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Finite-Time Consensus of Switched
Multiagent Systems

Xue Lin and Yuanshi Zheng

Abstract—This paper focuses on the finite-time consensus
(FTC) problem of switched multiagent system (MAS) which
is composed of continuous-time and discrete-time subsystems.
Different from the existing results, each agent of this system is
controlled by switching control method. To achieve consensus in
finite time for the switched MAS, two types of consensus protocols
(the FTC protocol and the fixed-time consensus (FdTC) proto-
col) are proposed. By using algebraic graph theory, Lyapunov
theory and matrix theory, it is proved that the FTC problem
in strongly connected network and leader-following network can
be solved, respectively. When the initial states of agents are not
available, the FdTC protocol is applied to solve the FTC prob-
lem. Simulations are provided to illustrate the effectiveness of
our theoretical results.

Index Terms—Consensus, finite-time, fixed-time, switched
multiagent systems (MASs).

I. INTRODUCTION

OVER the past few decades, various control prob-
lems for different systems have been investigated, for

instance, neutral-type neural networks [1], [2], nonlinear sys-
tems [3]–[6], Markovian jump systems [7]. In recent years, the
distributed coordination control of multiagent systems (MASs)
has attracted much attention in control field. This is mainly
due to its superiority in engineering field, such as the flexi-
bility of controller design, strong robustness, and so on. Take
large scale systems as an example, centralized controller is
not easy to achieve the goal because of the system’s complex-
ity. However, large scale systems can be divided into multiple
subsystems, then distributed control is applied for the system.
For solving different problems motivated by various objec-
tives, lots of research results have been provided, for instance,
consensus problem [8], [9], topology selection [10], con-
trollability [11]–[14], optimal control [15], event-time driven
control [16], etc.
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Consensus as a basic problem, aims to design appropriate
protocol to guarantee agents to achieve agreement on certain
quantity. From the viewpoint of dynamical behaviors of agents,
the research results of MASs consist of single-integrator
dynamics [17], double-integrator dynamics [18]–[21], nonlin-
ear dynamics [22], [23], etc. On the analysis of consensus
problems, the convergence rate plays a significant role, which
reflects the performance of consensus protocol. In order
to accelerate the convergence speed, researchers established
and proposed some methods [24]. However, these conclu-
sions focus on asymptotic convergence, namely, agents cannot
achieve consensus in finite time. Actually, requiring an arbi-
trary long time to reach consensus is often unacceptable in
some practical situations. Therefore, some researchers were
attracted to explore the finite-time consensus (FTC) prob-
lem. For continuous-time MASs, a variety of FTC protocols
have been presented [25]–[28]. In [29], two protocols were
established to solve the FTC problem under time-invariant
undirected topology. By employing finite-time semistability
theory, the finite-time rendezvous problem was developed
in [30]. Whereas the protocols mentioned in [29] and [30]
involve discontinuous dynamics, which may lead to a variety
of negative effects [25]. Therefore, continuous-time finite-time
protocols were presented. Wang and Xiao [25] proposed a
continuous-time protocol to solve the FTC problem under
both the bidirectional and unidirectional interaction cases. The
FTC problem of MASs with respect to a monotonic function
and heterogeneous MASs were investigated in [31] and [32],
respectively. In [33], FTC problem of second-order MASs
without velocity measurements was investigated under undi-
rected connected graph. Liu et al. [34] proved that FTC of
MASs with a switching protocol can be achieved under a
strongly connected and detail-balanced topology. It is note-
worthy that the estimated bound of convergence time under
the aforementioned FTC protocols is associate with initial
states of agents, which may limit some applications. The
fixed-time consensus (FdTC) protocol was presented so as
to deal with this problem. For solving the FdTC problem,
Parsegov et al. [35] proposed an FdTC protocol and obtained
that the estimated bound of settling time is independent of
the initial states of agents. Leader–follower FdTC of MAS
was investigated under undirected connected network in [36].
Fu and Wang [37] further considered the tracking problem
for second-order MASs with bounded input uncertainties and
proved that the fixed-time tracking problem can be solved
under interaction network among the followers is undirected
connected. In addition, there exist some other research topics
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concerning finite-time problems, such as finite-time forma-
tion control [27], finite-time containment control [28], and so
on. For discrete-time MASs, the finite-time distributed averag-
ing algorithm with fully-connected topology was first briefly
discussed in [38]. By using a matrix factorization approach,
the finite-time average consensus was solved under distance
regular graph in [39].

A switched system is composed of a finite number of
subsystems, and a switching law managing the switching
among these subsystems [40]–[43]. For MASs, when switch-
ing behaviors occur in the topologies, it can be found that
the system matrix changes with topology switches [17], [44].
Therefore, the MAS with switching topologies is regarded as
a kind of switched system which consists of only continuous-
time or discrete-time subsystems. Zheng and Wang [45]
considered the switched MAS consisting of continuous-time
and discrete-time subsystems, and investigated the consensus
problem for different topologies. Since realistic communica-
tion among agents may change, the consensus problem of
the switched MAS under random networks was also solved
in [46]. Moreover, containment control of such switched
MAS was considered in [47]. In reality, such switched MAS
exists widely in applications. For instance, an MAS is con-
trolled either by a physically implemented regulator or by
a digitally implemented one with a switching rule between
them synchronously, i.e., the switched MAS is composed of
continuous-time and discrete-time subsystems. However, so
far, results concerning FTC were concerned with the MAS
consisting of only continuous-time subsystem or discrete-time
subsystem.

This paper aims at designing appropriate consensus proto-
cols to solve the FTC problem of the switched MAS proposed
in [45]. Zheng and Wang [45] studied the asymptotic consen-
sus problem of switched MAS. Different from [45], we mainly
study the FTC problem, namely, the consensus of agents can
be achieved in finite time. The main problem we need to
solve is how to design an effective consensus protocol for the
switched MAS to solve the FTC problem. Difficulty comes
partly from how to cope with the different dynamical behav-
iors and switching behaviors. It is difficult to apply the idea
of FTC of continuous-time MASs (discrete-time MASs) to
the present case. Motivated by Zheng and Wang [45], two
types of distributed consensus protocols are designed for the
switched MAS in this paper. The main contribution of this
paper includes the following.

1) An FTC protocol is designed for the switched MAS.
By using this consensus protocol, we show that if the
sum of time intervals T0, over which the continuous-time
subsystem is activated, is larger than a finite constant,
the FTC problem can be solved under strongly connected
network.

2) When the initial states of agents are not available, we
propose an FdTC protocol to solve the FdTC prob-
lem. We obtain that the sum of time intervals T0 is
uncorrelated with the initial states of agents.

3) By using these two protocols, the FTC problem and the
FdTC problem under leader-following network are also
investigated, respectively.

Notation: Let R be the set of real numbers, Rn denotes the
n-dimensional real vector space and In be identity matrix. 1 =
[1, . . . , 1]T ∈ Rn, ω = [ω1, ω2, . . . , ωn]T ∈ Rn and ω > 0,
In = {1, 2, . . . , n}, and d̄ = maxi∈In{dii} denotes maximum
degree of agent. AT denotes the transpose of matrix A or vector
A. Rn×n and Cn×n denote n×n real matrix and n×n complex
matrix, respectively. B = [bij] ∈ Rn×n, B ≥ 0 if all bij ≥
0. We say that B is a non-negative matrix if B ≥ 0. Both
W ∈ Rn×n and W̄ ∈ R(n−1)×(n−1) are the diagonal matrices
with wi > 0 as the (i, i) entry. b̄ = [b1, b2, . . . , bn−1]T =
[a1n, a2n, . . . , a(n−1)n]T ≥ 0 where there is at least one bi >

0, and b̃ = diag(b̄) = diag{b1, b2, . . . , bn−1}. J{a1, . . . , an}
represents Jordan matrix with diagonal entry ai and sign(·) is
the sign function. | · | represents the absolute value. �x� is the
largest integer not greater than x. x̄k(t) = maxi∈V xi(t), xk(t) =
mini∈V xi(t) and α0 = maxij αij. span(1) = {ξ ∈ Rn : ξ =
r1, r ∈ R}.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Preliminaries

The communication relationship between agents is
described by graph G (A) = (V, E, A) with vertex set
V = {ν1, ν2, . . . , νn}, edge set E = {eij} ⊆ V × V and
non-negative matrix A = [aij]n×n. If (νj, νi) ∈ E, agents i and
j are adjacent and aij > 0. The degree matrix D = [dij]n×n

is a diagonal matrix with dii = ∑
j∈Ni

aij and the Laplacian
matrix of the graph is defined as L = [lij]n×n = D − A. For
Laplacian matrix L, λi(L) denotes the ith eigenvalue of L
and 0 = λ1(L) ≤ λ2(L) ≤ . . . ≤ λn(L). The directed graph
G (A) is said to satisfy the detail-balanced condition if there
exist some scalars ωi > 0 such that ωiaij = ωjaji for all
i, j ∈ In. For more details, please refer to [32]. For MASs,
agent n is a leader, i.e., an1 = an2 = · · · = an(n−1) = 0 and

ā = [a1n, a2n, . . . , a(n−1)n]T ≥ 0. L =
[

LFF − b̄
01×(n−1) 01×1

]

where LFF ∈ R(n−1)×(n−1), and b̄ ∈ R(n−1)×1. Followers’
interaction subgraph is G (Ā).

B. Problem Formulation

We consider an MAS which consists of n agents, and each
agent is controlled by switching control method (continuous-
time control and sampled-data control). Thus, the agent takes
the switched dynamics, it switches between continuous-time
dynamics and discrete-time dynamics.

The continuous-time dynamics is

ẋi(t) = ui(t), i ∈ In (1a)

and discrete-time dynamics is

xi(t + 1) = xi(t) + hui(t), i ∈ In (1b)

where xi(t) ∈ R and ui(t) ∈ R are the state and control input of
agent i, respectively. Sampling period h > 0 and initial value
x0 = [x1(0), . . . , xn(0)]T . Assume that the synchronous switch
is applied for each agent.

Throughout this paper, there is a sequence of time instants
0 ≤ t1 < t̄1 < t2 < t̄2 < · · · < t̄k−1 < tk < t̄k < · · · for
system (1) that satisfies the following assumption.
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Assumption 1:
1) Continuous-time subsystem (1a) is activated when t ∈

(tk, t̄k].
2) Discrete-time subsystem (1b) is activated when t ∈

(t̄k−1, tk].
3) t̄k − tk ≥ τ ∗ where τ ∗ is constant.
Note that Assumption 1 guarantees system (1) to be

always composed of only the continuous-time subsystem (or
continuous-time and discrete-time subsystems). There does
not exist the case that system (1) is composed of only the
discrete-time subsystem. Moreover, system (1) can be viewed
as a system consisting of continuous-time subsystem and
discrete-time subsystem at different time interval.

Definition 1 [32]: System (1) reaches FTC if for any initial
state x0 ∈ Rn and i, j ∈ In, there is a settling time T such that
limt→T(xj(t) − xi(t)) = 0 and xj(t) = xi(t), ∀t ≥ T .

Lemma 1 [48]: A complex matrix B ∈ Cn×n is nonsingular
if B is irreducibly diagonally dominant.

Lemma 2 [25]: Let π1, π2, . . . , πn ≥ 0 and 0 < κ ≤ 1,
then

n∑

i=1

πκ
i ≥

(
n∑

i=1

πi

)κ

.

Lemma 3 (Comparison Theorem [49]): Let U(t, u) be con-
tinuous on an open (t, u)-set E and u = u0(t) the maximal
solution of (du/dt) = U(t, u), u(t0) = u0. Let v(t) be a
continuous function on [t0, t0 + a] satisfying the conditions
v(t0) ≤ u0, (t, v(t)) ∈ E, and v(t) has a right derivative
DR(v(t)) on t0 ≤ t < t0 + a such that DR(v(t)) ≤ U(t, v(t)).
Then, on a common interval of existence of u0(t) and v(t),
v(t) ≤ u0(t).

Lemma 4: Suppose that graph G (A) is strongly connected
and satisfies the detailed balance condition, and 0 < h <

(1/d̄). Then, for all i ∈ In, it holds that λi ≤ 0 and λi = 0 is
algebraically simple, where λi is the ith eigenvalue of matrix
(I − hL)TW(I − hL) − W.

Proof: From the definition of L and 0 < h < (1/d̄), we
have that

I − hL = I − h(D − A) = (I − hD) + hA

is a non-negative matrix and its row sums are 1. Hence,
matrix (I−hL)TW(I−hL) is also non-negative. Because graph
G (A) satisfies the detailed balance condition, there exist some
scalars ωi > 0 such that ωiaij = ωjaji for all i, j ∈ In.
Thus, we get WA = ATW and WL = LTW. It follows from
WL = LTW and L1 = 0 that (I − hL)TW(I − hL)1 =
W(I − hL)1 = ω. Consequently, there must exist a zero
eigenvalue corresponding to a right eigenvector 1 for matrix
(I − hL)TW(I − hL) − W.

Let (I − hL)TW(I − hL) = W̃, then

W̃ − W =
⎡

⎢
⎣

ω̃11 − ω1 . . . ω̃1n
...

. . .
...

ω̃n1 . . . ω̃nn − ωn

⎤

⎥
⎦

it is obvious that ω̃ii − ωi ≤ 0 and
∑n

j=1 ω̃ij − ωi = 0. By
Gersgorin Disk theorem [48], all the eigenvalues of W̃ − W

are located in the following region:

n⋃

i=1

⎧
⎪⎪⎨

⎪⎪⎩

z ∈ C : |z − (ω̃ii − ωi)| ≤
n∑

j=1
i �=j

∣
∣ω̃ij
∣
∣ = |ω̃ii − ωi|

⎫
⎪⎪⎬

⎪⎪⎭

it is easy to see that all the eigenvalues λi ≤ 0.
Next, we prove that zero eigenvalue is algebraically simple.

Let λ1(L), . . . , λn(L) denote the eigenvalues of L, we have
P−1LP = J{λ1(L), . . . , λn(L)}. Then, we have P−1(−2hL +
h2L2)P = J{−2hλ1(L) + h2λ2

1(L), . . . ,−2hλn(L) + h2λ2
n(L)}.

From Gersgorin Disk theorem, it is easy to obtain 0 < h <

(1/d̄) ≤ (2/λn(L)). Since G (A) is strongly connected, we
obtain rank(−2hL + h2L2) = n − 1. By Sylvester inequal-
ity [48], rank((I − hL)TW(I − hL) − W) = rank(W(−2hL +
h2L2)) = n − 1. Hence, λi < 0, i = 2, . . . , n and λ1 = 0 is
algebraically simple.

Lemma 5: Suppose that followers’ interaction subgraph
G (Ā) is strongly connected and satisfies the detailed balance
condition, and 0 < h < (1/d̄ + bi), i ∈ In−1. Then, for all
i ∈ In−1, it holds that λ̄i < 0 where λ̄i is the ith eigenvalue
of matrix (I − hLFF)TW̄(I − hLFF) − W̄.

Proof: Since 0 < h < (1/d̄ + bi) and matrix Ā is a non-
negative matrix, we have that

I − hLFF = I − h
((

D̄ + b̃
)

− Ā
)

=
(

I − h
(

D̄ + b̃
))

+ hĀ

is a non-negative matrix. Similar to Lemma 4, we have W̄Ā =
ĀTW̄ and W̄LFF = LT

FFW̄. Due to LFF1 = b̄, we have (I −
hLFF)TW̄(I −hLFF)1 = W̄(1−2hb̄+h2 l̄), l̄ = [l11b1 + l12b2 +
· · ·+l1n−1bn−1, . . . , ln−11b1+ln−22b2+· · ·+ln−1n−1bn−1]T and
lji ≤ 0, j = 1, . . . , n−1, j �= i. Owing to 0 < h < [1/(d̄ + bi)],
we have (I − hLFF)TW̄(I − hLFF)1 ≤ W̄1. By Gersgorin Disk
theorem [48], all eigenvalues of (I − hLFF)TW̄(I − hLFF)− W̄
are nonpositive.

Because graph G (Ā) is strongly connected and there is at
least one agent connected to the leader, there is at least one
lii such that |lii| >

∑
j �=i |lij|, i, j ∈ In−1. By Lemma 1, it

follows that LFF is nonsingular, i.e., there is no zero eigenvalue
for matrix LFF . By Gersgorin Disk theorem, we have 0 <

h < [1/(d̄ + bi)] ≤ (2/λn−1(LFF)). According to Lemma 4,
we can get rank(−2hLFF + h2L2

FF) = n − 1. Therefore, (I −
hLFF)TW̄(I − hLFF) − W̄ = W̄(−2hLFF + h2L2

FF) is full rank.
Consequently, there is no zero eigenvalue and λ̄i < 0, i =
1, . . . , n − 1.

The asymptotic consensus problem for switched MAS has
been investigated in [45]. In this paper, two types of consen-
sus protocols which guarantee the switched MAS to achieve
consensus in finite time are designed.

III. FTC PROTOCOL FOR THE SWITCHED MAS

This section proposed FTC protocol for system (1) to solve
FTC problem. For continuous-time and discrete-time subsys-
tems, we design different consensus protocols, respectively. It
is presented as follows:

ui(t) =
{∑n

j=1 aijsig
(
xj(t) − xi(t)

)αij , t ∈ (tk, t̄k
]

∑n
j=1 aij

(
xj(t) − xi(t)

)
, t ∈ (t̄k−1, tk

] (2)
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where 0 < αij < 1 and sig(μ)αij = sign(μ)|μ|αij . Note that
sig(μ)αij is a continuous function. When αij = 1, it will
become the consensus protocol proposed in [45] which solves
the asymptotical consensus problem. In this paper, we assume
that αij = αji.

Next, we will show that system (1) with protocol (2)
achieves FTC under certain mathematical conditions. To solve
this problem, we introduce U = {ξ ∈ Rn : ωTξ = 0 and
‖ξ‖ = 1}. Since ω > 0, it is clear that ξ �= 0 and ξ /∈ span(1).
L is Laplacian matrix of undirected connected graph, then
ξTLξ > 0.

Theorem 1: Suppose that the interaction network G (A) is
strongly connected and satisfies the detailed balance condition,
and 0 < h < (1/d̄). Then, system (1) with protocol (2) reaches
FTC if there exist finite k and t̄∗ ∈ [tk, t̄k) such that

T0 ≥ 4

(1 − α0)K
V

1−α0
2 (γ (0)) (3)

where

T0 = t̄∗ − tk +
k−1∑

i=1

(
t̄i − ti

)

V(γ (0)) = 1

2

n∑

i=1

ωi

⎛

⎝xi(0) − 1
∑n

j=1 ωj

n∑

j=1

ωjxj(0)

⎞

⎠

2

and K = (K1K2)
[(1+α0)/2] with

K1 = 1
∑n

i,j=1

(
ωiaij

) 2
α0+1

min
i,j∈In
aij �=0

(
ωiaij

) 2
α0+1

× (
x̄k(0) − xk(0)

)2
(

αij+1
α0+1 −1

)

> 0

and

K2 = 4c0

ωmax
, c0 = min

ξ∈U
ξTL(B)ξ > 0

U = {ξ ∈ Rn : ωTξ = 0 and ‖ξ‖ = 1
}

B =
[
(
ωiaij

) 2
α0+1

]

∈ Rn×n.

Proof: First, we show that there exist finite k satisfying (3).
From Assumption 1, we know that T0 ≥ (k − 1)τ ∗. Then for
any finite k ≥ �(4V [(1−α0)/2](0)/(1 − α0)Kτ ∗)�+1, (3) holds.

The interaction network G (A) is strongly connected and sat-
isfies the detailed balance condition, i.e., there exists a positive
column vector ω = [ω1, ω2, . . . , ωn]T such that ωiaij = ωjaji

for all i, j ∈ In.
Let υ(t) = (1/

∑n
i=1 ωi)

∑n
i=1 ωixi(t). Due to αij = αji,

ωiaij = ωjaji for all i, j ∈ In, we have

υ̇(t) = 1
∑n

i=1 ωi

n∑

i=1

ωiẋi(t)

= 1
∑n

i=1 ωi

n∑

i=1

ωi

n∑

j=1

aijsig
(
xj(t) − xi(t)

)αij

= 0

and

υ(t + 1) = 1
∑n

i=1 ωi

n∑

i=1

ωixi(t + 1)

= 1
∑n

i=1 ωi

n∑

i=1

ωi

⎛

⎝xi(t) + h
n∑

j=1

aij
(
xj(t) − xi(t)

)
⎞

⎠

= 1
∑n

i=1 ωi

n∑

i=1

ωixi(t)

+ h
1

∑n
i=1 ωi

n∑

i=1

ωi

n∑

j=1

aij
(
xj(t) − xi(t)

)

= υ(t).

Therefore, υ(t) is time-invariant. Let γi(t) = xi(t) − υ(t),
we have ωTγ (t) = 0 and γ (t + 1) = (I − hL)x(t) − 1υ(t) =
(I − hL)(x(t) − 1υ(t)) = (I − hL)γ (t). Take Lyapunov
function V(γ (t)) = (1/2)

∑n
i=1 ωiγ

2
i (t) = (1/2)γ T(t)Wγ (t)

for continuous-time subsystem (1a) and discrete-time subsys-
tem (1b).

When t ∈ (t̄k−1, tk], discrete-time subsystem (1b) is acti-
vated. Thus, we have

V(γ (t + 1)) − V(γ (t))

= 1

2

(
γ T(t + 1)Wγ (t + 1) − γ T(t)Wγ (t)

)

= 1

2
γ T(t)

(
(I − hL)TW(I − hL) − W

)
γ (t)

≤ 1

2
λmax

(
(I − hL)TW(I − hL) − W

)
γ T(t)γ (t)

≤ 0 (4)

where the last inequality follows from Lemma 4.
When t ∈ (tk, t̄k], continuous-time subsystem (1a) is acti-

vated. Similar to the proof technique of Wang and Xiao [25],
we have

V̇(γ (t)) =
n∑

i=1

ωiγi(t)
n∑

j=1

aijsig
(
γj(t) − γi(t)

)αij

= 1

2

n∑

i,j=1

(
ωiaijγi(t)sig

(
γj(t) − γi(t)

)αij

+ ωjajiγj(t)sig(γi(t) − γj(t))
αji
)

= −1

2

n∑

i,j=1

ωiaij
∣
∣γj(t) − γi(t)

∣
∣αij+1

= −1

2

n∑

i,j=1

(
(
ωiaij

) 2
α0+1

∣
∣γj(t) − γi(t)

∣
∣

2(αij+1)
α0+1

)α0+1
2

≤ −1

2

⎛

⎜
⎜
⎝

∑n
i,j=1

(
ωiaij

) 2
α0+1

∣
∣γj(t) − γi(t)

∣
∣

2(αij+1)
α0+1

2γ T(t)L(B)γ (t)

× V(γ (t))
2γ T(t)L(B)γ (t)

V(γ (t))

⎞

⎟
⎟
⎠

α0+1
2

(5)

where the last inequality follows from Lemma 2.
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We know that x̄k(t) = maxi∈V xi(t) and xk(t) = mini∈V xi(t).
When t ∈ (t̄k−1, tk], by Lemma 4, matrix I − hL = [l̄ij]n×n is
a row stochastic matrix, i.e.,

∑n
j=1 l̄ij = 1. Obviously, x̄k(t +

1) = maxi∈V
∑n

j=1 l̄ijxj(t) ≤ maxi∈V
∑n

j=1 l̄ijx̄j(t) = x̄k(t), i.e.,
x̄k(t + 1) ≤ x̄k(t). We show that xk(t + 1) ≥ xk(t) in precisely
the same way. When t ∈ (tk, t̄k], it is obvious that ˙̄xk(t) ≤ 0
and ẋk(t) ≥ 0. Thus, x̄k(t) − xk(t) is a nonincreasing for all
t > 0. Hence, |γj(t) − γi(t)| ≤ x̄k(t) − xk(t) ≤ x̄k(0) − xk(0).
From [25], we have

∑n
i,j=1

(
ωiaij

) 2
α0+1

∣
∣γj(t) − γi(t)

∣
∣

2(αij+1)
α0+1

2γ T(t)L(B)γ (t)
≥ K1 > 0

where K1 is defined as in (3).
Since U = {ξ : ωTξ = 0 and ‖ξ‖ = 1} and ω > 0, we have

ξ �= 0 and ξ /∈ span{1}. By properties of Laplacian matrix
under undirected connected graph, we have ξTL(B)ξ > 0. It
follows from ωTγ (t) = 0 that

2γ T(t)L(B)γ (t)

V(γ (t))
≥ 4

ωmax

γ T(t)
√

γ T(t)γ (t)
L(B)

γ (t)
√

γ T(t)γ (t)
≥ K2

where L(B) and K2 are defined as in (3).
Hence, it is easy to obtain V̇(γ (t)) ≤

−(1/2)KV [(α0+1)/2](γ (t)) for t ∈ (tk, t̄k]. By the comparison
theorem

V
1−α0

2 (γ (t)) ≤ −1 − α0

4
K(t − tk) + V

1−α0
2 (γ (tk)). (6)

From (4) and (5), it is easy to know that

V(γ (0)) ≥ V(γ (t1)) ≥ V
(
γ
(
t̄1
)) ≥ V(γ (t2))

≥ V
(
γ
(
t̄2
)) ≥ · · · ≥ V(γ (tk)) ≥ V

(
γ
(
t̄k
)) ≥ · · · (7)

Next, we show that there exists t̄∗ ∈ (tk, t̄k] such that
−[(1 − α0)/4]K(t̄∗ − tk) + V [(1−α0)/2](γ (tk)) ≤ 0. Based
on (6), (7), and 1 − α0 > 0

−1 − α0

4
K
(
t̄∗ − tk

)+ V
1−α0

2 (γ (tk))

≤ −1 − α0

4
K
(
t̄∗ − tk

)+ V
1−α0

2
(
γ
(
t̄k−1

))

≤ −1 − α0

4
K
(
t̄∗ − tk + t̄k−1 − tk−1

)+ V
1−α0

2 (γ (tk−1))

...

≤ −1 − α0

4
K
(
t̄∗ − tk + t̄k−1 − tk−1 + · · · + t̄1 − t1

)

+ V
1−α0

2 (γ (0)).

Hence, it follows from (3) that there exists t̄∗ ∈ (tk, t̄k]
such that −[(1 − α0)/4]K(t̄∗ − tk) + V [(1−α0)/2](γ (tk)) ≤ 0.
By virtue of V(γ (t)) ≥ 0, V̇(γ (t)) ≤ 0 and (6), we get
V(γ (t)) = 0 for t ≥ t̄∗. Thus system (1) reaches consensus in
finite time.

Remark 1: If the interaction network is a undirected con-
nected network, the analogous theoretical result can be estab-
lished for system (1) with protocol (2) to solve the finite-time
average consensus problem. It is clear that the convergence

speed of system (1) is influenced by λ2(L(B)) where B =
[(aij)

[2/(α0+1)]] ∈ Rn×n. Furthermore, the larger algebraic
connectivity of G (B) is, the shorter the convergence time is.

Theorem 2: Suppose that system (1) has a leader (labeled
as n) and n − 1 followers (labeled as 1, . . . , n − 1), and
the interaction network G (Ā) among the followers is strongly
connected and satisfies the detailed balance condition, and
0 < h < [1/(d̄ + bi)], i ∈ In−1. Then, system (1) with pro-
tocol (2) reaches FTC if there exist finite k and t̄∗ ∈ (tk, t̄k]
such that

T0 ≥ 4

(1 − α0)K̄
V̄

1−α0
2 (γ (0)) (8)

where

T0 = t̄∗ − tk +
k−1∑

i=1

(
t̄i − ti

)
, V̄(γ (0)) = 1

2

n−1∑

i=1

ωi(xi(0) − xn)
2

and K̄ = (K̄1K̄2)
[(1+α0)/2] with

K̄1 = 1

∑n
i,j=1

(
ωiaij

) 2
α0+1 + 2

∑n
i=1 b

2
α0+1
i

min
i,j∈In
aij �=0

(
ωiaij

) 2
α0+1

× (
x̄k(0) − xk(0)

)2
(

αij+1
α0+1 −1

)

> 0

and

K̄2 = 4λ1(L(B̄) + b̃)

ωmax
, B̄ =

[
(
ωiaij

) 2
α0+1

]

∈ R(n−1)×(n−1).

Proof: The interaction network among the followers is
strongly connected and satisfies the detailed balance con-
dition, i.e., there exists a positive column vector ω̄ =
[ω1, ω2, . . . , ωn−1]T such that ωiaij = ωjaji for all i, j ∈ In−1.
We rewrite protocol (2) as follows:

ui(t) =

⎧
⎪⎪⎨

⎪⎪⎩

∑n−1
j=1 aijsig

(
xj(t) − xi(t)

)αij + ainsig(xn − xi)
αin

t ∈ (tk, t̄k
]

∑n−1
j=1 aij

(
xj(t) − xi(t)

)+ ain(xn − xi)

t ∈ (t̄k−1, tk
]

(9)

where

ain =
{

bi > 0 if agent i is connected to agent n

0 otherwise

denotes whether the follower i is connected to the leader n
and i ∈ In−1.

First, we show that there exist finite k satisfying (8). The
proof is similar to that of theorem 1 and it is omitted.

Let γi(t) = xi(t) − xn, i ∈ In−1, we have γ̄ (t + 1) =
x(t +1)−1xn = (I −hLFF)x(t)+ (hb̄−1)xn = (I −hLFF)γ̄ (t),
i ∈ In−1, where LFF1 = b̄. Take Lyapunov function
V̄(γ (t)) = (1/2)

∑n−1
i=1 ωiγ

2
i (t) = (1/2)γ̄ T(t)W̄γ̄ (t)

for continuous-time subsystem (1a) and discrete-time
subsystem (1b).
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When t ∈ (t̄k−1, tk], discrete-time subsystem (1b) is acti-
vated. Thus, we have

V̄(γ (t + 1)) − V̄(γ (t))

= 1

2

(
γ̄ T(t + 1)W̄γ̄ (t + 1) − γ̄ T(t)W̄γ̄ (t)

)

= 1

2
γ̄ T(t)

(
(I − hLFF)TW̄(I − hLFF) − W̄

)
γ̄ (t)

≤ 1

2
λmax

(
(I − hLFF)TW̄(I − hLFF) − W̄

)
γ̄ T(t)γ̄ (t)

≤ 0 (10)

where the last inequality follows from Lemma 5.
When t ∈ (tk, t̄k], continuous-time subsystem (1a) is acti-

vated. Therefore

˙̄V(γ (t))

=
n−1∑

i=1

ωiγi(t)

⎛

⎝
n−1∑

j=1

aijsig
(
γj(t) − γi(t)

)αij − bisig(γi(t))
αin

⎞

⎠

= −1

2

n−1∑

i,j=1

ωiaij
∣
∣γj(t) − γi(t)

∣
∣αij+1 −

n−1∑

i=1

ωibi|γi(t)|αin+1

≤ −1

2

(
�1

�2

�2

V̄(γ (t))
V̄(γ (t))

)α0+1
2

(11)

where

�1

�2
=
∑n

i,j=1

(
ωiaij

) 2
α0+1

∣
∣γj(t) − γi(t)

∣
∣

2(αij+1)
α0+1

2γ̄ T(t)
(

L
(
B̄
)+ b̃

)
γ̄ (t)

+
∑n−1

i=1 (ωibi)
2

α0+1 |γi(t)|
2(αij+1)

α0+1

2γ̄ T(t)
(

L
(
B̄
)+ b̃

)
γ̄ (t)

.

By using the proof method in Theorem 1, it is easy to obtain
(�1/�2) ≥ K̄1 > 0.

From [25], we know that L(B̄) + b̃ is a positive definite
matrix and λ1(L(B̄) + b̃) > 0. Thus

�2

V̄(γ (t))
= 2γ̄ T(t)(L(B̄) + b̃)γ̄ (t)

1
2 γ̄ T(t)W̄γ̄ (t)

≥ 4
λ1(L(B̄) + b̃)

ωmax
= K̄2 > 0.

Similar to Theorem 1, we get V̄(γ (t)) = 0 for t ≥ t̄∗.
Therefore, system (1) reaches consensus in finite time.

Remark 2: It is noteworthy that the time interval τ ∗ is not
arbitrarily small if we want to guarantee the FTC of system (1).
From the proof of Theorems 1 and 2, we can find that sys-
tem (1) can reach consensus asymptotically if τ ∗ is arbitrarily
small.

Note that T0 is dependent on the initial states of agents
when protocol (2) is applied. The initial states of agents must
be available if we want to get T0. However, there exists the
case that the initial states of agents are unavailable in some
applications. To calculate T0 without the information of initial
states of agents, we will propose an FdTC protocol for the
switched MAS to solve this problem in the following part.

IV. FdTC PROTOCOL FOR THE SWITCHED MAS

In this section, the FdTC protocol is proposed for system (1).
It is presented as follows:

ui(t) =

⎧
⎪⎨

⎪⎩

∑n
j=1 aij

(
xj(t) − xi(t)

)m
r +∑n

j=1 aij
(
xj(t) − xi(t)

) p
q

t ∈ (tk, t̄k
]

∑n
j=1 aij

(
xj(t) − xi(t)

)
, t ∈ (t̄k−1, tk

]

(12)

where m, r, p, and q are positive odd integers such that m > r
and p < q. When (m/r) = 1 and (p/q) = 1, it will become
the consensus protocol proposed in [45] which solves the
asymptotical consensus problem.

Note that f1(x) = x(m/r) and f2(x) = x(p/q) are odd func-
tions. It is quite clear that function f (x) = f1(x)+f2(x) is a odd
function. Moreover, it is easy to obtain that limx→0+ f (x) =
limx→0− f (x) = 0, i.e., f (x) is continuous function. Therefore,
the consensus protocol for continuous-time subsystem is con-
tinuous.

Theorem 3: Suppose that interaction network G (A) is
strongly connected and satisfies the detailed balance condi-
tion, and 0 < h < (1/d̄). Then, system (1) with protocol (12)
reaches FTC if there exist finite k and t̄∗ ∈ (tk, t̄k] such that

T0 ≥ 1

K̃1(k1 − 1)
+ 1

K̃2(1 − k2)
(13)

where

T0 = t̄∗ − tk +
k−1∑

i=1

(
t̄i − ti

)

K̃1 = n
r−m

2r

(
c1

ωmax

)m+r
2r

K̃2 = 2
p
q

(
c2

ωmax

) p+q
2q

k1 = m + r

2r
> 1

and k2 = [(p + q)/2q] < 1. c1 = minξ∈U ξTL(B̃1)ξ > 0
and c2 = minξ∈U ξTL(B̃2)ξ > 0, U = {ξ ∈ Rn : ωTξ =
0 and ‖ξ‖ = 1}, B̃1 = [(ωiaij)

[2r(m+r)]] ∈ Rn×n and B̃2 =
[(ωiaij)

[2q/(p+q)]] ∈ Rn×n.
Proof: First, we show that there exist finite k satisfying (13).

By Assumption 1, we get T0 ≥ (k − 1)τ ∗. It is clear that con-
dition (13) is satisfied for any finite k ≥ �(1/τ ∗K̃1(k1 − 1)) +
(1/τ ∗K̃2(k2 − 1))� + 1. Moreover, there must exist a t+k∗ ∈
(tk, t̄k] such that t+k∗ − tk∗ + · · · + t̄1 − t1 ≥ (1/K̃1(k1 − 1)) and
t̄∗ − tk + · · · + t̄k∗ − t+k∗ ≥ (1/K̃2(1 − k2)).

The interaction network is strongly connected and satisfies
the detailed balance condition, i.e., there exists a positive col-
umn vector ω = [ω1, ω2, . . . , ωn]T such that ωiaij = ωjaji for
all i, j ∈ In. Let υ(t) = (1/

∑n
i=1 ωi)

∑n
i=1 ωixi(t) and γi(t) =

xi(t) − υ(t). Similar to Theorem 1, υ(t) is time-invariant and
γ (t + 1) = (I − hL)γ (t). Take Lyapunov function V(γ (t)) =
(1/2)

∑n
i=1 ωiγ

2
i (t) = (1/2)γ T(t)Wγ (t) for continuous-time

subsystem (1a) and discrete-time subsystem (1b).
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When t ∈ (t̄k−1, tk], discrete-time subsystem (1b) is acti-
vated. Similar to Theorem 1, we have

V(γ (t + 1)) ≤ V(γ (t)). (14)

When t ∈ (tk, t̄k], continuous-time subsystem (1a) is acti-
vated. Therefore

V̇(γ (t))

=
n∑

i=1

ωiγi(t)

⎛

⎝
n∑

j=1

aij
(
γj(t) − γi(t)

)m
r

+
n∑

j=1

aij
(
γj(t) − γi(t)

) p
q

⎞

⎠

= −1

2

n∑

i,j=1

(
(
ωiaij

) 2r
m+r

(
γj(t) − γi(t)

)2
)m+r

2r

−1

2

n∑

i,j=1

(
(
ωiaij

) 2q
p+q
(
γj(t) − γi(t)

)2
) p+q

2q

≤ −1

2
(2n)

r−m
2r

⎛

⎝
n∑

i,j=1

(
ωiaij

) 2r
m+r

(
γj(t) − γi(t)

)2

⎞

⎠

m+r
2r

−1

2

⎛

⎝
n∑

i,j=1

(
ωiaij

) 2q
p+q
(
γj(t) − γi(t)

)2
)

⎞

⎠

p+q
2q

(15)

where the last inequality follows from Lemma 2 and Holder
inequality.

Similar to Theorem 1, we have

∑n
i,j=1

(
ωiaij

) 2r
m+r

(
γj(t) − γi(t)

)2

V(γ (t))
≥ 4c1

ωmax
(16)

∑n
i,j=1

(
ωiaij

) 2q
p+q
(
γj(t) − γi(t)

)2

V(γ (t))
≥ 4c2

ωmax
. (17)

Using m > r, p < q, (16) and (17) leads to

V̇(γ (t)) ≤ −K̃1V
m+r

2r (γ (t)) − K̃2V
p+q
2q (γ (t)) (18)

where K̃1 = n[(r−m)/2r)((c1/ωmax))
[(m+r)/2r] > 0 and K̃2 =

2(p/q)((c2/ωmax))
[(p+q)/2q] > 0.

Obviously, for t ∈ (tk, t̄k], we have V̇(γ (t)) ≤ −K̃1Vk1(γ (t))
and V̇(γ (t)) ≤ −K̃2Vk2(γ (t)). By the Comparison theorem,
we have

V1−k1(γ (t)) ≥ −K̃1(1 − k1)(t − tk) + V1−k1(γ (tk)) (19)

and

V1−k2(γ (t)) ≤ −K̃2(1 − k2)(t − tk) + V1−k2(γ (tk)). (20)

We know from (14) and (18) that

V(γ (0)) ≥ V(γ (t1)) ≥ V
(
γ
(
t̄1
)) ≥ V(γ (t2))

≥ V
(
γ
(
t̄2
)) ≥ · · · ≥ V(γ (tk)) ≥ V

(
γ
(
t̄k
)) ≥ · · · (21)

When V(γ (0)) < 1, we show that there must exist t̄∗ ∈
(tk, t̄k] such that −K̃2(1 − k2)(t̄∗ − tk) + V1−k2(γ (tk)) ≤ 0.

Based on (20) and (21), we get

−K̃2(1 − k2)
(
t̄∗ − tk

)+ V1−k2(γ (tk))

≤ −K̃2(1 − k2)
(
t̄∗ − tk

)+ V1−k2
(
γ
(
t̄k−1

))

≤ −K̃2(1 − k2)
(
t̄∗ − tk + t̄k−1 − tk−1

)+ V1−k2(γ (tk−1))

...

≤ −K̃2(1 − k2)
(
t̄∗ − tk + t̄k−1 − tk−1 + · · · + t̄1 − t1

)+ 1.

(22)

Hence, it follows from (13) that there exists t̄∗ ∈ (tk, t̄k] such
that −K̃2(1 − k2)(t̄∗ − tk) + V1−k2(γ (tk)) ≤ 0.

When V(γ (0)) ≥ 1, we show that there must exist t+k∗ ∈
(tk, t̄k] such that V(γ (t+k∗)) < 1. Based on (19) and (21), we
get

V1−k1(γ (t1)) ≥ V1−k1(γ (0))

V1−k1
(
γ
(
t̄1
)) ≥ −K̃1(1 − k1)

(
t̄1 − t1

)+ V1−k1(γ (t1))

V1−k1(γ (t2)) ≥ V1−k1
(
γ
(
t̄1
))

V1−k1
(
γ
(
t̄2
)) ≥ −K̃1(1 − k1)

(
t̄2 − t2

)+ V1−k1(γ (t2))
...

V1−k1
(
γ
(
t+k∗
)) ≥ −K̃1(1 − k1)

(
t+k∗ − tk

)+ V1−k1(γ (tk)).

(23)

Since there exists t+k∗ − tk∗ + · · · + t̄1 − t1 ≥ (1/K̃1(k1 − 1)),
we easily obtain

V1−k1
(
γ
(
t+k∗
)) ≥ −K̃1(1 − k1)

(
t+k∗ − tk + · · · + t̄1 − t1

)

+ V1−k1(γ (0)) > 1

it follows from 1 − k1 < 0 that V(γ (t+k∗)) < 1. Hence, there
must exist t+k∗ ∈ (tk, t̄k] such that V(γ (t+k∗)) < 1. By virtue
of (22) and t̄∗ − tk + · · · + t̄k∗ − t+k∗ ≥ (1/K̃2(1 − k2)), it fol-
lows that −K̃2(1 − k2)(t̄∗ − tk) + V1−k2(γ (tk)) ≤ 0. Owing to
V(γ (t)) ≥ 0, V̇(γ (t)) ≤ 0 and (20), we get V(γ (t)) = 0
for t ≥ t̄∗. Therefore, system (1) reaches consensus in
finite time.

Theorem 4: Suppose that system (1) has a leader (labeled
as n) and n − 1 followers (labeled as 1, . . . , n − 1), and
the interaction network G (Ā) among the followers is strongly
connected and satisfies the detailed balance condition, and
0 < h < [1/(d̄ + bi)], i ∈ In−1. Then, system (1) with pro-
tocol (12) reaches FTC if there exist finite k and t̄∗ ∈ (tk, t̄k]
such that

T0 ≥ 1
�K1(k1 − 1)

+ 1
�K2(1 − k2)

(24)

where

T0 = t̄∗ − tk +
k−1∑

i=1

(
t̄i − ti

)

�K1 = 2(n − 1)
r−m

2r

⎛

⎝
λ1

(
L
(�B1
)+ �b1

)

ωmax

⎞

⎠

m+r
2r

> 0
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and

�K2 = −2
p
q

⎛

⎝
λ1

(
L
(�B2
)+ �b2

)

ωmax

⎞

⎠

p+q
2q

> 0, k1 = m + r

2r
> 1

and k2 = [(p + q)/2q] < 1

�B1 =
[
(
ωiaij

) 2r
m+r

]

∈ R(n−1)×(n−1)

�B2 =
[
(
ωiaij

) 2q
p+q

]

∈ R(n−1)×(n−1)

�b1 =
(
ωib̃
) 2r

m+r

2
and �b2 =

(
ωib̃
) 2q

p+q

2
.

Proof: The interaction network among the followers is
strongly connected and satisfies the detailed balance con-
dition, i.e., there exists a positive column vector ω̄ =
[ω1, ω2, . . . , ωn−1]T such that ωiaij = ωjaji for all i, j ∈ In−1.
We rewrite protocol (12) as follows:

ui(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∑n−1
j=1 aij

(
xj(t) − xi(t)

)m
r + ain(xn − xi)

m
r

+∑n−1
j=1 aij

(
xj(t) − xi(t)

) p
q + ain(xn − xi)

p
q

t ∈ (tk, t̄k
]

∑n−1
j=1 aij

(
xj(t) − xi(t)

)+ ain(xn − xi)

t ∈ (t̄k−1, tk
]

(25)

where ain is defined as in Theorem 2 and i ∈ In−1.
First, we show that there exist finite k satisfying (24).

The proof is similar to that of Theorem 3 and it is omitted.
Moreover, there must exist t+k∗ ∈ [tk, t̄k) such that t+k∗ − tk∗ +
· · · + t̄1 − t1 ≥ (1/�K1(k1 − 1)) and t̄∗ − tk + · · · + t̄k∗ − t+k∗ ≥
(1/�K2(1 − k2)).

Let γi(t) = xi(t) − xn, i ∈ In−1. Take Lyapunov func-
tion V̄(γ (t)) = (1/2)

∑n−1
i=1 ωiγ

2
i (t) = (1/2)γ̄ T(t)W̄γ̄ (t)

for continuous-time subsystem (1a) and discrete-time subsys-
tem (1b).

When t ∈ (t̄k−1, tk], discrete-time subsystem (1b) is acti-
vated. Similar to Theorem 2, we have

V̄(γ (t + 1)) ≤ V̄(γ (t)). (26)

When t ∈ (tk, t̄k], continuous-time subsystem (1a) is acti-
vated. Therefore

˙̄V(γ (t))

=
n−1∑

i=1

ωiγi(t)

⎛

⎝
n−1∑

j=1

aij
(
γj(t) − γi(t)

)m
r − bisig(γi(t))

m
r

⎞

⎠

+
n−1∑

i=1

ωiγi(t)

⎛

⎝
n−1∑

j=1

aij
(
γj(t) − γi(t)

) p
q − bisig(γi(t))

p
q
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⎝
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(
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2
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− 1

2

⎛

⎝
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⎞
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2q

−
(
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2
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. (27)

By Lemma 2, Holder inequality and [(r − m)/r] < 0, we have

˙̄V(γ (t))

≤ −2
−m

r (n − 1)
r−m

2r

⎛

⎝
n−1∑

i,j=1

(
ωiaij

) 2r
m+r

(
γj(t) − γi(t)

)2

+
n−1∑

i=1

(ωibi)
2r
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2

)m+r
2r

− 1

2

⎛

⎝
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i,j=1

(
ωiaij

) 2q
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(
γj(t) − γi(t)

)2

+
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(ωibi)
2q
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2

) p+q
2q

≤ −�K1V
m+r

2r (γ (t)) − �K2V
p+q
2q (γ (t)) (28)

where

�K1 = 2(n − 1)
r−m

2r

⎛

⎝
λ1

(
L(�B) + �b

)

ωmax

⎞

⎠

m+r
2r

> 0

and

�K2 = −2
p
q

⎛

⎝
λ1

(
L(�B) + �b

)

ωmax

⎞

⎠

p+q
2q

> 0.

Similar to Theorem 3, we obtain V̄(γ (t)) = 0 for t ≥ t̄∗.
Therefore, system (1) reaches consensus in finite time.

Remark 3: It is clear that T0 in Theorems 3 or 4 is irrel-
evant to the initial states of agents. It is closely related to
the algebraic connectivity, order n of system (1) and design
parameters m, r, p, and q of protocol (12).

When 0 < h < (1/λmax(L)) and the interaction network is
undirected connected, it can be found that system (1) which
is composed of only discrete-time subsystem (1b) can not
reach consensus in finite time. Assume that system x(k+1) =
(I−hL)x(k) reaches consensus in finite time, i.e., x(k+1) = c1,
therefore we have x(k) = (I − hL)−1x(k + 1). Due to
(I − hL)1 = 1, it is easy to obtain (I − hL)−11 = 1, i.e., row
sums of (I −hL)−1 are 1. Thus, we have x(k) = c1 = x(k+1).
By using the similar method, we get x(0) = c1 which leads to
a contradiction. In this paper, by using the FTC protocol, we
can find that continuous-time subsystem (1a) and discrete-time
subsystem (1b) can solve FTC under proper switching law
even if discrete-time subsystem (1b) cannot reach consensus
in finite time.

Moreover, in this paper, we can point out that discrete-time
MASs can achieve consensus in finite time if there exists
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Fig. 1. (a) Strongly connected network. (b) Leader-following network.

Fig. 2. Switching law of system (1) with FTC protocol.

(a)

(b)

Fig. 3. (a) System (1) with protocol (2). (b) System (1) with protocol (9).

the dynamical switching behavior for this system. It can be
found that the network only needs to be strongly connected
and satisfy the detailed balance condition.

V. SIMULATIONS

In this section, simulations are provided to illustrate the
effectiveness of our theoretical results. We consider two

Fig. 4. Switching law of system (1) with FdTC protocol.

(a)

(b)

Fig. 5. (a) System (1) with protocol (12). (b) System (1) with protocol (25).

classes of graphs in Fig. 1 to describe the communication
relationship of agents. Fig. 1(a) describes a strongly con-
nected network which satisfies the detail-balanced condition.
Fig. 1(b) describes a leader-following network. Suppose the
vertices 1−4 denote 4 followers and the vertice 5 denotes the
leader.

Example 1: The switching law of system (1) under FTC
protocol is shown in Fig. 2. We assume ω = [1, 2, 2, 1]T

and αij = αji = 0.2 for all i, j ∈ In. The initial states of
agents are x0 = [−3,−1, 1, 2]T and x0 = [−3,−1, 1, 2, 0]T

for strongly connected network Fig. 1(a) and leader-following
network Fig. 1(b), respectively. By calculation, we can get
0 < h ≤ (5/3) and 0 < h ≤ (5/8) for different networks,
respectively. For convenience, we choose h = 0.01. The state
trajectories of system (1) under FTC protocol (2) are shown
in Fig. 3(a). The state trajectories of system (1) under FTC
protocol (9) are shown in Fig. 3(b).

Example 2: The switching law of system (1) under FdTC
protocol is shown in Fig. 4. The directed communica-
tion topology, ω and h are the same as Example 1.
Parameters m = 9, r = 7, p = 5, and q = 7. The ini-
tial values of all the agents are x0 = [2.5, 1.5,−0.5,−1.5]T
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and x0 = [2.5, 1.5,−0.5,−1.5, 1]T for strongly connected
network Fig. 1(a) and leader-following network Fig. 1(b),
respectively. The state trajectories of system (1) under FdTC
protocol (12) are shown in Fig. 5(a). The state trajectories of
system (1) under FdTC protocol (25) are shown in Fig. 5(b).

VI. CONCLUSION

This paper discussed the FTC of the switched MAS. Two
effective consensus protocols (FTC protocol and FdTC proto-
col) were proposed to solve the FTC problem and the FdTC
problem, respectively. First, by using the FTC protocol for the
switched MAS, we proved that the FTC problem under two
classes of special directed networks can be solved, respec-
tively. Then, we considered the FdTC of the switched MAS.
By applying the FdTC protocol, we showed that the FTC
problem can be solved and T0 is independent of the initial
states of agents. Future work will focus on FTC problem of
the switched MAS under general directed network, FTC of
the switched MAS with switching topology and finite-time
containment control of the switched MAS, etc.
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