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a b s t r a c t

This paper studies the finite-time consensus problem of heterogeneous multi-agent systems composed
of first-order and second-order integrator agents. By combining the homogeneous domination method
with the adding a power integrator method, we propose two classes of consensus protocols with and
without velocity measurements. First, we consider the protocol with velocity measurements and prove
that it can solve the finite-time consensus under a strongly connected graph and leader-following
network, respectively. Second, we consider the finite-time consensus problem of heterogeneous multi-
agent systems, for which the second-order integrator agents cannot obtain the velocity measurements
for feedback. Finally, some examples are provided to illustrate the effectiveness of the theoretical results.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Distributed systems and networks have attracted much at-
tention in the last few years because of their flexibility and
computational performance. As a fundamental of distributed co-
ordination, the consensus problem which means that a group of
autonomous agents reaches an agreement upon some parameters
has been widely studied by multi-disciplinary researchers. This is
partly due to its broad applications ofmulti-agent systems inmany
areas, such as the formation control of robotic systems, the cooper-
ative control of unmanned aerial vehicles, the attitude alignment
of satellite clusters, the target tracking of sensor networks, the con-
gestion control of communication networks, and so on [1–3].

1.1. Related work

The study of multi-agent consensus is expected to establish
the effective consensus protocols with required performance. The
convergence speed is an active topic and can reflect the perfor-
mance of the proposed consensus protocols. Up to now, most of
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the existing consensus protocols for multi-agent systems are con-
vergent asymptotically, i.e., the systems have at most exponential
convergence rates [4,5]. For such consensus protocols, lots of re-
searchers found that the convergence rates can be influenced by
the weights of networks (the second smallest eigenvalue of the
interaction graph Laplacian) [6,7]. One can increase convergence
speed with respect to the linear protocols, but the consensus can
never be reached in a finite time. However, in many practical sit-
uations, it is required that the consensus can be reached in a fi-
nite time, such as when high precision performance and stringent
convergence time are required. Cortés [8] proposed two normal-
ized and signed gradient flows of a differential function and used
these protocols to solve the finite-time consensus problem. Hui [9]
used the notion of finite-time semistability to develop the finite-
time rendezvous problem. Chen et al. [10] studied the finite-time
consensus of a multi-agent system using a binary consensus pro-
tocol. However, the aforementioned consensus protocols involved
discontinuous dynamical systems, which may lead to chattering
or excite high frequency dynamics in applications involving flexi-
ble structures [11]. To avoid these negative effects, some contin-
uous consensus protocols are proposed for multi-agent systems
which can reach the finite-time consensus [12–18]. Based on the
Lyapunov method, Wang and Xiao [12,13] showed that the multi-
agent systems could solve the finite-time consensus problem for
both the bidirectional and unidirectional interaction cases. Jiang
andWang [14,15] investigated the finite-time consensus of multi-
agent systems with respect to a monotonic function under fixed
and switching topologies. Zheng et al. [16] studied the finite-time
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consensus of stochastic multi-agent systems with a general pro-
tocol. For second-order multi-agent systems, Wang and Hong [17]
gave someprotocols and showed that these protocols can reach the
finite-time consensus based on homogeneous method. Based on
the adding a power integrator method [19], Li et al. [18] designed a
protocol and discussed the finite-time consensus of leaderless and
leader-following multi-agent systems with external disturbances.

Unfortunately, all the aforementioned multi-agent systems
were homogeneous, that is, all the agents have the same dynamics
behavior. However, the dynamics of the agents are quite different
because of various restrictions or the common goals with mixed
agents in the practical systems. Liu and Liu [20] studied the
stationary consensus of discrete-time heterogeneous multi-agent
systems with communication delays. In [21,22], the authors
considered the consensus of heterogeneous multi-agent systems
with and without velocity measurements. To our best knowledge,
there is no literature researching the finite-time consensus of
heterogeneous multi-agent systems.

1.2. Our results

Inspired by the recent developments in heterogeneous multi-
agent systems, we decide to investigate the finite-time consensus
of heterogeneous multi-agent systems with and without velocity
measurements under two classes of specific directed networks
in this paper, in which the agents are governed by first-order
and second-order integrators, respectively. By combining the
homogeneous domination method with the adding a power
integrator method, we first propose a continuous protocol
with velocity measurements for the heterogeneous multi-agent
systems and show that these systems can achieve the finite-time
consensus. For the second-order integrator agents, the velocity
information sometimes is unmeasurable because of technology
limitations or environmental disturbances [23–25]. Therefore,
we design a continuous finite-time consensus protocol for the
heterogeneous multi-agent systems in which the second-order
integrator agents cannot obtain the velocity information. By
using the graph theory, Lyapunov theory and the property
of a homogeneous function, we prove that the heterogeneous
multi-agent systems converge in finite time under two classes
of directed networks: (1) strongly connected and satisfies the
detailed balance condition, (2) leader-following network and the
network among the followers is strongly connected and satisfies
the detailed balance condition. Finally, some simulation examples
are presented to show the effectiveness of our proposed protocols.

This paper is organized as follows. In Section 2,we present some
notions in graph theory and formulate the model to be studied,
and assemble some key lemmas. In Sections 3 and 4, we propose
the continuous protocolswith andwithout velocitymeasurements
and show that the heterogeneous multi-agent system can achieve
the finite-time consensus, respectively. In Section 5, simulation
examples are given to illustrate the effectiveness of our proposed
protocols. Finally, some conclusions are drawn in Section 6.

Notation: Throughout this paper, we let R, R>0 and R≥0 be
the set of real numbers, positive real numbers and non-negative
real numbers, Rn is the n-dimensional real vector space, In =

{1, 2, . . . , n}. For a given vector or matrix X, XT denotes its
transpose. 1n is a vector with elements being all ones. A is said to
be non-negative (resp. positive) if all entries aij are non-negative
(resp. positive), denoted by A ≥ 0 (resp. A > 0). sig(x)α =

sign(x)|x|α , where sign(·) is the sign function.

2. Preliminaries

2.1. Graph theory

The network formed by multi-agent systems can always be
represented by a graph. Thus, graph theory is an important tool

to analyze the consensus problem for multi-agent systems. In this
subsection, some basic concepts and properties are presented in
graph theory [26].

Let G (A ) = (V , E , A ) be a weighted directed graph of order
n with a vertex set V = {s1, s2, . . . , sn}, an edge set E = {eij =

(si, sj)} ⊂ V ×V and a non-negative asymmetric matrix A = [aij].
(sj, si) ∈ E ⇔ aij > 0 ⇔ agent i and j can communicate with each
other, namely, they are adjacent. Moreover, we assume aii = 0. A
is called the weighted matrix and aij is the weight of eij = (si, sj).
The set of neighbors of si is denoted byNi = {sj : eji = (sj, si) ∈ E }.
A path that connects si and sj in the directed graph G is a sequence
of distinct vertices si0 , si1 , si2 , . . . , sim , where si0 = si, sim = sj
and (sir , sir+1) ∈ E , 0 ≤ r ≤ m − 1. A directed graph is said
to be strongly connected if there exists a path between any two
distinct vertices of the graph. If a directed graph has the property
that (si, sj) ∈ E ⇔ (sj, si) ∈ E , the directed graph is called
undirected. It is easy to see that adjacency matrix A is symmetric
if G is an undirected graph. The degree matrix D = [dij]n×n is a
diagonal matrix with dii =


j:sj∈Ni

aij and the Laplacian matrix
of the graph is defined as L = [lij]n×n = D − A . It has been
shown in [26] that L 1n = 0. The directed graph G (A ) is said to
satisfy the detailed balance condition if there exist some scalars
ωi > 0 (i = 1, 2, . . . , n) such that ωiaij = ωjaji for all i, j ∈ In [1].
In the multi-agent systems, we refer to the agent as the leader
if it only sends information to other agents and cannot receive
any from other agents, i.e., an1 = an2 = · · · = ann = 0 and
ā = [a1n, a2n, . . . , a(n−1)n]

T
≥ 0 if the agent n is the leader.

2.2. Heterogeneous multi-agent systems

Suppose that the heterogeneous multi-agent system consists
of first-order and second-order integrator agents. The number of
agents is n, labeled 1 through n. In this subsection, we propose
the heterogeneous multi-agent system and define the concept of
finite-time consensus.

Suppose that the number of second-order integrator agents is
m (m < n). Each second-order agent dynamics is given as follows:
ẋi(t) = vi(t)
v̇i(t) = ui(t) i ∈ Im,

(1)

where xi ∈ R, vi ∈ R and ui ∈ R are the position, velocity
and control input, respectively, of agent i. The initial conditions are
xi(0) = xi0, vi(0) = vi0. Each first-order agent dynamics is given
as follows:

ẋi(t) = ui(t), i ∈ In/Im, (2)

where xi ∈ R and ui ∈ R are the position and control input,
respectively, of agent i. The initial conditions is xi(0) = xi0. Let
x0 = [x10, x20, . . . , xn0], v0 = [v10, v20, . . . , vm0].

Definition 1. The heterogeneous multi-agent system (1)–(2) is
said to reach consensus asymptotically if for any initial conditions
x0 and v0, we have limt→∞(xi(t) − xj(t)) = 0 (i, j ∈ In) and
limt→∞(vi(t) − vj(t)) = 0 (i, j ∈ Im).

Definition 2. The heterogeneous multi-agent system (1)–(2) is
said to reach consensus in finite time if for any initial conditions
x0 and v0, there exists a finite settling time T (x0, v0) such
that limt→T (x0,v0)−(xi(t) − xj(t)) = 0 (i, j ∈ In) and
limt→T (x0,v0)−(vi(t) − vj(t)) = 0 (i, j ∈ Im).

2.3. Key lemmas

In this subsection, some key lemmas are given to be used to
prove our main results.
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Lemma 1 ([19]). Let q ≥ 1 be an odd integer or a ratio of odd
integers. Then, the following inequality holds:

|a − b|q ≤ 2q−1
|aq − bq|, ∀a ∈ R, b ∈ R.

Lemma 2 ([19]). Suppose n,m ∈ R>0 and a ≥ 0, b ≥ 0 and π ≥ 0
are continuous functions. Then, for any constant c > 0

anbmπ ≤ c · an+m
+

m
n + m


n

c(n + m)

n/m
bn+mπ (n+m)/m.

Lemma 3 ([19]). Let the real number r ∈ (0, 1) be a ratio of odd
integers. Then, the following inequality holds for any real numbers
0 < l < 1 and t

t r + (1 − t)r + l2t1+r
≥ (2r

− 1)l1−r .

Consider the autonomous system

ẋ = f (x), (3)

where f : D → Rn is a continuous function with D ⊂ Rn.
A vector field f (x) = (f1(x), f2(x), . . . , fn(x)) is homogenous of

degree σ > 0 with dilation (r1, r2, . . . , rn), ri > 0(i ∈ In), if

fi(εr1x1, εr2x2, . . . , εrnxn) = εσ+ri fi(x), i ∈ In, ε > 0.

Lemma 4 ([27]). Suppose that the system (3) is homogeneous of
degreeσ with dilation (r1, r2, . . . , rn), function f (x) is continuous and
x = 0 is its asymptotically stable equilibrium. If homogeneity degree
σ < 0, the equilibrium of the system (3) is finite-time stable. �

Remark 1. Similar to the analysis of Ref. [17], it is easy to see
that the heterogeneous multi-agent system (1)–(2) can achieve
consensus in finite time, if the system (1)–(2) with (x1, . . . , xn,
v1, . . . , vm) is homogeneous of degree σ < 0 with dilation
(r1, . . . , r1  

n

, r2, . . . , r2  
m

) and can achieve consensus asymptotically.

3. Finite-time consensus protocol with velocity information

In this section, we first propose the protocol with velocity
information for the heterogeneous multi-agent system (1)–(2) as
follows:

ui =


k1


kα1
2


n

j=1

aij(xj − xi)


− v

α1
i

 2
α1

−1

, i ∈ Im,

k2


n

j=1

aij(xj − xi)

 1
α1

, i ∈ In/Im,

(4)

where A = [aij]n×n is the aforementioned weighted adjacency
matrix associated with the graph G , 1 < α1 < 2 is a ratio of odd
integers, k2 > (D+nA)

(1+α1)w
+

21−1/α1α1
1+α1

, k1 > (2 − 1/α1)21−1/α1kα1
2

2k2Dα1+21−1/α1 (D+Dα1+dα1+ma+k2W )

1+α1


are the feedback gains, A =

maxi,j∈In{aij}, a = maxi,j∈Im{aij}, D = maxi∈In{dii}, d =

maxi∈Im{dii},W = maxi∈Im{ωi} and w = mini∈Im{ωi}. Then,
we show that the heterogeneous multi-agent system (1)–(2) with
protocol (4) reaches consensus in finite time under two classes of
directed networks.

Theorem 1. Suppose the graph G (A ) is strongly connected and
satisfies the detailed balance condition. Then the heterogeneous
multi-agent system (1)–(2) reaches consensus in finite time with
protocol (4).

Proof. The graph G (A ) is strongly connected and satisfies the
detailed balance condition, i.e., there exists a vector ω = [ω1, ω2,

. . . , ωn]
T

∈ Rn
>0 such that ωiaij = ωjaji for all i, j ∈ In. Let

yi =
n

j=1 aij(xj − xi), i ∈ In. Take a Lyapunov function as

V1(t) = V0(t) +

m
i=1

1

(2 − 1/α1)21−1/α1kα1+1
2

×

 vi

v∗
i

(sα1 − v
∗α1
i )

2− 1
α1 ds,

where

V0(t) =

n
i=1

n
j=1

ωiaij
(xj − xi)2

4

and v∗

i = k2y
1/α1
i (i ∈ Im),

 vi
v∗
i
(sα1 − v

∗α1
i )

2− 1
α1 ds are positive

definite and proper. Thus, V1(t) is positive definite with respect to
xi(t) − xj(t) (∀i ≠ j, i, j ∈ In) and vi(t) (i ∈ Im). For the sake of
simplicity, let ξi = v

α1
i − v

∗α1
i (i ∈ Im) and α2 = 1 + 1/α1. Due to

ωiaij = ωjaji for all i, j ∈ In, we have

V̇0(t) =

n
i=1

n
j=1

ωiaij
(xj − xi)(ẋj − ẋi)

2

= −

n
i=1

n
j=1

ωiaij(xj − xi)ẋi = −

n
i=1

ωiẋiyi

= −k2
n

i=1

ωiy
α2
i −

m
i=1

ωiyi(vi − v∗

i )

≤ −k2
n

i=1

ωiy
α2
i +

m
i=1

ωi|yi| |vi − v∗

i |.

By Lemmas 1 and 2, we have

V̇0(t) ≤ −k2
n

i=1

ωiy
α2
i +

m
i=1

ωi21−1/α1 |yi| |v
α1
i − v

∗α1
i |

1/α1

≤ −k2
n

i=1

ωiy
α2
i

+

m
i=1

ωi21−1/α1


α1|yi|α2

1 + α1
+

|ξi|
α2

1 + α1


. (5)

Due to the fact that 1 < α1 < 2 is a ratio of odd integers, 2
α1

− 1 is
also a ratio of odd integers. Thus, it can be shown that

d
dt

 vi

v∗
i

(sα1 − v
∗α1
i )

2− 1
α1 ds

= (v
α1
i − v

∗α1
i )

2− 1
α1

dvi

dt

−


2 −

1
α1


dv∗α1

i

dt

 vi

v∗
i

(sα1 − v
∗α1
i )

1− 1
α1 ds

≤ ξ
2−1/α1
i (−k1ξ

2/α1−1
i ) − (2 − 1/α1)k

α1
2

n
j=1

aij

× (ẋj − ẋi)
 vi

v∗
i

(sα1 − v
∗α1
i )

1− 1
α1 ds. (6)
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Note that by Lemma 1, we have

n
j=1

aij(ẋj − ẋi) ≤

 n
j=1

aij(ẋj − ẋi)


≤

m
j=1

aij
ẋj − ẋi

+ n
j=m+1

aij
ẋj − ẋi


≤ dii |vi| +

m
j=1

aij
vj
+ n

j=m+1

k2aij
yj1/α1

≤ dii
vi − v∗

i

+ v∗

i

+

m
j=1

aij

×
vj − v∗

j

+ v∗

j

+

n
j=m+1

k2aij
yj1/α1

≤ dii

21−1/α1 |ξi|

1/α1 + k2 |yi|1/α1

+ 21−1/α1

×

m
j=1

aij
ξj1/α1

+

n
j=1

k2aij
yj1/α1

and
 vi
v∗
i
(sα1 − v

∗α1
i )

1− 1
α1 ds ≤

 vi
v∗
i
(sα1 − v

∗α1
i )

1− 1
α1 ds

 ≤ |vi −

v∗

i | |ξi|
1−1/α1 ≤ 21−1/α1 |ξi| for all i ∈ Im. Using Lemma 2, we

have |ξi| |yi|1/α1 ≤
|yi|α2
1+α1

+
α1|ξi|

α2

1+α1
, |ξi| |ξj|

1/α1 ≤
|ξj|

α2

1+α1
+

α1|ξi|
α2

1+α1

and |ξi| |yj|1/α1 ≤
|yj|α2
1+α1

+
α1|ξi|

α2

1+α1
. Substituting aforementioned

inequalities into (6) yields

d
dt

 vi

v∗
i

(sα1 − v
∗α1
i )

2− 1
α1 ds

≤ −k1ξ
α2
i + (2 − 1/α1)k

α1
2

 n
j=1

aij(ẋj − ẋi)


×


 vi

v∗
i

(sα1 − v
∗α1
i )

1− 1
α1 ds


≤ −k1ξ

α2
i + k3


21−1/α1dii |ξi|α2 + diik2|ξi| |yi|1/α1

+ 21−1/α1
m
j=1

aij|ξi|
ξj1/α1

+

n
j=1

k2aij|ξi|
yj1/α1


≤ −k1ξ

α2
i + k3k4|yi|α2 + k3k5|ξi|α2 (7)

where k3 = (2 − 1/α1)21−1/α1kα1
2 , k4 =

k2(D+nA)

1+α1
and k5 =

21−1/α1D +
2k2Dα1
1+α1

+
21−1/α1 dα1

1+α1
+

21−1/α1ma
1+α1

. Because 1 < α1 < 2 is
a ratio of odd integers, it is not difficult to show that ξ

α2
i = |ξi|

α2

and yα2
i = |yi|α2 .

Combining (5) with (7), we have

V̇1(t) ≤ −k2
n

i=1

ωiy
α2
i +

m
i=1

ωi21−1/α1


α1|yi|α2

1 + α1
+

|ξi|
α2

1 + α1


+

m
i=1

1
k2k3


−k1ξ

α2
i + k3k4|yi|α2 + k3k5|ξi|α2


≤ −

m
i=1


k2ωi −

(D + nA)

1 + α1
−

21−1/α1ωiα1

1 + α1


|yi|α2

−

n
i=m+1

k2ωi |yi|α2 −

m
i=1


k1
k2k3

−
k5
k2

−
21−1/α1ωi

1 + α1


|ξi|

α2 .

Due to k2 > (D+nA)

(1+α1)w
+

21−1/α1α1
1+α1

and k1 > (2 − 1/α1)21−1/α1kα1
2

2k2Dα1+21−1/α1 (D+Dα1+dα1+ma+k2W )

1+α1


, we have k2ωi −

(D+nA)

1+α1
−

21−1/α1ωiα1
1+α1

> 0, k2ωi > 0 and k1
k2k3

−
k5
k2

−
21−1/α1ωi

1+α1
> 0 for all

i ∈ In, which implies that V̇1(t) < 0. Thus,we have limt→∞(xi(t)−
xj(t)) = 0 (i, j ∈ In) and limt→∞(vi(t) − vj(t)) = 0 (i, j ∈ Im).

Next, note that the system (1)–(2) under protocol (4) is a
homogeneous system of degree σ = 1 − α1 < 0 with dilation
(α1, . . . , α1  

n

, 1, . . . , 1  
m

). Therefore, the heterogeneous multi-agent

system (1)–(2) reaches consensus in finite time with protocol (4)
by Lemma 4. �

Remark 2. In fact, we have V̇1(t) ≤ −K1
n

i=1 |yi|α2 −

K1
m

i=1 |ξi|
α2 , whereK1 = maxi∈In


k2ωi −

(D+nA)

1+α1
−

21−1/α1ωiα1
1+α1

,

k2ωi,
k1

k2k3
−

k5
k2

−
21−1/α1ωi

1+α1


> 0. Similar to the analysis of

Ref. [18], we get V α2/2
1 (t) ≤ K

α2/2
2

n
i=1 |yi|α2 +

m
i=1 |ξi|

α2

,

where K2 = max


W2

2λ2
, 1

(2−1/α1)k
α1+1
2


, λ2 is the second small-

est eigenvalue of matrix diag{ω1, ω2, . . . , ωn} · L . Thus, V̇1(t) +
K1

2K
α2/2
2

V α2/2
1 (t) ≤ 0. From Theorem 4.2 in Ref. [11], the in-

equality leads to the settling-time estimation given by T ≤

2K
α2/2
2

K1(1−α2/2)
V 1−α2/2
1 (0).

Remark 3. Note that the heterogeneous multi-agent system
(1)–(2) is a second-order multi-agent system when m = n,
and the second-order multi-agent system (1) with protocol (4)
has been studied under an undirected connected graph in [18].
Moreover, the system (1)–(2) is a first-order multi-agent system

when m = 0. Owing to sig(x)
1
α1 = (x)

1
α1 when 1 < α1 < 2

is a ratio of odd integers, the first-order multi-agent system (2)
with protocol (4) is a special case of themulti-agent system in [13].
Therefore, the heterogeneous multi-agent system (1)–(2) with
protocol (4) presents a unified viewpoint to solve the finite-time
consensus problem for both the first-ordermulti-agent system and
the second-order multi-agent system.

Theorem 2. Suppose that the heterogeneous multi-agent system
(1)–(2) has a leader with first-order dynamics (labeled as n) and
n − 1 followers (labeled as 1, . . . , n − 1), and the network among
the followers is strongly connected and satisfies the detailed balance
condition. Then the heterogeneousmulti-agent system (1)–(2) reaches
consensus in finite time with protocol (4).

Proof. The network among the followers is strongly connected
and satisfies the detailed balance condition, i.e., there exists a
vector ω = [ω1, ω2, . . . , ωn−1]

T
∈ Rn−1

>0 such that ωiaij = ωjaji
for all i, j ∈ In−1. We rewrite the protocol (4) as follows:

ui(t) =



k1


kα1
2


n−1
j=1

aij(xj − xi) + ain(xn − xi)


− v

α1
i

 2
α1

−1

,

i ∈ Im,

k2


n−1
j=1

aij(xj − xi) + ain(xn − xi)

 1
α1

,

i ∈ In−1/Im,
0, i = n.

(8)
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Let x̄i(t) = xi(t) − xn(t), i ∈ In−1. Without loss of generality,
we assume (n − m) > 1. Then, we have



˙̄xi(t) = vi(t), i ∈ Im,

vi(t) = k1


kα1
2


n−1
j=1

aij(x̄j − x̄i) − ainx̄i


− v

α1
i

 2
α1

−1

,

i ∈ Im,

˙̄xi(t) = k2


n−1
j=1

aij(x̄j − x̄i) − ainx̄i

 1
α1

, i ∈ In−1/Im.

(9)

Let ȳi =
n−1

j=1 aij(x̄j − x̄i) − ainx̄i, i ∈ In−1. Take a Lyapunov
function for (9) as

V3(t) = V2(t) +

m
i=1

1

(2 − 1/α1)21−1/α1kα1+1
2

 vi

v̄∗
i

× (sα1 − v̄
∗α1
i )

2− 1
α1 ds,

where

V2(t) =

n−1
i=1

n−1
j=1

ωiaij
(x̄j − x̄i)2

4
+

n−1
i=1

ωiain
x̄2i
2

and v̄∗

i = k2ȳ
1/α1
i (i ∈ Im),

 vi
v̄∗
i
(sα1 − v̄

∗α1
i )

2− 1
α1 ds are positive

definite and proper.
Similar to the analysis of Theorem 1, we obtain V̇3(t) < 0.

Therefore, the heterogeneous multi-agent system (1)–(2) reaches
consensus in finite time with protocol (4) by Lemma 4. �

Remark 4. If the leader is a second-order dynamics agent, i.e., the
leader’s dynamics is given as follows:
ẋd(t) = vd(t),
v̇d(t) = ud(t).

Then, the protocol (4) is replaced by

ui =



k1


kα1
2


n

j=1

aij(xj − xi)


−

vi − vdα1

 2
α1

−1

+ ud,

i ∈ Im,

k2


n

j=1

aij(xj − xi)

 1
α1

+ vd, i ∈ In/Im.

(10)

Let x̄i(t) = xi(t)− xd(t) (i ∈ In) and v̄i(t) = vi(t)−vd(t) (i ∈ Im).
The heterogeneous multi-agent system with protocol (10) can be
rewritten as follows:

˙̄xi(t) = v̄i(t), i ∈ Im,

v̄i(t) = k1


kα1
2


n−1
j=1

aij(x̄j − x̄i)


− v̄

α1
i

 2
α1

−1

, i ∈ Im,

˙̄xi(t) = k2


n−1
j=1

aij(x̄j − x̄i)

 1
α1

, i ∈ In−1/Im.

(11)

From the results of Theorem 1, we know that the heterogeneous
multi-agent system with protocol (10) reaches consensus in finite
time.

4. Finite-time consensusprotocolwithout velocity information

In this section, first, we propose the protocol without velocity
information for the heterogeneous multi-agent system (1)–(2) as
follows:

ui =


k1


kα1
2


n

j=1

aij(xj − xi)


+ ˙̂v

α1
i

 2
α1

−1

, i ∈ Im,

k2


n

j=1

aij(xj − xi)

 1
α1

, i ∈ In/Im,

(12)

where

˙̂vi = −

k6

xi + v̂i

 1
α1 , i ∈ Im, (13)

and A = [aij]n×n is the weighted adjacency matrix associated
with the graph G , 1 < α1 < 2 is a ratio of odd integers, k2 >
1

1−c


(D+nA)

(1+α1)w
+

21−1/α1α1
1+α1

+
1
w


, k1 > 1

1−2c (2 − 1/α1)21−1/α1(kα1
2

·
2k2Dα1+21−1/α1 (D+Dα1+dα1+ma+k2W )

1+α1
+

21−1/α1
α2

+ 22α1−1/α1) are the
feedback gains, 0 < c < 1

2 , A = maxi,j∈In{aij}, a =

maxi,j∈Im{aij}, D = maxi∈In{dii}, d = maxi∈Im{dii},W =

maxi∈Im{ωi} and w = mini∈Im{ωi}, k6 is a large enough constant,
v̂i(0) = v̂i0 for i ∈ Im. Then, we show that the heterogeneous
multi-agent system (1)–(2) with protocol (12)–(13) reaches
consensus in finite time under two classes of directed networks.

Theorem 3. Suppose the graph G (A ) is strongly connected and
satisfies the detailed balance condition. Then the heterogeneous
multi-agent system (1)–(2) reaches consensus in finite time with
protocol (12)–(13).

Proof. The graph G (A ) is strongly connected and satisfies the
detailed balance condition, i.e., there exists a vector ω = [ω1, ω2,
. . . , ωn]

T
∈ Rn

>0 such that ωiaij = ωjaji for all i, j ∈ In. Let
yi =

n
j=1 aij(xj − xi) (i ∈ In), ξi = v

α1
i − v

∗α1
i (i ∈ Im) and

α2 = 1 + 1/α1. Take a Lyapunov function as

V5(t) = V1(t) + V4(t),

where V4(t) =
m

i=1
1

k
α1+1
2

e2i
2 and ei = v

α1
i + ˙̂v

α1
i . V5(t) is positive

definite with respect to xi(t) − xj(t) (∀i ≠ j, i, j ∈ In), vi(t) (i ∈

Im) and ei(t) (i ∈ Im).
Similar to the analysis and using the identical symbol of

Theorem 1, we have

V̇0(t) ≤ −k2
n

i=1

ωiy
α2
i

+

m
i=1

ωi21−1/α1


α1|yi|α2

1 + α1
+

|ξi|
α2

1 + α1


, (14)

and

d
dt

 vi

v∗
i

(sα1 − v
∗α1
i )

2− 1
α1 ds



≤ (ξi)
2− 1

α1
dvi

dt
+ k3k4|yi|α2 + k3k5|ξi|α2 . (15)

Next, we use Lemmas 1 and 2 to estimate (ξi)
2− 1

α1 dvi
dt . For i ∈ Im,

we have

(ξi)
2− 1

α1
dvi

dt
= (ξi)

2− 1
α1 ui

= k1(ξi)
2− 1

α1


kα1
2


n

j=1

aij(xj − xi)


+ ˙̂v

α1
i

 2
α1

−1
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= k1(ξi)
2− 1

α1 (ei − ξi)
2
α1

−1

= −k1ξ
α2
i + k1(ξi)

2− 1
α1


(ξi)

2
α1

−1
+ (ei − ξi)

2
α1

−1


≤ −k1ξ
α2
i + k1|ξi|

2− 1
α1 |ei|

2
α1

−122− 2
α1

≤ −k1ξ
α2
i + ck1|ξi|α2 + k7|ei|α2

= −(1 − c)k1|ξi|α2 + k7|ei|α2 , (16)

where 0 < c < 1
2 and k7 = k1

2−α1
α1+1


2α1−1
c(α1+1)

(2α1−1)/(2−α1)

2(2α2
1−2)/(2α1−α2

1 ).
On the other hand, the time derivative of e2i

2 is

d
dt


e2i
2


= eiėi = ei


α1v

α1−1
i

dvi

dt
+

d ˙̂v
α1
i

dt


.

Applying Lemmas 1 and 2, we have

ei


v

α1−1
i

dvi

dt


= ei


v

α1−1
i ui


≤ |ei|


|vi|

α1−112−α1 |ui|


≤ |ei|

|vi| + k8|ui|

1/(2−α1)


≤ |ei|

21−1/α1 |ξi|

1/α1 + k2 |yi|1/α1 + k1k8 |ei − ξi|
1/α1


≤ 21−1/α1 |ei| |ξi|1/α1 + k2|ei| |yi|1/α1

+ k1k8|ei|α2 + k1k8|ei| |ξi|1/α1

≤
ckα1+2

2 ωi

α1
|yi|α2 +


21−1/α1

α1α2
+

ck1
α1 (2 − 1/α1) 21−1/α1


× |ξi|

α2 + k9 |ei|α2 , (17)

where k8 = (2 − α1)(α1 − 1)(α1−1)/(2−α1), k9 = k1k8 +
21−1/α1

α2
+

k2 1
α2


1

ck
α1+1
2 ωiα2

1/α1

+ k1k
α2
8

1
α2


(2−1/α1)21−1/α1

cα2

1/α1
.

Then, we use Lemma 3

t =


v
α1
i
ei


, r = 1/α1, l = k

−1
2

6


to

estimate ei
d ˙̂v

α1
i
dt . For i ∈ Im,

ei
d ˙̂v

α1
i

dt
= −k6ei

d

xi + v̂i


dt

= −k6ei

vi +


ei − v

α1
i

1/α1


≤ v
α1+1
i −


21/α1 − 1


k1−(α1−1)/2α1
6 eα2

i .

Due to v
α1+1
i ≤

vi − v∗

i

+ v∗

i

α1+1
≤ 22α1−

1
α1 |ξi|

α2 +

kα1+1
2 |yi|α2 , we get

ei
d ˙̂v

α1
i

dt
≤ 22α1−

1
α1 |ξi|

α2 + kα1+1
2 |yi|α2

−

21/α1 − 1


k1−(α1−1)/2α1
6 |ei|α2 . (18)

Thus, differentiating V5(t) and substituting (14)–(18) for it,

V̇5(t) = V̇1(t) + V̇4(t)

=
dV0(t)
dt

+

m
i=1

1
k2k3

d
dt

 vi

v∗
i

(sα1 − v
∗α1
i )

2− 1
α1 ds



+

m
i=1

1

kα1+1
2

d
dt


e2i
2


≤ −

m
i=1


(1 − c)k2ωi −

(D + nA)

1 + α1
−

21−1/α1ωiα1

1 + α1
− 1


× |yi|α2 −

n
i=m+1

k2ωi |yi|α2

Fig. 1. A strongly connected graph G (A ).

−

m
i=1


(1 − 2c)k1

k2k3
−

k5
k2

−
21−1/α1ωi

1 + α1

−
21−1/α1

α2k
α1+1
2

−
22α1−

1
α1

kα1+1
2


|ξi|

α2

−

m
i=1


21/α1 − 1


k1−(α1−1)/2α1
6 − k9α1

kα1+1
2

−
k7
k2k3


|ei|α2 .

By the definition of k1, k2, k6 and an easy calculation, we have
V̇5(t) < 0. Thus, we have limt→∞(xi(t) − xj(t)) = 0 (i, j ∈ In) and
limt→∞(vi(t) − vj(t)) = 0 (i, j ∈ Im).

Note that the system (1)–(2) under protocol (12)–(13) with
(x1, . . . , xn, v̂1, . . . , v̂m, v1, . . . , vm) is a homogeneous system of
degree σ = 1 − α1 < 0 with dilation (α1, . . . , α1  

n

, α1, . . . , α1  
m

,

1, . . . , 1  
m

). Therefore, the heterogeneous multi-agent system

(1)–(2) reaches consensus in finite time with protocol (12)–(13)
by Lemma 4. �

Similar to the analysis of Theorems 2 and 3, we can get the
following result.

Theorem 4. Suppose that the heterogeneous multi-agent system
(1)–(2) has a leader with first-order dynamics (labeled as n) and
n − 1 followers (labeled as 1, . . . , n − 1), and the network among
the followers is strongly connected and satisfies the detailed balance
condition. Then the heterogeneousmulti-agent system (1)–(2) reaches
consensus in finite time with protocol (12)–(13). �

5. Simulations

In this section, we begin with a numerical simulation in
Example 1 to illustrate the effectiveness of the theoretical result in
Section 3. In Example 2,weprovide an illustration of the theoretical
result in Section 4.

Fig. 1 shows a strongly connected graph with weight which
satisfies the detailed balance condition ω = 14. Suppose that the
vertices 1 and 2 denote the second-order integrator agents and the
vertices 3 and 4 denote the first-order integrator agents. In Fig. 2,
the agent 4 is a leader and the followers are strongly connected
and satisfy the detailed balance condition. Let x(0) = [8, 5, 1, 3]
and v(0) = [1, −5].

Example 1. Assume that α1 =
9
7 , k2 = 2 and k1 = 30. It is easy

to calculate that k1 and k2 satisfy the conditions in Section 3. Using
consensus protocol (4), the state trajectories of all the agents reach
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Fig. 2. A leader-following network G (A ).

Fig. 3. Simulation results with the network depicted in Fig. 1 and consensus
protocol (4).

Fig. 4. Simulation results with the network depicted in Fig. 2 and consensus
protocol (4).

consensus as shown in Fig. 3 with the network depicted in Fig. 1,
which is consistent with the result of Theorem 1. In Fig. 4, it is
the state trajectories of all the agents with the network depicted
in Fig. 2, which is consistent with the result of Theorem 2.

Example 2. Assume that α1 =
9
7 , v̂i0 = 0 (i = 1, 2), k2 =

4, k1 = 250 and k3 = 5000 which satisfy the conditions in
Section 4. Using consensus protocol (12)–(13), the heterogeneous
multi-agent system (1)–(2) achieves consensus as shown in Fig. 5

Fig. 5. Simulation results with the network depicted in Fig. 1 and consensus
protocol (12)–(13).

Fig. 6. Simulation results with the network depicted in Fig. 2 and consensus
protocol (12)–(13).

with the network depicted in Fig. 1, which accords with the result
established in Theorem 3. In Fig. 6, the heterogeneous multi-agent
system (1)–(2) achieves consensus with the network depicted in
Fig. 2, which accords with the result established in Theorem 4.

6. Conclusions

In this paper, the finite-time consensus problem of the
heterogeneous multi-agent system with agents modeled by first-
order and second-order integrators was considered. Two kinds
of consensus protocols with and without velocity measurements
were proposed. Based on the graph theory, the Lyapunov theory
and the homogeneous domination method, we proved that the
protocols can solve the finite-time consensus under two classes
of special directed networks, respectively. Future work may focus
on the more complex consensus problem of heterogeneous multi-
agent systems, for example, heterogeneous multi-agent systems
with switching topologies/heterogeneous networks etc.
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