
This article was downloaded by: [Xidian University]
On: 18 December 2013, At: 17:46
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House,
37-41 Mortimer Street, London W1T 3JH, UK

International Journal of Control
Publication details, including instructions for authors and subscription information:
http://www.tandfonline.com/loi/tcon20

Containment control of heterogeneous multi-agent
systems
Yuanshi Zhengab & Long Wangc

a Key Laboratory of Electronic Equipment Structure Design of Ministry of Education, School
of Mechano-electronic Engineering, Xidian University, Xidian 710071, China
b Center for Complex Systems, School of Mechano-electronic Engineering, Xidian University,
Xi’an 710071, China
c Center for Systems and Control, College of Engineering, Peking University, Beijing 100871,
China
Published online: 26 Jul 2013.

To cite this article: Yuanshi Zheng & Long Wang (2014) Containment control of heterogeneous multi-agent systems,
International Journal of Control, 87:1, 1-8, DOI: 10.1080/00207179.2013.814074

To link to this article:  http://dx.doi.org/10.1080/00207179.2013.814074

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained
in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no
representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the
Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and
are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and
should be independently verified with primary sources of information. Taylor and Francis shall not be liable for
any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever
or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of
the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic
reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any
form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://
www.tandfonline.com/page/terms-and-conditions

http://www.tandfonline.com/loi/tcon20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/00207179.2013.814074
http://dx.doi.org/10.1080/00207179.2013.814074
http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions


International Journal of Control, 2014
Vol. 87, No. 1, 1–8, http://dx.doi.org/10.1080/00207179.2013.814074

Containment control of heterogeneous multi-agent systems

Yuanshi Zhenga,b,∗ and Long Wangc

aKey Laboratory of Electronic Equipment Structure Design of Ministry of Education, School of Mechano-electronic Engineering, Xidian
University, Xidian 710071, China; bCenter for Complex Systems, School of Mechano-electronic Engineering, Xidian University, Xi’an

710071, China; cCenter for Systems and Control, College of Engineering, Peking University, Beijing 100871, China

(Received 5 December 2012; final version received 8 June 2013)

In this paper, we consider the containment control problem for a group of autonomous agents modelled by heterogeneous
dynamics. The communication networks among the leaders and the followers are directed graphs. When the leaders are
first-order integrator agents, we present a linear protocol for heterogeneous multi-agent systems such that the second-order
integrator agents converge to the convex hull spanned by the first-order integrator agents if and only if the directed graph
contains a directed spanning forest. If the leaders are second-order integrator agents, we propose a nonlinear protocol and
obtain a necessary and sufficient condition that the heterogeneous multi-agent system solves the containment control problem
in finite time. Simulation examples are also provided to illustrate the effectiveness of the theoretical results.

Keywords: heterogeneous multi-agent system; containment control; consensus; finite time; directed graph

1. Introduction

The analysis of distributed coordination received an in-
creasing interest in the past decades. Unlike centralised
coordination, distributed coordination has enormous advan-
tages, such as flexibility, reliability and adaptability, etc. As
a fundamental of distributed coordination, the consensus or
agreement problem of multi-agent systems has been stud-
ied by multi-disciplinary researchers (Chu, Wang, Chen, &
Mu, 2006; Ji, Wang, Lin, & Wang, 2009; Olfati-Saber &
Murray, 2004; Zheng, Chen, & Wang, 2011a). As an impor-
tant problem of multi-agent systems, the leader–follower
coordination has received widespread attention in recent
years. Additional details related to the distributed coordi-
nation may be obtained from Olfati-Saber, Fax, and Murray
(2007), and references therein.

1.1 Related work

The consensus problem was primarily considered with-
out group reference (Olfati-Saber & Murray, 2004; Xie
& Wang, 2007). In reality, a group of agents might have
a desired state for the group. Thus, the consensus-tracking
problem was also studied in recent years. Hong, Hu, and
Gao (2006) and Hong, Chen, and Bushnell (2008) studied
a multi-agent consensus-tracking problem with an active
leader under variable undirected topology. Qin, Zheng,
and Gao (2011) investigated the consensus of second-
order multi-agent systems with a time-varying reference
velocity under directed topology. Containment control is
a consensus-like tracking problem with multiple leaders.

∗Corresponding author. Email: zhengyuanshi2005@163.com

The main objective of containment control is to drive the
states of the followers into the convex hull spanned by the
leaders. Motivated by the numerous natural phenomena and
applications in practice, containment control has been stud-
ied by a number of researchers till now. Ji, Ferrari-Trecate,
Egerstedt, and Buffa (2008) presented a hybrid Stop–Go
strategy for the agents by single integrator kinematics under
the fixed undirected topology. In Notarstefano, Egerstedt,
and Haque (2011), the authors studied the first-order multi-
agent containment problem under switching communica-
tion topologies. In Meng, Ren, and You (2010), finite-time
attitude containment control was addressed for multiple
rigid bodies under undirected topology. Cao, Stuart, Ren,
and Meng (2011) studied the distributed containment con-
trol of second-order multi-agent systems with multiple sta-
tionary/dynamic leaders under fixed and switching topolo-
gies. Lou and Hong (2012) considered the second-order
multi-agent containment control with random switching
interconnection topologies. Li, Ren, Liu, and Fu (2012)
discussed the containment control problem of continuous-
time/discrete-time multi-agent systems with general linear
dynamics under fixed directed communication topologies.
Liu, Xie and Wang investigated containment control of lin-
ear multi-agent systems under general interaction topolo-
gies in Liu, Xie, and Wang (2012a) and obtained some nec-
essary and sufficient conditions for the containment control
of multi-agent systems under continuous-time and sampled-
data based protocols in Liu, Xie, and Wang (2012b).

The dynamics of the agents coupled with each other are
not the same because of various restrictions or the common
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2 Y. Zheng and L. Wang

goals with mixed agents in the practical systems. How-
ever, existing containment control protocols often focus on
first-order or second-order multi-agent systems, i.e. all the
aforementioned multi-agent systems were homogeneous.
Sometimes we want to investigate the containment con-
trol problem of heterogeneous multi-agent systems owing
to wide applications in practice. For example, a team of
heterogeneous agents moves from one location to another
when only a portion of the agents is equipped with neces-
sary sensors to detect the hazardous obstacles so that the
agents that are equipped will stay in a safety area formed
by the equipped agents (Liu et al., 2012b). However, only
a little work considers heterogeneous cases of the consen-
sus problem. In particular, the output consensus of hetero-
geneous multi-agent systems was studied in Kim, Shim,
and Seo (2011). Consensus of heterogeneous multi-agent
systems composed of first-order and second-order integra-
tor agents was investigated in Liu and Liu (2011), Zheng,
Zhu, and Wang (2011b), Zheng and Wang (2012a, 2012b,
2012c). Liu and Liu (2011) studied the stationary consensus
of discrete-time heterogeneous multi-agent systems. Zheng
et al. considered the consensus of continuous-time hetero-
geneous multi-agent systems (Zheng et al., 2011b; Zheng
& Wang, 2012a, 2012b) and finite-time consensus (Zheng
& Wang, 2012c) with and without velocity measurements.
To the best of our knowledge, this is the first study about the
containment control of heterogeneous multi-agent systems.

1.2 Our results

In this paper, we consider the containment control problem
for continuous-time heterogeneous multi-agent systems
that is composed of first-order and second-order integrator
agents. First, we present a linear protocol for the heteroge-
neous multi-agent system when the leaders are first-order
integrator agents. Utilising the method of variable substi-
tution and previous results of the first-order multi-agent
system, we obtain that the second-order integrator agents
(the followers) converge to the convex hull spanned by the
first-order integrator agents (the leaders) if and only if the
directed graph contains a directed spanning forest. Then,
we propose a nonlinear protocol for the heterogeneous
multi-agent system if the second-order integrator agents
are leaders. By using the Lyapunov theory, Lasalle’s invari-
ance principle and the homogeneous domination method,
we get that the first-order integrator agents (the followers)
converge to the convex hull spanned by the second-order
integrator agents (the leaders) in finite time if and only if
the directed graph contains a directed spanning forest. Fi-
nally, some simulation examples are presented to show the
effectiveness of our proposed protocols.

This paper is organised as follows. In Section 2, we
present some notions in graph theory and formulate the
model to be studied, and assemble some key lemmas. In
Section 3, we give the main results. And in Section 4,

numerical simulations are given to illustrate the effective-
ness of the theoretical results. Some conclusions are drawn
in Section 5.

Notation: Throughout this paper, we let R, R>0 and
R≥0 be the sets of real numbers, positive real numbers and
non-negative real numbers, R

n is the n−dimensional real
vector space, In = {1, 2, . . . , n}. For a given vector or ma-
trix X, XTdenotes its transpose. 1n is a vector with elements
being all ones. In is the n × n identity matrix. 0 (0m × n)
denotes an all-zero vector or matrix with compatible di-
mension (dimension m × n). A is said to be non-negative
(respectively positive) if all entries aij are non-negative (re-
spectively positive), denoted by A ≥ 0 (respectively A > 0).
sig(x)α = sign(x)|x|α , where sign(·) is a sign function. A⊗B
denotes the Kronecker product of matrices A and B.

2. Preliminaries

2.1 Graph theory

The network formed by multi-agent systems can always be
represented by a graph. Thus, graph theory is an important
tool to analyse the coordination problem for multi-agent
systems. In this subsection, some basic concepts and prop-
erties are presented in the graph theory. For more details,
please refer to Godsil and Royal (2001).

A weighted directed graph G (A ) = (V ,E ,A ) of or-
der n consists of a vertex set V = {s1, s2, . . . , sn}, an edge
set E = {eij = (si, sj )} ⊂ V × V and a non-negative ma-
trix A = [aij ]n×n. (sj , si) ∈ E ⇔ aij > 0 ⇔ agent i and
j can communicate with each other, namely, they are adja-
cent. Moreover, we assume aii = 0. A is called the weighted
matrix and aij is the weight of eij = (si, sj). The set of neigh-
bours of si is denoted by Ni = {sj : eji = (sj , si) ∈ E }.
A path that connects si and sj in the directed graph G
is a sequence of distinct vertices si0 , si1 , si2 , . . . sim, where
si0 = si, sim = sj and (sir , sir+1 ) ∈ E , 0 ≤ r ≤ m − 1. For
a directed graph, if (si, sj) is an edge of G , si is called the
parent of sj and sj is called the child of si. A directed tree
is a directed graph, where every vertex, except one spe-
cial vertex without any parent, which is called the root, has
exactly one parent, and the root can be connected to any
other vertex through paths. A directed forest is a directed
graph consisting of one or more directed trees, no two of
which have a vertex in common. A directed spanning tree
(directed spanning forest) is a directed tree (directed for-
est), which consists of all the nodes and some edges in G .
The degree matrix D = [dij ]n×n is a diagonal matrix with
dii = ∑

j :sj ∈Ni
aij and the Laplacian matrix of the graph is

defined as L = [lij ]n×n = D − A . It has been shown that
L 1n = 0. If G (A ) is strongly connected, then there exists
a positive column vector ω ∈ R

n such that ωT L = 0. For
multi-agent systems, an agent is called a leader if the agent
has no neighbour, and an agent is called a follower if the
agent has at least one neighbour.
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2.2 Heterogeneous multi-agent systems

We consider a system of n agents, comprising m (m < n)
second-order integrator agents and n − m first-order inte-
grator agents, which update their states based on commu-
nication over a directed network. In this paper, we denote
the set of leaders as R and the set of followers as F .

Each second-order agent dynamics is given as follows:

{
ẋi(t) = vi(t)

v̇i(t) = ui(t) i ∈ Im,
(1)

where xi ∈ R
N, vi ∈ R

N and ui ∈ R
N are the position,

velocity and control input, respectively, of agent i. Each
first-order agent dynamics is given as follows:

ẋi(t) = ui(t), i ∈ In/Im, (2)

where xi ∈ R
N and ui ∈ R

N are the position and control
input, respectively, of agent i.

Definition 2.1 (Rockafellar, 1972): A subset C of R
m is

said to be convex if (1 − λ)x + λy ∈ C whenever x ∈ C,
y ∈ C and 0 < λ < 1. The convex hull of a finite set of
points X = {x1, . . ., xn} in R

m is the minimal convex set
containing all points in X, denoted by Co{X}. Particularly,
Co{X} � {∑n

i=1 αixi |xi ∈ X,αi ≥ 0,
∑n

i=1 αi = 1}.
Definition 2.2: The heterogeneous multi-agent system
(1–2) is said to solve the containment control problem if
for any initial conditions, the position of the followers con-
verges to the convex hull spanned by those of the leaders
under a certain control input.

2.3 Key lemmas

In this subsection, some key lemmas are given to be used
to prove our main results.

Lemma 2.3 (Liu et al., 2012b): Consider the first-order
multi-agent system

⎧⎪⎨
⎪⎩

ẋi(t) =
∑

j∈F∪R

aij (xj (t) − xi(t)), i ∈ F ,

ẋi(t) = 0, i ∈ R,

(3)

under a fixed directed network for i = 1, 2, . . ., n. All fol-
lowers will converge to the stationary convex hull spanned
by the leaders for arbitrary initial conditions if and only
if the directed graph G contains a directed spanning
forest.

Lemma 2.4 (Liu et al., 2012b): Suppose that the multi-
agent system has m leaders and n − m followers. Then, L

can be partitioned as L =
(

LFF LFR

0m×(n−m) 0m×m

)
and LFF

is invertible if and only if the directed graph G has a directed
spanning forest.

Consider the autonomous system

ẋ = f (x), (4)

where f : D → R
n is a continuous function with D ⊂ R

n.

Lemma 2.5 (Lasalle’s Invariance Principle): Let � ⊂ D be
a compact set that is positively invariant with respect to (4).
Let V : D → R be a continuously differentiable function
such that V̇ (x) ≤ 0 in �. Let E be the set of all points
in � where V̇ (x) = 0. Let M be the largest invariant set
in E. Then every solution starting in � approaches M as
t → ∞.

A function V(x) is homogeneous of degree σ > 0 with
dilation (r1, r2, . . ., rn), ri > 0(i ∈ In), if

V (εr1x1, ε
r2x2, . . . , ε

rnxn) = εσV (x), ε > 0.

A vector field f(x) = (f1(x), f2(x), . . ., fn(x)) is homogenous
of degree σ > 0 with dilation (r1, r2, . . ., rn), ri > 0(i ∈ In),
if

fi(ε
r1x1, ε

r2x2, . . . , ε
rnxn) = εσ+ri fi(x), i ∈ In, ε > 0.

Lemma 2.6 (Hong, 2002): Suppose that the system (4) is
homogeneous of degree σ with dilation (r1, r2, . . ., rn), func-
tion f(x) is continuous and x = 0 is its asymptotically stable
equilibrium. If homogeneity degree σ < 0, the equilibrium
of the system (4) is finite-time stable.

3. Main results

3.1 Leaders with first-order integrator dynamics

Two well-known linear protocols for first-order and second-
order multi-agent systems are presented in Olfati-Saber
and Murray (2004) and Xie and Wang (2007), respectively.
Based on the aforementioned linear protocols, we proposed
a linear protocol for the heterogeneous multi-agent system
(1–2) in Zheng et al. (2011b) as follows:

ui =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

n∑
j=1

aij (xj − xi) − k1vi, i ∈ Im,

k2

n∑
j=1

aij (xj − xi), i ∈ In/Im,

(5)

where A = [aij ]n×n is the weighted adjacency matrix, k1

> 0, k2 > 0 are the feedback gains. In this subsection, we
study the containment control problem of heterogeneous
multi-agent systems using protocol (5). First, we make
an assumption for heterogeneous multi-agent systems with
protocol (5).
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4 Y. Zheng and L. Wang

Assumption 1: Suppose that the first-order integrator
agents are the leaders and the second-order integrator agents
are the followers.

Theorem 3.1: Consider a directed network under Assump-
tion 1. Assume that the feedback gain k1 > 2

√
maxi∈Im

dii .
Then, the heterogeneous multi-agent system (1–2) with pro-
tocol (5) solves the containment control problem if and only
if the directed graph G contains a directed spanning forest.

Proof: Sufficiency. The sufficiency is proved through the
following three steps.
Step 1: From Assumption 1, we know that the first-order
integrator agents are leaders, i.e. aij = 0 for i ∈ In/Im, j ∈
In. Thus, for i ∈ In/Im, we have

ẋi(t) = 0.

Let yi
′ (t) = k3ivi(t) + xi(t) for i, i

′ ∈ Im. Thus, for i ∈
Im, we have

ẋi(t) = 1

k3i

(yi
′ (t) − xi(t))

and

ẏi
′ (t) = k3i v̇i(t) + ẋi(t)

= k3i

( n∑
j=1

aij (xj − xi) − k1vi) + 1

k3i

(yi
′ (t) − xi(t)

)

= k3i

n∑
j=1

aij (xj − xi) +
(

k1 − 1

k3i

)
(xi − yi

′ )

= k3i

n∑
j=1

aij (xj − yi
′ ) +

(
k1− 1

k3i

−k3idii

)
(xi−yi

′ ).

Let bi = (k1 − 1
k3i

− k3idii), i ∈ Im. If dii = 0, let k3i ≥
1
k1

. Otherwise, let
k1−

√
k2

1−4dii

2dii
≤ k3i ≤ k1+

√
k2

1−4dii

2dii
. Due to

k1 > 2
√

maxi∈Im
dii ≥ 0, we get

k1−
√

k2
1−4dii

2dii
> 0, k3i > 0

and bi ≥ 0 for i ∈ Im.
Because the first-order integrator agents are the leaders

and the second-order integrator agents are the followers, we
get a first-order multi-agent system with n + m agents as
follows:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ẋi(t)= 1

k3i

(yi
′ − xi), i ∈ F ,

ẏi
′ (t)=k3i

∑
j∈F∪R

aij (xj − yi
′ )+bi(xi − yi

′ ), i
′ ∈ F ,

ẋi(t)=0, i ∈ R,
(6)

where xi ∈ R
N and yi

′ ∈ R
N are the states of the ith and

i
′
th agents, respectively.

Thus, it is easy to prove that the heterogeneous multi-
agent system (1–2) with protocol (5) solves the containment
control problem if the first-order multi-agent system (6)
solves the containment control problem.
Step 2: Let V1 = {s1, . . . , sm}, V2 = {s1′ , . . . , sm

′ } and
V3 = {sm+1, . . . , sn}. Let G

′ = (V
′
,E

′
) be a fixed directed

network of the first-order multi-agent system (6) with a
vertex set V

′ = V1 ∪ V2 ∪ V3. In this step, we will prove
that the directed graph G

′
contains a directed spanning for-

est if the directed graph G contains a directed spanning
forest.

Suppose that the directed graph G has a directed span-
ning forest F (G ). For each edge (sj , si) ∈ F (G ), we con-
sider the following two cases:

(1) If sj ∈ V3 and si ∈ V1, we have (sj , si
′ ) ∈ E

′
,

(si
′ , si) ∈ E

′
;

(2) If sj ∈ V1 and si ∈ V1, we have (sj
′ , sj ) ∈ E

′
,

(sj , si
′ ) ∈ E

′
, (si

′ , si) ∈ E
′
.

Adding these edges to F (G ), we get a directed spanning
tree F

′
(G ) for G

′
.

Step 3: From Lemma 2.3, we know that the first-order
multi-agent system (6) solves the containment control prob-
lem if the directed graph G

′
contains a directed spanning

forest.
Combining Step 1, Step 2 with Step 3, we get that if

the feedback gain k1 > 2
√

maxi∈Im
dii and Assumption 1

holds, the heterogeneous multi-agent system (1–2) with
protocol (5) solves the containment control problem if the
directed graph G contains a directed spanning forest.

Necessity. The proof of necessity is similar to the proof
of necessity in Theorem 1 of Liu et al. (2012b). When
the directed graph G does not contain a directed spanning
forest, there exists at least one follower (the second-order
integrator agent) such that it does not belong to any one of
the directed trees. The position of this follower is indepen-
dent of the position of the leaders. Thus, the containment
control problem cannot be solved. �

In fact, the approach in Step 1 has also been used when
dealing with the consensus problem for second-order multi-
agent systems in Qin et al. (2011) and Qin and Gao (2012)
and heterogeneous multi-agent systems in Zheng and Wang
(2012b). For clarity, we give an example to illustrate Step 2
of the sufficiency proof.

Example 3.2: Consider a heterogeneous multi-agent sys-
tem that is composed of six agents with a directed net-
work G in the left of Figure 1 . The vertices 1 − 3 denote
the second-order integrator agents and the vertices 4 − 6
denote the first-order integrator agents. The solid lines and
the vertices 1 − 6 of G compose a directed spanning forest.
Using the method in the Step 2 of the aforementioned proof,
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Figure 1. A transformation of directed spanning forest.

we get a directed spanning forest in the right of Figure 1 that
is composed of solid lines and the vertices 1 − 6, 1

′ − 3
′
.

Remark 1: In this paper, we consider the network of
the leaders without communication. In fact, the leaders
communicate with each other in many practical systems.
Let ui(t) = ∑

j∈R aij (xj − hj ) − (xi − hi) for i ∈ In/Im.
Using the formation control theory, the method in Theorem
3.1 and the result of Theorem 5.2.1 in Liu (2012), we can
easily obtain that if the feedback gain k1 > 2

√
maxi∈Im

dii ,
the heterogeneous multi-agent system (1–2) solves the con-
tainment control problem if and only if the directed graph
G contains a directed spanning tree.

In Qin et al. (2011), the authors studied the consensus
problem of second-order multi-agent systems with both ab-
solute and relative velocity information. Thus, we propose
a protocol with both absolute and relative velocity infor-
mation for the heterogeneous multi-agent system (1–2) as
follows:

ui=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

n∑
j=1

aij

[
(xj − xi) + k(vj − vi)

] − k1vi, i ∈ Im,

k2

n∑
j=1

aij (xj−xi), i ∈ In/Im,

(7)
where A = [aij ]n×n is the weighted adjacency matrix, k >

0, k1 > 0, k2 > 0 are the feedback gains. Similar to the
proof of Theorem 2 of Qin et al. (2011) and Theorem 3.1,
we can get a corollary as follows:

Corollary 3.3: Consider a directed network under As-
sumption 1. Assume that the feedback gain k ≥ 1

k1
. Then, the

heterogeneous multi-agent system (1–2) with protocol (7)
solves the containment control problem if and only if the
directed graph G contains a directed spanning forest.

Remark 2: In Liu et al. (2012b), the authors also investi-
gated the containment control of first-order multi-agent sys-
tems for sampled date-based protocol. Therefore, it is easy
to get the necessary and sufficient condition so that discrete-
time first-order multi-agent systems solve the containment

control problem. By using the method in Theorem 3.1, we
can obtain related results about the containment control of
discrete-time heterogeneous multi-agent systems, which is
left to the interested readers as an exercise.

3.2 Leaders with second-order integrator
dynamics

In this subsection, we study the containment control prob-
lem of heterogeneous multi-agent systems using a class of
nonlinear protocol. First, we propose a class of nonlinear
protocol as follows:

ui =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

sig

⎛
⎝ n∑

j=1

aij (xj − xi) − k1vi

⎞
⎠

α1

, i ∈ Im,

k2sig

⎛
⎝ n∑

j=1

aij (xj − xi)

⎞
⎠

α2

, i ∈ In/Im.

(8)
where A = [aij ]n×n is the weighted adjacency matrix, 0 <

α1, α2 < 1, k1 > 0, k2 > 0 are the feedback gains. Then, we
make an assumption for heterogeneous multi-agent systems
with protocol (8).

Assumption 2: Suppose that the second-order integrator
agents are the leaders and the first-order integrator agents
are the followers.

Theorem 3.4: Consider a directed network under Assump-
tion 2. The heterogeneous multi-agent system (1–2) with
protocol (8) solves the containment control problem in fi-
nite time if and only if the directed graph G contains a
directed spanning forest.

Proof: Sufficiency. From Assumption 2, we know that the
second-order integrator agents are leaders, i.e. aij = 0 for
i ∈ Im, j ∈ In. Thus, for i ∈ Im, we have

{
ẋi(t) = vi(t),

v̇i(t) = sig (−k1vi)
α1 .

(9)

Because v̇i(t) = sig (−k1vi)
α1 = −k1sig (vi)

α1 is finite-
time stable, i.e. there exists a T1 <∞ such that limt→T −

1
vi =

0 and vi = 0 when t ≥ T1 for i ∈ Im. Thus, when t ≥ T1,
we have

⎧⎪⎪⎨
⎪⎪⎩

ẋi(t) = 0, i ∈ R,

ẋi(t) = k2sig

⎛
⎝ n∑

j=1

aij (xj − xi)

⎞
⎠

α2

, i ∈ F .
(10)

Without a loss of generality, we consider that the
network of the followers is undirected. For the directed
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6 Y. Zheng and L. Wang

network, the analysis method is similar to the finite-time
consensus analysis in Wang and Xiao (2010).

Let yi = ∑n
j=1 aij (xj − xi) and x = [xR, xF ]T =

[x1, . . . , xm, xm+1, . . . , xn]T , y = [y1, y2, . . ., yn]T. Then,
from (10), we have y = −(L ⊗ IN )x and ẋi = k2sig(yi)α2

for i ∈ In. Consider a Lyapunov function

V (t) =
n∑

i=1

1

α2 + 1
| yi |α2+1,

which is positive-definite with respect to yi for i ∈ In. Dif-
ferentiating V(t), gives

dV (t)

dt
=

n∑
i=1

sig(yi)
α2

dyi

dt

=
n∑

i=1

sig(yi)
α2

n∑
j=1

aij

(
dxj

dt
− dxi

dt

)

=
n∑

i=1

sig(yi)
α2

n∑
j=1

k2aij

(
sig(yj )α2 − sig(yi)

α2
)
.

Let sig(y)α2 = [sig(y1)α2 , sig(y2)α2 , . . . , sig(yn)α2 ]T and
sig(yT )α2 = (sig(y)α2 )T . Then, we have

dV (t)

dt
= −k2sig(yT )α2 (L ⊗ IN )sig(y)α2 ≤ 0.

Note that dV (t)
dt

= 0 implies that sig(yi)α2 = sig(yj )α2 for
i, j ∈ In. Owing to sig(yi)α2 = 0 when t ≥ T1 for i ∈ Im,
we have yi = 0 if dV (t)

dt
= 0 for i ∈ In. By Lemma 2.5, we

get y = −(L ⊗ IN )x → 0 as t → ∞.
Note that the system (10) is a homogeneous system of

degree σ = 1 − 1
α2

< 0 with dilation (α2, . . ., α2). There-
fore, there exists a T2 (T1 < T2 < ∞) such that y =
−(L ⊗ IN )x → 0 in finite time by Lemma 2.6. Thereby,
(LFF ⊗ IN )xF + (LFR ⊗ IN )xR = 0 when t ≥ T2. Be-
cause the directed graph G contains a directed spanning
forest, we have xF = − (

(L −1
FFLFR) ⊗ IN

)
xR from

Lemma 2.4. Thus, by Definition 2.1, we know that the
heterogeneous multi-agent system (1–2) with protocol (8)
solves the containment control problem in finite time if the
directed graph G contains a directed spanning forest.

Necessity. When the directed graph G does not contain
a directed spanning forest, there exists at least one follower
(the first-order integrator agent) such that it does not belong
to any one of the directed trees. The position of this follower
is independent of the position of the leaders. Thus, the
containment control problem cannot be solved. �

Figure 2. A directed graph G in which the first-order integrator
agents are leaders.

Figure 3. A directed graph G in which the second-order integra-
tor agents are leaders.

4. Simulations

In this section, we give two numerical simulations to
illustrate the effectiveness of the theoretical results in
Section 3. Let N = 2.

Example 4.1: Consider a directed graph G depicted in
Figure 2 in which the first-order integrator agents (the filled
circles) are leaders. It is easy to see that the directed graph G
depicted in Figure 2 has a directed spanning forest. Suppose
that the weight of each edge is 1, k1 = 4, k2 = 1. Thus,
k1 > 2

√
maxi∈Im

dii . Figure 4 shows the state trajectories of
all the agents using protocol (5). We can see that the second-
order integrator agents 1 − 3 converge to the convex hull
spanned by the first-order integrator agents 4 − 6, which is
consistent with the sufficiency of Theorem 3.1.

Figure 4. Trajectories of all the agents with the network depicted
in Figure 2 and protocol (5).
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Figure 5. Trajectories of all the agents with the network depicted
in Figure 3 and protocol (8).

Example 4.2: Suppose the communication network G is
chosen as in Figure 3 in which the second-order integrator
agents (the hollow circles) are leaders. We can see that
the directed graph G depicted in Figure 3 has a directed
spanning forest. Assume that the weight of each edge is
1, k1 = k2 = 1, α1 = α2 = 1

3 . Figure 5 shows the state
trajectories of all the agents using protocol (8). We can
see that the first-order integrator agents 4 − 6 converge
to the convex hull spanned by the second-order integrator
agents 1 − 3, which is consistent with the sufficiency of
Theorem 3.4.

5. Conclusion

In this paper, the containment control problem of the het-
erogeneous multi-agent system with agents modelled by
the first-order and second-order integrators was considered.
We present the linear and nonlinear protocols for a hetero-
geneous multi-agent system if the leaders are first-order
and second-order integrator agents, respectively. Based on
the graph theory, Lyapunov theory and previous results of
a homogeneous multi-agent system, we get some neces-
sary and sufficient conditions so that the heterogeneous
multi-agent system solves the containment control problem.
Future work will focus on the more complex cooperative
control problem of heterogeneous multi-agent systems, for
example, the containment control of heterogeneous multi-
agent systems with switching topologies and so on.
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