4Re(λi)

)
(k2 − k1)2

>
4k1Im2(λi )

|λi |2 in (14), we get 4k1Im2(λi) < 4k2
2Re(λi)|λi |2,

that is , k2
2

k1
>

Im2(λi )
Re(λi )|λi |2 . From the proof of theorem 2 in Liu,

Xie, et al. (2012), we know if k2
2

k1
>

Im2(λi )
Re(λi )|λi |2 , i = 1,

2, . . . , n, all the eigenvalues of H1 have negative real parts.
Thus, from (17) we obtain limt→∞ δ(t) = 0, that

is limt→∞ xF (t) = −L−1
FFLFRxR(t) and limt→∞ vF (t) =

−L−1
FFLFRxR(t). Therefore, the containment control prob-

lem of the switched multi-agent system (12)–(13) is solved.
Necessity is proved as follows.
When the switched multi-agent system can solve the

containment control problem under arbitrary switching, the
continuous-time multi-agent system (12) and the discrete-
time multi-agent system (13) can achieve containment con-
trol asymptotically, respectively. From theorem 2 in Liu,

Xie, et al. (2012), we know that k2
2

k1
>

Im2(λi )
Re(λi )|λi |2 is nec-

essary for system (12) to achieve containment control.
If we rewrite system (13) as z(t + 1) = M2z(t), where
z(t) = [zT

F (t), zT
R(t)]T , M2 = ( H2 −LFR ⊗ F

0 In−m ⊗ G

)
, similar to the

proof of necessity in Theorem 3.1, we get that all the eigen-
values of H2 are in the unit circle is necessary for system
(13) to achieve the containment control, which implies the
necessity of condition (14) from the above proof.

Corollary 3.4: Suppose the communication topology
among followers is undirected. Then, the switched multi-
agent system (12)–(13) can solve the containment control
problem under arbitrary switching if and only if the commu-
nication graph G contains a directed spanning forest and
k2 > k1 , k1 − 2k2 > −4

λm
.

Compared with continuous-time control inputs, im-
pulsive control inputs just use the state variables of sys-
tems at discrete-time instances, and thus have a relatively
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6 Y. Zhu et al.

simple structure. Next, we consider impulsive protocol for
the containment control problem of the switched multi-
agent system.

Let {tl}∞l=0 denote the set of impulse instant, which sat-
isfies 0 = t0 < t1 < · · · < tl < tl+1 < · · · , liml→+∞ tl =
+∞. When t = tl,⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

vi(t
+
l ) = vi(tl) + 
vi(tl),


vi(tl) = k1

∑
j∈F ⋃R

aij (xj (tl) − xi(tl))

+ k2

∑
j∈F ⋃R

aij (vj (tl) − vi(tl)), i ∈ F ,


vi(tl) = 0, i ∈ R,

(18)

where vi(tl) denotes the value of vi at tl before the impulse,
vi(t

+
l ) denotes the value of vi at tl after the impulse. When

t ∈ [t+l , tl+1), if the continuous-time dynamics is activated{
ẋi(t) = vi(t),
v̇i(t) = 0, i ∈ {1, . . . , n} (19)

and if the discrete-time dynamics is activated{
xi(t + 1) = xi(t) + vi(t),
vi(t + 1) = vi(t), i ∈ {1, . . . , n}. (20)

The uniform impulsive interval is denoted by h, which
means that tl + 1 − tl ≡ h, h ∈ N+ always holds for any
l ∈ N. In this paper, we assume that if the continuous-time
dynamics is activated, the duration time is positive integers.
Thus, the dynamics of each agent in the switched multi-
agent system can be rewritten as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xi(tl+1) = xi(tl) + hvi(t
+
l ), i ∈ F , l ∈ N

vi(tl+1) = vi(t
+
l ) = vi(tl) + k1

∑
j∈F ⋃R

aij ((xj (tl)

− xi(tl)) + k2

∑
j∈F ⋃R

aij (vj (tl) − vi(tl))

(21)

and {
xi(tl+1) = xi(tl) + hvi(tl),
vi(tl+1) = vi(tl) i ∈ R, l ∈ N.

(22)

Then, it is easy to get that the switched multi-agent sys-
tem (9)–(10) can solve the containment control problem
under impulsive control input (18) if and only if the
multi-agent system (21)–(22) can solve the containment
control problem, that is, liml→∞ xi(tl) − xj (tl) = 0 and
liml→∞ vi(tl) − vj (tl) = 0, i, j ∈ {1, . . . , n}.

The aggregate dynamics of the multi-agent system
(21)–(22) is of course represented by⎧⎨

⎩
zF (tl+1) = (Im ⊗ P − LFF ⊗ Q)zF (tl)

− (LFR ⊗ Q)zR(tl),
zR(tl+1) = (In−m ⊗ P )zR(tl), l ∈ N,

(23)

where P = ( 1 h
0 1

)
and Q = ( k1h k2h

k1 k2

)
.

Theorem 3.5: The switched multi-agent system (9)–(10)
with the impulsive protocol (18) can solve the containment
control problem under arbitrary switching if and only if
the communication graph G contains a directed spanning
forest and impulsive interval h ∈ N+ satisfies

h < min
λ∈�(LFF )

4Re(λ) | λ |2 −2k2 | λ |4
k1 | λ |4 +4k1Im2(λ)/k2

2

. (24)

Proof: Sufficiency is proved as follows.
Let δ(tl) = zF (tl) + (L−1

FFLFR ⊗ I2)zR(tl), we can ob-
tain from (23) that δ(t) satisfies the following dynamics:

δ(tl+1) = (Im ⊗ P − LFF ⊗ Q)δ(t) = H3δ(t), (25)

where H3 = (Im ⊗ P − LFF ⊗ Q)δ(t).
The Hurwitz stability analysis of H3 is similar to that

of H2 in the deduce of Theorem 3.3. We can obtain that
all the eigenvalues of H3 are in the unit circle if and only
if k1,k2 and h satisfy the condition (24). Thus, we obtain
limt→∞ δ(t) = 0, that is limt→∞ xF (t) = −L−1

FFLFRxR(t)
and limt→∞ vF (t) = −L−1

FFLFRxR(t). Therefore, the con-
tainment control problem is solved.

Necessity is proved as follows.
For system (23), it can be equivalently written as

z(tl + 1) = M3z(tl), where z(tl) = [zT
F (tl), zT

R(tl)]T , M3 =( H3 −LFR ⊗ Q
0 In−m ⊗ P

)
. Similar to the proof of necessity in

Theorem 3.1, we get that all the eigenvalues of H3 are in
the unit circle is necessary for system (23) to achieve con-
tainment control, which implies the necessity of condition
(24) from the above proof. �
Remark 3: Note that when the duration time of discrete-
time subsystem equals to zero, the impulsive containment
control of the switched multi-agent system becomes the
impulsive containment control of continuous-time multi-
agent system, which was studied in Liu, Su, et al. (2014).
The authors gave a sufficient condition for the case of dy-
namic leaders in Liu, Su, et al. (2014), while in this paper
a necessary and sufficient condition is obtained for solving
the containment control problem.

Corollary 3.6: Suppose the communication topology
among followers is undirected. Then, the switched multi-
agent system (9)–(10) with the impulsive protocol (18) can
solve can solve the containment control problem under ar-
bitrary switching if and only if the communication graph
G contains a directed spanning forest and the impulsive
interval h ∈ N+ satisfies h ≤ 4

λmk1
− 2k2

k1
.

4. Simulations

In this section, we will provide two examples to demonstrate
the effectiveness of the theoretical results.
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Figure 1. The communication topology among agents.

Example 4.1 (Containment control with stationary lead-
ers): Consider a network of first-order dynamic agents, with
xi = [xi1, xi2]T, where xi1 and xi2 are, respectively, the po-
sitions of the agent i along the x and y coordinates. Let the
interaction graph G be given by Figure 1, in which agents
8,9,10 and 11 are leaders (the filled circles) and the others
are followers. Assume each edge weight to be 1. It can be
noted that G has a directed spanning forest. For simpleness,
we assume the duration time of continuous-time subsystem
(4) from the time to be activated to the time to be switched to
discrete-time subsystem (5) is always the same and equals
to 4. For discrete-time subsystem, we make the same as-
sumption. The duration time equals to 5. By Theorem 3.1,
we choose k = 0.03 < 0.667, and the simulation results are
shown in Figure 2. We can see that positions of the followers
converge to the stationary convex hull formed by positions
of the leaders.

Example 4.2 (Containment control with dynamic leaders):
Consider a network of second-order dynamic agents, with
xi = [xi1, xi2]T. To illustrate Theorem 3.3, assume that the

−15 −10 −5 0 5 10 15
−10

−8

−6

−4

−2

0

2

4

6

8

10

x

y

Figure 2. Trajectories of all the agents of switched multi-agent
system (4)–(5).

Figure 3. Trajectories of all the agents of switched multi-agent
system (12)–(13).

interaction graph G is shown in Figure 1. We make the same
assumption as in Example 4.1. By Theorem 3.3, we choose
k1 = 0.5 and k2 = 0.6. The simulation results are shown
in Figure 3 . We can see as desired that positions of the
followers converge to the dynamic convex hull formed by
positions of the leaders.

5. Conclusions

This paper has considered the containment control prob-
lem for a novel switched multi-agent system under directed
communication topologies. When the leaders are stationary,
continuous-time protocols based on the relative state mea-
surements of agents have been designed. We have proved
that the containment control problem can be solved under
arbitrary switching if and only if the communication graph
contains a directed spanning forest and the control gain
satisfies that 0 < k < minλ∈�(LFF )

2Re(λ)
|λ|2 . When the leaders

are dynamic, continuous-time and impulsive protocols have
been proposed, respectively. Based on the graph theory and
the impulsive control theory, some sufficient and necessary
conditions have been obtained for solving the containment
control problem under arbitrary switching. Our future work
will consider the containment control problem of switched
multi-agent systems with delays and quantised information.
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