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(Received 27 February 2012; final version received 17 July 2012)

In this article, we study distributed consensus of heterogeneous multi-agent systems with fixed and switching
topologies. The analysis is based on graph theory and nonnegative matrix theory. We propose two kinds of
consensus protocols based on the consensus protocol of first-order and second-order multi-agent systems. Some
necessary and sufficient conditions that the heterogeneous multi-agent system solves the consensus problems
under different consensus protocols are presented with fixed topology. We also give some sufficient conditions for
consensus of the heterogeneous multi-agent system with switching topology. Simulation examples are provided to
demonstrate the effectiveness of the theoretical results.
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1. Introduction

Over recent years, distributed coordination of multi-
agent systems has received a major attention of multi-
disciplinary researchers coming from system control
theory, applied mathematics, statistical physics, biol-
ogy, communication, computer science, etc. This is
partly due to its broad applications of multi-agent
systems in many areas, such as the formation control
of robotic systems, the cooperative control of
unmanned aerial vehicles, the attitude alignment of
satellite clusters, the target tracking of sensor net-
works, the congestion control of communication net-
works, and so on (Ren and Beard 2008). A critical
problem arising from multi-agent systems for coordi-
nated control is how to design appropriate control
input based on local information that enables all
agents to reach an agreement on consistent quantity of
interest, which is known as the consensus problem.

In the literature related to the consensus problem,
agents are primarily considered being governed by
first-order integrators. Vicsek, Czirok, Jacob, Cohen,
and Schochet (1995) proposed a simple model for the
phase transition of a group of self-driven particles and
demonstrated by simulation that the headings of all
agents converge to a common value. By virtue of graph
theory and matrix theory, Jadbabaie, Lin, and Morse
(2003) provided a theoretical explanation for the
observed behaviour of the Vicsek model. It was

shown that consensus can be achieved if the union of

the interaction graphs for the team are connected

frequently enough as the system evolves. Olfati-Saber

and Murray (2004) investigated a systematical frame-

work of consensus problem in network of agents with a

simple scalar continuous-time integrator. They studied

three consensus problems, namely, directed networks

with fixed topology, directed networks with switching

topology, and undirected networks with time-delay

and fixed topology. Ren and Beard (2005) extended the

results of Jadbabaie et al. (2003), Olfati-Saber and

Murray (2004) and presented some more relaxable

conditions for consensus of states under dynamically

changing interaction topologies. Moreau (2005) stud-

ied the non-linear discrete-time multi-agent systems

with time-dependent communication channels, and

introduced a novel method based on the notion of

convexity. In the past several years, investigation for

consensus problem of first-order multi-agent systems

has been developed very fast and several research

topics have been considered, such as consensus with

nonlinear protocol (Arcak 2007; Hui and Haddad

2008), consensus with switching topology and time-

delays (Xiao and Wang 2006; Wang and Xiao 2007;

Sun, Wang, and Xie 2008), consensus with noises

(Huang and Manton 2009), asynchronous consensus

(Xiao and Wang 2008), consensus over random

networks (Hatano and Mesbahi 2005; Tahbaz-Salehi
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and Jadbabaie 2008), finite-time consensus (Jiang and
Wang 2009; Wang and Xiao 2010; Zheng, Chen, and
Wang 2011a), group consensus (Yu and Wang 2010).
In the meanwhile, there is a growing interest in
consensus protocols where all agents are governed by
second-order integrators. For example, Xie and Wang
(2007) and Ren and Atkins (2007) proposed second-
order consensus protocols based on the absolute and
relative velocity information, respectively, and pro-
vided the sufficient conditions for consensus problem
of second-order multi-agent systems with fixed and
switching topologies. Ren (2008) studied the consensus
problems of second-order multi-agent in four cases:
(1) with a bounded control input, (2) without velocity
measurements, (3) with a group reference velocity, (4)
with a bounded control input when a group reference
state is available to only a subset of the team. Other
research topics for consensus of second-order multi-
agent systems were considered, such as the necessary
and sufficient condition of consensus (Jiang and Wang
2010), consensus based on observer (Hong, Chen, and
Bushnell 2008), consensus based on sampled-data
(Gao, Wang, Xie, and Wu 2009), finite-time consensus
(Wang and Hong 2008). Up to now, by virtue of
matrix theory, graph theory, frequency-domain anal-
ysis method, Lyapunov direct method, etc., consensus
problem of first-order/second-order multi-agent sys-
tems has been studied. For more details, one can refer
to survey papers Ren, Beard, and Atkins (2007b) and
Olfati-Saber, Fax, and Murray (2007) and the refer-
ences therein.

All the aforementioned results were concerned with
the consensus of homogeneous multi-agent systems,
i.e. all the agents have the same dynamics behaviours.
However, the dynamics of the agents coupled with
each others are not the same because of various
restrictions or the common goals with mixed agents in
the practical systems. For example, taking dynamic
environments and uncertainty external to the multi-
robot system itself into account, heterogeneous systems
with robots in different shapes and abilities are more
applicable than the homogeneous systems in real world
(Wang, Wu, Huang, and Wang 2008). Stationary
consensus was studied for discrete-time heterogeneous
multi-agent systems composed of first-order and
second-order agents with communication delays in
Liu and Liu (2011). Consensus of continuous-time
heterogeneous multi-agent systems was considered
under undirected graph with velocity measurements
in Zheng, Zhu, and Wang (2011b) and without velocity
measurements in Zheng and Wang (2012a). Finite-time
consensus of heterogeneous multi-agent systems with
and without velocity measurements was studied under
strongly connected graph in Zheng and Wang (2012b).
By using Lyapunov method, we obtained some

sufficient conditions in Zheng et al. (2011a), Zheng
and Wang (2012a, b).

Inspired by the recent developments in heteroge-
neous multi-agent systems, we try to further investigate
the consensus problems with general directed network.
The main aim of this article is to obtain the consensus
criterions of heterogeneous multi-agent systems in
directed network with fixed and switching topologies.
One of the challenge is that the heterogeneous feature
prevents the application of diagonalisation of
Laplacian matrix directly. The main contribution of
this article is threefold. For one thing, we propose two
kinds of consensus protocols based on the consensus
protocols of first-order and second-order multi-agent
systems. Secondly, some necessary and sufficient con-
ditions that the heterogeneous multi-agent system
solves the consensus problems under different consen-
sus protocols are presented in directed network with
fixed topology. Thirdly, we give some sufficient con-
ditions for consensus of the heterogeneous multi-agent
system with switching topology. Simulation examples
are worked out to illustrate the effectiveness of our
theoretical results.

The rest of this article is organised as follows. In
Section 2, we present preliminaries and problem
formulation. In Section 3, we give the main results.
In Section 4, numerical simulations are given to
illustrate the effectiveness of theoretical results.
Finally, some conclusions are drawn in Section 5.

Notations: Throughout this article, we let R be the set
of real number, R

n be the n-dimensional real vector
space, R

n�n be the set of n� n matrix. Im¼
{1, 2, . . . ,m}, In/Im¼ {mþ 1, mþ 2, . . . , n}. For a
given vector or matrix X, XTdenotes its transpose,
kXk denotes the Euclidean norm of a vector X. In is a
n� n identity matrix. diag{a1, a2, . . . , an} defines a
diagonal matrix with diagonal elements being
a1, a2, . . . , an. Matrix A¼ [aij] is said to be nonnegative
(resp. positive) if all entries aij are nonnegative (resp.
positive), denoted by A� 0 (resp. A4 0).

2. Preliminaries and problem formulation

In this section, some basic concepts and results about
algebraic graph theory are introduced firstly. For more
details about algebraic graph theory, one can refer to
(Godsil and Royal 2001). Then, we formulate the
problem to be studied.

Let G(t)¼ (V, E(t), A(t)) be a weighted directed
graph of order n (n� 2) with a vertex set V¼ {s1,
s2, . . . , sn}, an edge set E(t)¼ {eij¼ (si, sj)}�V�V and
a nonnegative nonsymmetric adjacency matrix A(t)¼
[aij(t)]n�n at time t. (sj, si)2E(t), aij(t)4 0, namely,
they are adjacent at time instant t. Moreover, we

1968 Y. Zheng and L. Wang

D
ow

nl
oa

de
d 

by
 [

X
id

ia
n 

U
ni

ve
rs

ity
] 

at
 1

8:
14

 1
7 

O
ct

ob
er

 2
01

2 



assume aii(t)¼ 0 for any time t. The set of neighbours

of si is denoted by Ni(t)¼ {sj : eji¼ (sj, si)2E(t)}. A

directed path that connects si and sj in the graph G is a

sequence of distinct vertices si0 , si1 , si2 , . . . , sim , where

si0 ¼ si, sim ¼ sj and ðsir , sirþ1Þ 2 E, 0� r�m� 1. If a

directed graph has the property that (si, sj)2E,

(sj, si)2E, the directed graph is called undirected. A

directed graph is called strongly connected (connected

for undirected graph) if any two distinct nodes of the

graph can be connected via a directed path (path for

undirected graph) that follows the edges of the graph.

For directed graph, if (si, sj) is an edge of G, si is called

the parent of sj and sj is called the child of si. A directed

tree is a directed graph, where every vertex, except one

special vertex without any parent, which is called the

root, has exactly one parent, and the root can be

connected to any other vertices through paths. A

directed spanning tree is a directed tree, which consists

of all the nodes and some edges in G. The degree

matrix D(t)¼ [dij(t)]n�n is a diagonal matrix with

diiðtÞ ¼
P

j:sj2NiðtÞ
aijðtÞ, and the Laplacian matrix of

the graph is defined as L(t)¼ [lij(t)]n�n¼D(t)�A(t).
Suppose that the heterogeneous multi-agent sys-

tem consists of first-order and second-order integrator

agents. The number of agents is n, labelled 1 through n,

where the number of second-order integrator

agents is m (m5 n). Each agent has the dynamics as

follows:

_xi ¼ vi, _vi ¼ ui, i 2 Im,

_xi ¼ ui, i 2 I n=Im:

�
ð1Þ

where xi2R, vi2R and ui2R are the position-like,

velocity-like and control input, respectively, of agent i.

The initial conditions are xi(0)¼ xi0, vi(0)¼ vi0. Let

x(0)¼ [x10,x20, . . . , xn0]
T, v(0)¼ [v10, v20, . . . , vm0]

T.
Each agent is regarded as a node in a directed

graph, G(A(t)). Each edge (si, sj)2E(t) corresponds to

an available information link from agent i to agent j

at time t. Moreover, each agent updates its current

state based on the information received from its

neighbours. In this article, we suppose that there

exists communication behaviour in multi-agent sys-

tems, i.e. there are agent i and agent j which make

aij4 0.

Definition 2.1: The heterogeneous multi-agent

system (1) is said to reach consensus if for any initial

conditions, we have

limt!1 kxiðtÞ � xjðtÞk ¼ 0, for i, j 2 In, and

limt!1 kviðtÞ � vjðtÞk ¼ 0, for i, j 2 Im:

To solve the consensus problem of heterogeneous

multi-agent system (1) is a challenging work. It needs

to find suitable distributed state feedback consensus

protocol for each agent not only to solve the consensus
of the position-like but also to solve the consensus of
velocity-like. On the other hand, the linear consensus
protocol has been widely applied for homogeneous
multi-agent systems. For first-order multi-agent sys-
tems, Olfati-Saber and Murray (2004) proposed a
linear consensus protocol as follows:

ui ¼
Xn
j¼1

aijðtÞðxj � xiÞ: ð2Þ

And for second-order multi-agent systems, Xie and
Wang (2007) proposed a linear consensus protocol as
follows:

ui ¼
Xn
j¼1

aijðtÞðxj � xiÞ � kvi: ð3Þ

Ren (2008) gave another consensus protocol for
second-order multi-agent systems with a group refer-
ence velocity, i.e.

ui ¼
Xn
j¼1

aijðtÞðxj � xiÞ � kðvi � vdÞ þ _vd: ð4Þ

Based on the aforementioned analysis, we propose
the consensus protocol (control input) for heteroge-
neous multi-agent system (1) as follows:

ui ¼

Xn
j¼1

aijðtÞðxj � xiÞ � k1vi, i 2 Im,

k2
Xn
j¼1

aijðtÞðxj � xiÞ, i 2 In=Im,

8>>>><
>>>>:

ð5Þ

or

ui ¼

Xn
j¼1

aijðtÞðxj � xiÞ � k1ðvi � vdÞ þ _vd, i 2 Im,

k2
Xn
j¼1

aijðtÞðxj � xiÞ þ vd, i 2 I n=Im,

8>>>><
>>>>:

ð6Þ

where A¼ [aij(t)]n�n is the aforementioned weighted
adjacency matrix associated with the graph G(t) at time
instant t, k14 0, k24 0 are the feedback gains, vd is the
time-varying group reference velocity.

3. Main results

In this section, the consensus problem of heteroge-
neous multi-agent system (1) under protocols (5) and
(6) will be considered for networks with fixed and
switching topologies, respectively. We first discuss the
consensus problem in directed network with fixed

International Journal of Control 1969
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topology and obtain some necessary and sufficient

conditions in Section 3.1. Then, some sufficient con-

ditions for consensus of the heterogeneous multi-agent

system with switching topology is considered in

Section 3.2.

3.1 Networks with fixed topology

In this subsection, we will focus on analysis the

consensus problem under protocols (5) and (6) in

directed network with fixed topology, i.e. G(t)�G for

any time t. First, a lemmas is given which is a summary

of the work in Ren and Beard (2005).

Lemma 3.1: Suppose that �¼ [�1, . . . , �n]
T and L is the

corresponding Laplacian matrix of directed network G.

Then, the first-order multi-agent system _� ¼ �L� can

solve the consensus problem if and only if the directed

network G has a directed spanning tree.

Theorem 3.2: Consider a directed network with fixed

topology. Assume that the feedback gain k1 4
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxi2Im dii

p
. Then, the heterogeneous multi-agent

system (1) with consensus protocol (5) reaches consensus

asymptotically if and only if the fixed topology G has a

directed spanning tree.

Proof: This theorem is proved through the following

three steps.

Step 1: Let yi0 ¼ k3ivi þ xi (i, i
0 2 Im). Thus, for i2Im,

_xi ¼
1

k3i
ð yi0 � xiÞ

and

_yi0 ¼ k3i _vi þ _xi

¼ k3i
Xn
j¼1

aijðxj � xiÞ � k1vi

 !
þ

1

k3i
ð yi0 � xiÞ

¼ k3i
Xn
j¼1

aijðxj � xiÞ þ k1 �
1

k3i

� �
ðxi � yi0 Þ

¼ k3i
Xn
j¼1

aijðxj � yi0 Þ þ k1 �
1

k3i
� k3idii

� �
ðxi � yi0 Þ:

Let bi ¼ ðk1 �
1
k3i
� k3idiiÞ, i 2 Im. If dii¼ 0, let

k3i �
1
k1
. Otherwise, let

k1�
ffiffiffiffiffiffiffiffiffiffiffi
k2
1
�4dii

p

2dii
� k3i �

k1þ
ffiffiffiffiffiffiffiffiffiffiffi
k2
1
�4dii

p

2dii
.

Due to k1 4 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxi2Im dii

p
� 0, it is easy to get

k1�
ffiffiffiffiffiffiffiffiffiffiffi
k2
1
�4dii

p

2dii
4 0, k3i4 0 and bi� 0 for i2Im.

For i2In/Im, we have

_xi ¼ k2
Xn
j¼1

aijðxj � xiÞ:

Based on the aforementioned analysis, we get a
first-order multi-agent system with nþm agents as
follows:

_xi ¼
1

k3i
ð yi0 � xiÞ, i 2 Im,

_yi0 ¼ k3i
Xn
j¼1

aijðxj � yi0 Þ þ biðxi � yi0 Þ, i0 2 Im,

_xi ¼ k2
Xn
j¼1

aijðxj � xiÞ, i 2 In=Im,

8>>>>>>>>><
>>>>>>>>>:

ð7Þ

where xi2R and yi0 2 R are the states of the ith and i0th
agents, respectively.

The Laplacian matrix of directed network G can be
rewritten as L ¼ L11 L12

L21 L22

� �
, where L112R

m�m,

L122R
m�(n�m), L212R

(n�m)�m and L222R
(n�m)�(n�m).

Let X¼ [x1, . . . ,xm, y1, . . . , ym, xmþ1, . . . , xn]
T
2R

nþm,

the first-order multi-agent system (7) can be

rewritten as

_X ¼ �L0X, ð8Þ

where

L0 ¼

1
K3
Im � 1

K3
Im 0

K3L11 � B B K3L12

k2L21 0 k2L22

0
B@

1
CA,

K3¼ diag{k31, . . . , k3m},
1
K3
¼ diagf 1k31 , . . . , 1

k3m
g and

B¼ diag{b1, . . . , bm}.
In fact, the velocities of all second-order integrator

agents converge to zero if heterogeneous multi-agent
system (1) can solve a consensus problem with protocol
(5). Because, we have limt!1 kxi(t)� xj(t)k¼ 0 for i,
j2In, which implies that limt!1 k _xiðtÞ � _xjðtÞk ¼ 0
ði 2 Im, j 2 In=ImÞ and limt!1 k

Pn
j¼1 aijðxj � xiÞk ¼ 0

ði 2 In=ImÞ, which in turn implies that limt!1 k _xiðtÞ �
_xjðtÞk ¼ limt!1 kviðtÞk ¼ 0 ði 2 Im, j 2 I n=ImÞ. Then,
it is easy to prove that the heterogeneous multi-agent
system (1) with consensus protocol (5) reaches consen-
sus asymptotically if and only if the first-order multi-
agent system (8) reaches consensus asymptotically.

Step 2: Let V1¼ {s1, . . . , sm}, V2 ¼ fs10 , . . . , sm0 g and
V3¼ {smþ1, . . . , sn}. Let G

0 ¼ (V0,E0) be a directed fixed
topology of the first-order multi-agent system (7) with
a vertex set V0 ¼V1[V2[V3.

Suppose that the fixed topology G has directed a
spanning tree TG. For each edge (sj, si)2TG, we
consider the following four cases:

(1) If sj2V3 and si2V3, we have (sj, si)2E
0;

(2) If sj2V3 and si2V1, we have ðsj, si0 Þ 2 E0,
ðsi0 , siÞ 2 E0;

1970 Y. Zheng and L. Wang

D
ow

nl
oa

de
d 

by
 [

X
id

ia
n 

U
ni

ve
rs

ity
] 

at
 1

8:
14

 1
7 

O
ct

ob
er

 2
01

2 



(3) If sj2V1 and si2V3, we have ðsj0 , sjÞ 2 E0,

(sj, si)2E
0;

(4) If sj2V1 and si2V1, we have ðsj0 , sjÞ 2 E0,

ðsj, si0 Þ 2 E0, ðsi0 , siÞ 2 E0.

Adding these edges to TG, we get a directed spanning

tree for G0.
Suppose that the fixed topology G0 has a directed

spanning tree TG0 . For each vertex si2V2, if there exist

sj, sk2V1[V3 which make ðsj, siÞ, ðsi, skÞ 2 TG0 , we

delete the vertex si and add the edge (sj, sk)2E.

Otherwise, we delete the vertex si. Thus, we get a

directed spanning tree for G.
Hence, the fixed topology G has a directed span-

ning tree if and only if the fixed topology G0 has a

directed spanning tree.

Step 3: From Lemma 3.1, it is easy to know that the

first-order multi-agent system (8) reaches consensus

asymptotically if and only if the fixed topology G0 has a

directed spanning tree.
Combining Step 1, Step 2 and Step 3, we get that if

the feedback gain k1 4 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxi2Im dii

p
, the heteroge-

neous multi-agent system (1) with consensus protocol

(5) reaches consensus asymptotically if and only if the

fixed topology G has a directed spanning tree. œ

When m¼ n, the heterogeneous multi-agent system

(1) becomes a second-order multi-agent system. Similar

to the analysis of Theorem 3.2, we get a necessary and

sufficient condition for the second-order multi-agent

system (1) as follows.

Corollary 3.3: Consider a directed network with fixed

topology. Assume that the feedback gain k1 �

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxi2I n dii

p
. Then, the second-order multi-agent

system (1) with consensus protocol (3) reaches consensus

asymptotically if and only if the fixed topology G has a

directed spanning tree.

Proof: Note that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxi2In dii

p
4 0 for the second-

order multi-agent system (1). Hence, we have

k1 � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxi2I n dii

p
4 0. Similar to the analysis of

Theorem 3.2, we get that if the feedback gain

k1 � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxi2I n dii

p
, the second-order multi-agent

system (1) with consensus protocol (3) reaches consen-

sus asymptotically if and only if the fixed topology G

has a directed spanning tree. œ

Remark 1: Compared with the necessary and suffi-

cient condition that the second-order multi-agent

system (1) solves the consensus problem given in

Jiang and Wang (2010), the condition of Corollary 3.3

has more merits. For example, the feedback gain k1 is

directly estimated through the Laplacian matrix L

instead of computation the eigenvalue of the Laplacian

matrix L.

Remark 2: Note that k1 4 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxi2Im dii

p
presents a

unified viewpoint to solve the consensus problem of
both the homogeneous multi-agent system (the first-
order multi-agent system and the second-order multi-
agent system) and the heterogeneous multi-agent
system, where m is the number of second-order
integrator agents.

Theorem 3.4: Consider a directed network with fixed
topology. Assume that the feedback gain k1 4
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxi2Im dii

p
. Then, the heterogeneous multi-agent

system (1) with consensus protocol (6) reaches consensus
asymptotically with the time-varying group reference
velocity vd if and only if the fixed topology G has a
directed spanning tree.

Proof: Let ~vi ¼ vi � vd (i2Im) and ~xi ¼ xi � xd

(i2In), where xd ¼
R t
0 v

dð�Þd�. The heterogeneous
multi-agent system (1) with consensus protocol (6)
can be written as follows:

_xi � _xd ¼ vi � vd, i 2 Im,

_vi � _vd ¼
Xn
j¼1

aij½ðxj � xdÞ � ðxi � xdÞ�

�k1ðvi � vdÞ, i 2 Im,

_xi � _xd ¼ k2
Xn
j¼1

aij½ðxj � xdÞ � ðxi � xdÞ�, i 2 In=Im,

8>>>>>>>>><
>>>>>>>>>:
which is equivalent to

_~xi ¼ ~vi, i 2 Im,

_~vi ¼
Xn
j¼1

aijð ~xj � ~xiÞ � k1 ~vi, i 2 Im,

_~xi ¼ k2
Xn
j¼1

aijð ~xj � ~xiÞ, i 2 I n=Im:

8>>>>>>><
>>>>>>>:

ð9Þ

From Theorem 3.2, we know that the heteroge-
neous multi-agent system (9) reaches consensus asymp-
totically (i.e. limt!1 k ~xiðtÞ � ~xjðtÞk ¼ 0 (i, j2In) and
limt!1 k ~viðtÞk ¼ 0 (i2Im)) if and only if the fixed
topology G has a directed spanning tree, which
implies that limt!1kxi(t)�xj(t)k¼ 0 (i, j2In) and
limt!1kvi(t)� vd(t)k¼ 0 (i2Im) if and only if the
fixed topology G has a directed spanning tree. œ

Remark 3: Olfati-Saber and Murray (2004) found
that the convergence speed can be influenced by the
weights of networks . From the proof of Theorem 3.2,
it is easy to know that the chosen of k1 and k2 have an
effect on the convergence speed of the heterogeneous
multi-agent system. And the types of group reference
velocities have an effect on the consensus state. The
consensus state of all the agents can reach the specified
object through designing the time-varying group
reference velocity vd.
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When m¼ n, we get a necessary and sufficient
condition for the second-order multi-agent system (1)
with the time-varying group reference velocity.

Corollary 3.5: Consider a directed network with fixed
topology. Assume that the feedback gain k1 �
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxi2I n dii

p
. Then, the second-order multi-agent

system (1) with consensus protocol (4) reaches consensus
asymptotically with the time-varying group reference
velocity vd if and only if the fixed topology G has a
directed spanning tree.

Proof: The proof is similar to the analysis of
Corollary 3.3 and Theorem 3.4. œ

Remark 4: Note that the stationary consensus of the
heterogeneous multi-agent system with consensus pro-
tocol (5) is a special case of the dynamic consensus of
the heterogeneous multi-agent system with consensus
protocol (6) when vd¼ 0. The consensus state of all the
agents can reach the specified object through designing
the time-varying group reference velocity vd.

3.2 Networks with switching topology

In this subsection, we consider the consensus of the
heterogeneous multi-agent system (9) under protocols
(5) and (6) with switching topology. The interactions
among agents are modelled by the directed networks.

Let �G ¼ fG1,G2, . . . ,GMg denote the set of all
possible directed interaction graphs defined for V.
Obviously, �G has finite elements. The union of a group
of directed graphs fGi1 ,Gi2 , . . . ,Gimg �

�G is a directed
graph with the vertex set V and the edge set given by
the union of the edge sets of Gij ( j¼ 1, . . . ,m). We
apply the dwell time (Ren and Beard 2005) to the
heterogeneous multi-agent system (9) under protocols
(5) and (6), which implies that the interaction graph
and weighting factors are constrained to change only at
discrete times. Let �i¼ tiþ1� ti (i¼ 0, 1, . . .) be the dwell
time. Let �� be a finite set of arbitrary positive numbers.
Let � be a infinite set generated from ��, which is closed
under addition and multiplications by positive integers.
By choosing the set �� properly, the dwell time can be
chosen from the infinite set �. In order to facilitate
our analysis, we give a lemma and let dm ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxi2ImfdiiðtÞ : t � 0g

p
, �a is finite set of arbitrary

positive numbers.

Lemma 3.6 (Ren and Beard 2005): Let t1, t2, . . . be an
infinite time sequence at which the interaction graph
or weighting factors switch and �i¼ tiþ1� ti2�
(i¼ 0, 1, . . .). Let GðtiÞ 2 �G be a switching interaction
graph at time t¼ ti and aij(ti)2 �a, where �a is a finite set of
arbitrary nonnegative numbers. The first-order multi-
agent system _� ¼ �LðtÞ� reaches consensus

asymptotically if there exists an infinite sequence of
contiguous, nonempty, uniformly bounded time intervals
½tij , tijþ1 Þ ( j¼ 1, 2, . . .), starting at ti1 ¼ 0, with the
property that the union of the directed graphs across
each interval has a directed spanning tree.

Theorem 3.7: Let t1, t2, . . . be an infinite time sequence
at which the interaction graph or weighting factors
switch and �i¼ tiþ1� ti2� (i¼ 0, 1, . . .). Let GðtiÞ 2 �G
be a switching interaction graph at time t¼ ti and
aij(ti)2 �a, where �a is a finite set of arbitrary nonnegative
numbers. Assume that the feedback gain k14 2dm.
Then, the heterogeneous multi-agent system (1) with
consensus protocol (5) reaches consensus asymptotically
if there exists an infinite sequence of contiguous,
nonempty, uniformly bounded time intervals ½tij , tijþ1Þ
( j¼ 1, 2, . . .), starting at ti1 ¼ 0, with the property that
the union of the directed graphs across each interval has
a directed spanning tree.

Proof: Let yi0 ¼ k3iðtÞvi þ xi (i2Im). Similar to the
step 1 of Theorem 3.2, we get a first-order multi-agent
system with nþm agents as follows:

_xi ¼
1

k3iðtÞ
ðyi0 �xiÞ, i2 Im,

_yi0 ¼ k3iðtÞ
Xn
j¼1

aijðtÞðxj�yi0 ÞþbiðtÞðxi�yi0 Þ, i0 2 Im,

_xi ¼ k2
Xn
j¼1

aijðtÞðxj�xiÞ, i2 In=Im,

8>>>>>>>>><
>>>>>>>>>:

ð10Þ

where biðtÞ ¼ k1 �
1

k3iðtÞ
� k3iðtÞdiiðtÞ, k3iðtÞ �

1
k1

if

dii(t)¼ 0, otherwise
k1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
1
�4diiðtÞ

p

2diiðtÞ
� k3iðtÞ �

k1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
1
�4diiðtÞ

p

2diiðtÞ
.

Due to k14 2dm4 0, we have
k1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
1
�4diiðtÞ

p

2diiðtÞ
40,

k3i(t)4 0 and bi(t)� 0 for i2Im. Thus, the heteroge-
neous multi-agent system (1) with consensus protocol
(5) reaches consensus asymptotically if and only if the
first-order multi-agent system (10) reaches consensus
asymptotically.

Let G0(t) be a directed switching topology of the
first-order multi-agent system (10). Due to k3i(t)4 0
for t4 0, we have aii0 ðtÞ4 0 for t4 0. Then, the
argument of the rest is similar to steps 2 and 3 of
Theorem 3.2. Combining the above statement and
Lemma 3.6, we complete the proof. œ

When employing the consensus protocol (6) or
(and) m¼ n, we have the following results which can be
proved using similar techniques as Theorem 3.4,
Corollary 3.3 and Theorem 3.7.

Theorem 3.8: Let t1, t2, . . . be an infinite time sequence
at which the interaction graph or weighting factors
switch and �i¼ tiþ1� ti2� (i¼ 0, 1, . . .). Let GðtiÞ 2 �G
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be a switching interaction graph at time t¼ ti and
aij(ti)2 �a, where �a is a finite set of arbitrary nonnegative
numbers. Assume that the feedback gain k14 2dm.
Then, the heterogeneous multi-agent system (1) with
consensus protocol (6) reaches consensus asymptotically
with the time-varying group reference velocity vd if there
exists an infinite sequence of contiguous, nonempty,
uniformly bounded time intervals ½tij , tijþ1Þ ( j¼ 1, 2, . . .),
starting at ti1 ¼ 0, with the property that the union of the
directed graphs across each interval has a directed
spanning tree.

Corollary 3.9: Let t1, t2, . . . be an infinite time sequence
at which the interaction graph or weighting factors
switch and �i¼ tiþ1� ti2� (i¼ 0, 1, . . .). Let GðtiÞ 2 �G
be a switching interaction graph at time t¼ ti and
aij(ti)2 �a, where �a is a finite set of arbitrary nonnegative
numbers. Assume that the feedback gain k1� 2dn. Then,
the second-order multi-agent system (1) (when m¼ n)
with consensus protocol (3) (or (4)) reaches consensus
asymptotically if there exists an infinite sequence of

contiguous, nonempty, uniformly bounded time intervals
½tij , tijþ1 Þ ( j¼ 1, 2, . . .), starting at ti1 ¼ 0, with the
property that the union of the directed graphs across
each interval has a directed spanning tree.

4. Simulations

In this section, two examples are given to illustrate the
effectiveness of the theoretical results. In the following,
all directed graphs with 0-1 weights will be needed.
Let k1¼ 3, k2¼ 1, x(0)¼ [8, 5, 2,�4, 1,�5] and
v(0)¼ [1,�5, 5, 3].

Example 4.1: The multi-agent system is composed of
six agents with a directed fixed topology in Figure 1.
The vertices 1–4 denote the second-order integrator
agents and the vertices 5–6 denote the first-order
integrator agents. Then, the fixed topology has a
directed spanning tree and k1 4 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxi2Im dii

p
. By

using consensus protocol (5), the state trajectories of
all the agents reach consensus as shown in Figure 2,
which is consistent with the sufficiency of Theorem 3.2.
Suppose that the time-varying group reference velocity
vd(t)¼ sin t, Figure 3 shows that all the agents reach
consensus with consensus protocol (6), which is con-
sistent with the sufficiency of Theorem 3.4.

Example 4.2: The multi-agent system is composed of
six agents, where the agents 1–4 are governed by
second-order integrators and the agents 5–6 are gov-
erned by first-order integrators. The directed topology

0 5 10 15 20 25 30
−5

0

5

t

v

0 5 10 15 20 25 30
−5

0

5

10

t

x

Figure 2. Simulation results with the fixed topology depicted in Figure 1 and consensus protocol (5).

Figure 1. A directed fixed topology.
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Figure 3. Simulation results with the fixed topology depicted in Figure 1 and consensus protocol (6), where the time-varying
group reference velocity vd(t)¼ sin t.
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Figure 5. Simulation results with the switching topology depicted in Figure 4 and consensus protocol (5).

Figure 4. Two directed topologies.
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of the system is switched between topology a and
topology b per second in Figure 4. Then, the union of
the topology a and topology b has a directed spanning
tree and k14 2dm. By using consensus protocol (5), the
state trajectories of all the agents reach consensus as
shown in Figure 5, which is consistent with the results
in Theorem 3.7. Suppose that the time-varying group
reference velocity vd(t)¼ sin t, Figure 6 shows that all
the agents reach consensus with consensus protocol
(6), which is consistent with the results in Theorem 3.8.

5. Conclusions

In this article, consensus problem of a heterogeneous
multi-agent system with agents modelled by first-order
and second-order integrators with fixed or switching
topology was presented. Two kinds of consensus
protocols based on the consensus protocols of first-
order and second-order multi-agent systems were
proposed. Some necessary and sufficient conditions
were derived for the consensus of the heterogeneous
multi-agent system with fixed topology. Under switch-
ing topology, some sufficient conditions for the con-
sensus of the heterogeneous multi-agent system were
established.

Acknowledgements

This work was supported by 973 Program (Grant No.
2012CB821203), NSFC (Grant Nos. 61020106005, 10972002

and 61104212) and the Fundamental Research Funds for the
Central Universities (Grant Nos. K50511040005 and
K50510040003).

References

Arcak, M. (2007), ‘Passivity as a Design Tool for Group

Coordination’, IEEE Transactions on Automatic Control,

52, 1380–1390.
Gao, Y., Wang, L., Xie, G., and Wu, B. (2009), ‘Consensus

of Multi-agent Systems Based on Sampled-date Control’,

International Journal of Control, 82, 2193–2205.

Godsil, C., and Royal, G. (2001), Algebraic Graph Theory,

New York: Springer-Verlag.
Hatano, Y., and Mesbahi, M. (2005), ‘Agreement over

Random Networks’, IEEE Transactions on Automatic

Control, 50, 1867–1872.

Hong, Y., Chen, G., and Bushnell, L. (2008), ‘Distributed

Observers Design for Leader-following Control of Multi-

agent Networks’, Automatica, 44, 846–850.
Huang, M., and Manton, J.H. (2009), ‘Coordination and

Consensus of Networked Agents with Noisy Measurement:

Stochastic Algorithms and Asymptotic Behaviour’, SIAM

Journal of Control Optimization, 48, 134–161.

Hui, Q., and Haddad, W.M. (2008), ‘Distributed Nonlinear

Control Algorithms for Network Consensus’, Automatica,

44, 2375–2381.
Jadbabaie, A., Lin, J., and Morse, A.S. (2003), ‘Coordination

of Groups of Mobile Autonomous Agents Using Nearest

Neighbour Rules’, IEEE Transactions on Automatic

Control, 48, 988–1001.

0 10 20 30 40 50
−5

0

5

10

t

v

0 10 20 30 40 50

0

50

100

150

200

250

t

x

Figure 6. Simulation results with the switching topology depicted in Figure 4 and consensus protocol (6), where the time-varying
group reference velocity vd(t)¼ sin t.

International Journal of Control 1975

D
ow

nl
oa

de
d 

by
 [

X
id

ia
n 

U
ni

ve
rs

ity
] 

at
 1

8:
14

 1
7 

O
ct

ob
er

 2
01

2 



Jiang, F., and Wang, L. (2009), ‘Finite-time
Information Consensus for Multi-agent Systems with

Fixed and Switching Topologies’, Physica D, 238,
1550–1560.

Jiang, F., and Wang, L. (2010), ‘Consensus Seeking of High-
order Dynamic Multi-agent Systems with Fixed and

Switching Topologies’, International Journal of Control,
83, 404–420.

Liu, C., and Liu, F. (2011), ‘Stationary Consensus of

Heterogeneous Multi-agent Systems with Bounded
Communication Delays’, Automatica, 47, 2130–2133.

Moreau, L. (2005), ‘Stability of Multiagent Systems with

Time-dependent Communication Links’, IEEE
Transactions on Automatic Control, 50, 169–182.

Olfati-Saber, R., Fax, J.A., and Murray, R.M. (2007),
‘Consensus and Cooperation in Networked Multi-agent

Systems’, Proceedings of the IEEE, 95, 215–233.
Olfati-Saber, R., and Murray, R.M. (2004), ‘Consensus
Problems in Networks of Agents with Switching Topology

and Time-delays’, IEEE Transactions on Automatic
Control, 49, 1520–1533.

Ren, W. (2008), ‘On Consensus Algorithms for Double-

integrator Dynamics’, IEEE Transactions on Automatic
Control, 53, 1503–1509.

Ren, W., and Atkins, E. (2007), ‘Distributed Multi-vehicle

Coordinated Control via Local Information Exchange’,
International Journal of Robust and Nonlinear Control, 17,
1002–1033.

Ren, W., and Beard, R.W. (2005), ‘Consensus Seeking in

Multiagent Systems under Dynamically Changing
Interaction Topologies’, IEEE Transactions on Automatic
Control, 50, 655–661.

Ren, W., and Beard, R.W. (2008), Distributed Consensus in
Multi-vehicle Cooperative Control, London: Springer-
Verlag.

Ren, W., Beard, R.W., and Atkins, E.M. (2007),
‘Information Consensus in Multivehicle Cooperative
Control’, IEEE Control Systems Magazine, 27, 71–82.

Sun, Y.G., Wang, L., and Xie, G. (2008), ‘Average
Consensus in Networks of Dynamic Agents with
Switching Topologies and Multiple Time-varying Delays’,
Systems and Control Letters, 57, 175–183.

Tahbaz-Salehi, A., and Jadbabaie, A. (2008), ‘A Necessary
and Sufficient Condition for Consensus over Random
Networks’, IEEE Transactions on Automatic Control, 53,

791–795.
Vicsek, T., Czirok, A., Jacob, E.B., Cohen, I., and Schochet,
O. (1995), ‘Novel Type of Phase Transition in a System of

Self-driven Particles’, Physical Review Letters, 75,
1226–1229.

Wang, X., and Hong, Y. (2008), ‘Finite-time Consensus for
Multi-agent Networks with Second-order Agent
Dynamics’, in Proceeedings of the 17th World Congress
The International Federation of Automatic Control, Seoul,

Korea, pp. 15185–15190.
Wang, L., and Xiao, F. (2007), ‘A New Approach to
Consensus Problem in Discrete-time Multiagent Systems

with Time-delays’, Science in China Series F: Information
Sciences, 50, 625–635.

Wang, L., and Xiao, F. (2010), ‘Finite-time Consensus

Problems for Networks of Dynamic Agents’, IEEE
Transactions on Automatic Control, 55, 950–955.

Wang, Q., Wu, M., Huang, Y., and Wang, L. (2008),
‘Formation Control of Heterogeneous Multi-robot

Systems’, in Proceeedings of the 17th World Congress The
International Federation of Automatic Control, Seoul,
Korea, pp. 6596–6601.

Xiao, F., and Wang, L. (2006), ‘State Consensus for
Multiagent Systems with Switching Topologies and Time-
varying Delays’, International Journal of Control, 79,

1277–1284.
Xiao, F., and Wang, L. (2008), ‘Asynchronous Consensus in
Continuous-time Multi-agent Systems with Switching

Topology and Time-varying Delays’, IEEE Transactions
on Automatic Control, 53, 1804–1816.

Xie, G., and Wang, L. (2007), ‘Consensus Control for a Class
of Networks of Dynamic Agents’, International Journal of

Robust and Nonlinear Control, 17, 941–959.
Yu, J., and Wang, L. (2010), ‘Group Consensus in Multi-
agent Systems with Switching Topologies and

Communication Delays’, Systems and Control Letters, 59,
340–348.

Zheng, Y., Chen, W., and Wang, L. (2011a), ‘Finite-time

Consensus for Stochastic Multi-agent Systems’,
International Journal of Control, 84, 1644–1652.

Zheng, Y., and Wang, L. (2012a), ‘Consensus of

Heterogeneous Multi-agent Systems Without Velocity
Measurements’, International Journal of Control, 85,
906–914.

Zheng, Y., and Wang, L. (2012b), ‘Finite-time Consensus of

Heterogeneous Multi-agent Systems with and without
Velocity Measurements’, Systems and Control Letters, 61,
871–878.

Zheng, Y., Zhu, Y., and Wang, L. (2011b), ‘Consensus of
Heterogeneous Multi-agent Systems’, IET Control Theory
and Applications, 5, 1881–1888.

1976 Y. Zheng and L. Wang

D
ow

nl
oa

de
d 

by
 [

X
id

ia
n 

U
ni

ve
rs

ity
] 

at
 1

8:
14

 1
7 

O
ct

ob
er

 2
01

2 


