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This article considers the consensus problem of heterogeneous multi-agent system composed of first-order and
second-order agents, in which the second-order integrator agents cannot obtain the velocity (second state)
measurements for feedback. Two different consensus protocols are proposed. First, we propose a consensus
protocol and discuss the consensus problem of heterogeneous multi-agent system. By applying the graph theory
and the Lyapunov direct method, some sufficient conditions for consensus are established when the
communication topologies are undirected connected graphs and leader-following networks. Second, due to
actuator saturation, we propose another consensus protocol with input constraint and obtain the consensus
criterions for heterogeneous multi-agent system. Finally, some examples are presented to illustrate the
effectiveness of the obtained criterions.
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1. Introduction

Recently, consensus problem of multi-agent systems
has attracted researchers from various disciplines of
science and engineering due to technological advances
in communication and computer science, and the
important practical applications of multi-agent systems
in many areas, such as the formation control of robotic
systems, the cooperative control of unmanned aerial
vehicles, the target tracking of sensor networks and the
congestion control of communication networks (Ren
and Beard 2008; Ren and Cao 2011). Consensus, which
is fundamental of distributed coordination, means that
a group of agents reach an agreement on a common
value by negotiating with their neighbours asymptoti-
cally or in a finite time. Roughly speaking, the main
objective of consensus problem is to design an
appropriate control input (consensus protocol) to
make a group of agents converge to a consistent
quantity (consensus state) of interest. In the past
decade, consensus problem of multi-agent systems has
been studied in detail by virtue of the matrix theory,
the graph theory, the frequency-domain analysis
method, the Lyapunov direct method, etc. The
consensus criterions have been obtained for first-
order, second-order or high-order multi-agent systems
(Jabdabaie, Lin, and Morse 2003; Olfati-Saber and
Murray 2004; Xie and Wang 2007; Jiang and Wang
2010 and references therein).

Consensus problem of first-order multi-agent

systems is primarily proposed and investigated.

Jabdabaie et al. (2003) explained the consensus

behaviour reported in Vicsek et al. (1995), and

analysed the alignment of a network of agents.

Olfati-Saber and Murray (2004) discussed consensus

problem for networks of dynamic agents with switch-

ing topologies and time delays in a continuous-time

model by defining a disagreement function, and

obtained some useful results for solving the average-

consensus problem. Ren and Beard (2005) extended

the results of Jabdabaie et al. (2003) and Olfati-Saber

and Murray (2004) and presented some more relaxable

conditions for consensus of states under dynamically

changing interaction topologies. With the development

of issue, a lot of new consensus results were given out

with different models and protocols by first-order

dynamics, for example, consensus problem with non-

linear protocol (Hui and Haddad 2008), consensus

problem with time delays (Xiao and Wang 2006; Sun,

Wang, and Xie 2008), asynchronous consensus pro-

blem (Xiao and Wang 2008), finite-time consensus

problem (Jiang and Wang 2009; Wang and Xiao 2010;

Zheng, Chen, and Wang 2011b), group consensus (Yu

and Wang 2010), etc. For consensus problem of

second-order multi-agent systems, Xie and Wang

(2007) and Ren and Atkins (2007) gave sufficient

conditions for consensus problem with fixed and
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switching topologies; Gao, Wang, Xie, and Wu 2009a)

investigated the consensus problem based on sampled-

data control. Jiang and Wang (2010) studied the

consensus of high-order multi-agent systems with

fixed and switching topologies.
In the study of consensus problem, most consensus

protocols of second-order multi-agent systems rely on

the availability of the full state for feedback. However,

some information is unmeasurable due to technology

limitations or environment disturbances. For example,

the agents cannot obtain any velocity information in

some cases. Hence, it is realistic and significant to

consider the consensus problem of second-order

multi-agent systems without velocity measurements.

However, there are only a few works on this problem

(Ren 2008; Gao et al. 2009b; Abdessameud and Tayebi

2010). In Ren (2008), the consensus problem of second-

order multi-agent systems was considered in undirected

graphs with fixed topology. Gao et al. (2009b)

extended the results in Ren (2008) to a time-varying

topology with and without time delays. In

Abdessameud and Tayebi (2010), the authors proposed

the consensus protocols for second-order multi-agent

systems without velocity measurements and in the

presence of input saturation constraints.
All the aforementioned results were concerned with

the consensus of homogeneous multi-agent systems,

i.e. all the agents have the same dynamics behaviours.

However, the dynamics of the agents coupled with

each others are different because of various restrictions

or the common goals with mixed agents in the practical

systems. In Zheng, Zhu, and Wang (2011a), we

considered the consensus problem of heterogeneous

multi-agent system composed of first-order and

second-order agents, for which the consensus protocols

have position and velocity information. But, the

velocity information is not always easy to measure

owing to technology limitations. Thus, we further

consider the consensus problem of heterogeneous

multi-agent system without velocity measurements in

this article. The main contribution of this article is to

give some consensus protocols to resolve the consensus

problem for the heterogeneous multi-agent system in

which the second-order integrator agents cannot

obtain the velocity information. By using the graph

theory and Lyapunov theory, we discuss the consensus

problem of heterogeneous multi-agent system

without velocity measurements under the undirected

connected graphs and leader-following networks,

respectively.
The rest of this article is organised as follows. In

Section 2, we present some concepts in graph theory

and formulate the model to be studied. In Sections 3,

we give the main results. Numerical simulations to

show the validity of theoretical results are presented in
Section 4. Finally, this article is concluded in Section 5.

Notation: Throughout this article, we let R, R40 and
R�0 be the set of real number, positive real number and
nonnegative real number, R

n be the n-dimensional real
vector space. Im¼ {1, 2, . . . ,m}. For a given vector or
matrix X, XTdenotes its transpose. 1n is a vector with
elements being all ones. Matrix A¼ [aij] is said to be
non-negative (positive) if all entries aij are non-negative
(positive), denoted by A� 0 (A4 0).

2. Preliminaries

2.1 Graph theory

In this section, some basic concepts and results about
algebraic graph theory are introduced. For more
details about algebraic graph theory, One can refer to
Godsil and Royal (2001).

Let G(A)¼ (V,E,A) be a weighted undirected
(directed) graph of order n with a vertex set V¼ {s1,
s2, . . . , sn}, an edge set E¼ {eij¼ (si, sj)}�V�V and a
non-negative symmetric matrix A¼ [aij]. (sj, si)2E,
aij4 0, agent i and j can communicate with each
other, namely they are adjacent. Moreover, we assume
aii¼ 0. A is called the weighted matrix and aij is the
weight of eij¼ (si, sj). The set of neighbours of si is
denoted by Ni¼ {sj: eji¼ (sj, si)2E}. A path that
connects si and sj in the graph G is a sequence of
distinct vertices si0 , si1 , si2 , . . . , sim , where si0 ¼ si, sim ¼ sj
and (sr, srþ1)2E, 0� r�m� 1. An undirected
(directed) graph is said to be connected (strong
connected) if there exists a path between any two
distinct vertices of the graph. It is easy to see that
adjacency matrix A is symmetric if G is an undirected
graph. The directed graph G is said to satisfy the
detailed balance condition if there exist some scalers
!i4 0 (i¼ 1, 2, . . . , n) such that !iaij¼!jaji for all
i, j2In (Chu, Wang, Chen, and Mu 2006). In the
multi-agent system, we refer to the agent as the leader if
it only sends the information to other agents but cannot
receive any information from other agents, i.e.
an1¼ an2¼ �� � ¼ ann¼ 0 and �a¼ [a1n,
a2n, . . . , a(n�1)n]

T
� 0, �a 6¼ 0 if the agent n is the leader.

2.2 Heterogeneous multi-agent systems

In this section, the heterogeneous multi-agent system is
proposed first. Then, the concept of consensus is given
for the heterogeneous multi-agent system.

Suppose that the heterogeneous multi-agent system
consists of first-order and second-order integrator
agents. The number of agents is n, labelled 1 through
n, where the number of second-order integrator agents
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is m (m5 n). Each agent dynamics is given as follows:

_xiðtÞ ¼ viðtÞ, i 2 Im,

_viðtÞ ¼ uiðtÞ, i 2 Im,

_xiðtÞ ¼ uiðtÞ, i 2 fmþ 1, . . . , ng,

8><
>: ð1Þ

where xi2R, vi2R and ui2R are the position, velocity
and control input, respectively, of agent i. The initial
conditions are xi(0)¼ xi0, vi(0)¼ vi0. Let x(0)¼ [x10,
x20, . . . , xn0], v(0)¼ [v10, v20, . . . , vm0].

Definition 2.1: The heterogeneous multi-agent
system (1) is said to reach consensus if for any initial
conditions, we have

lim
t!1
jxiðtÞ � xjðtÞj ¼ 0, for i, j 2 In, and

lim
t!1
jviðtÞ � vjðtÞj ¼ 0, for i, j 2 Im:

Each agent is regraded as a node in a graph G(A).
Each edge (si, sj)2E corresponds to an available
information link from agent i to agent j. Moreover,
each agent updates its current state based on the
information received from its neighbours. Different
from the previous consensus protocols for the hetero-
geneous multi-agent system (1) in Zheng et al. (2011a),
we suppose that the agent can only receive the relative
position information from its neighbours.

3. Main results

3.1 Consensus protocol I

In this section, we first give a consensus protocol
(control input) without velocity measurements for the
heterogeneous multi-agent system (1) based on the
auxiliary system approach of second-order integrator
agent. Then, we get the consensus criteria for the
heterogeneous multi-agent system (1) when commu-
nication topology is undirected and connected by using
the graph theory, the Lyapunov direct method and
LaSalle’s invariance principle. Finally, we get the
consensus criteria for the heterogeneous multi-agent
system (1) when the agents have a leader and the
communication topology of followers is undirected
and connected (leader-following network for short).

We present the protocol without velocity measure-
ments for the heterogeneous multi-agent system (1) as
follows:

uiðtÞ ¼

Xn
j¼1

aijðxj � xiÞ þ k1 _yiðtÞ, i 2 Im,

k2
Xn
j¼1

aijðxj � xiÞ, i 2 fmþ 1, . . . , ng,

8>>>><
>>>>:

ð2Þ

where A¼ [aij]n�n is the weighted adjacency matrix, k1
and k2 are strictly positive feedback gains. yi2R is

given by

_yiðtÞ ¼ �k3yiðtÞ þ k4
Xn
j¼1

aijðxj � xiÞ, i 2 Im, ð3Þ

where k34 0, k44 0 and yi(0) can be chosen arbi-

trarily. Let y(0)¼ [ y1(0), y2(0), . . . , ym(0)].

Theorem 3.1: Suppose the communication network

G(A) is undirected and connected, i.e. aij¼ aji for all

i, j2In. Then the heterogeneous multi-agent system (1)

can achieve the consensus with protocol (2)–(3).

Proof: The heterogeneous multi-agent system (1)

with protocol (2)–(3) can be written as follows:

_xiðtÞ ¼ viðtÞ, i 2 Im,

_viðtÞ ¼
Xn
j¼1

aijðxj � xiÞ þ k1 _yiðtÞ, i 2 Im,

_yiðtÞ ¼ �k3yiþ k4
Xn
j¼1

aijðxj � xiÞ, i 2 Im,

_xiðtÞ ¼ k2
Xn
j¼1

aijðxj� xiÞ, i 2 fmþ 1, . . . ,ng:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð4Þ

Take a Lyapunov function for (4) as

V1ðtÞ ¼
Xn
i¼1

Xn
j¼1

aij
ðxiðtÞ � xjðtÞÞ

2

2
þ
Xm
i¼1

ðviðtÞ � k1yiðtÞÞ
2

þ
Xm
i¼1

k1
k4
ð yiðtÞÞ

2,

which is positive definite with respect to xi(t)� xj(t)

(8i 6¼ j, i, j2In), vi(t) (i2Im) and yi(t) (i2Im).

Differentiating V1(t) gives

_V1ðtÞ ¼
Xn
i¼1

Xn
j¼1

aijðxj � xiÞð _xj � _xiÞ

þ
Xm
i¼1

2ðviðtÞ � k1yiðtÞÞð _viðtÞ � k1 _yiðtÞÞ

þ
Xm
i¼1

2k1
k4

yiðtÞ _yiðtÞ

¼
Xm
i¼1

Xm
j¼1

aijðxj � xiÞðvj � viÞ

þ
Xn

i¼mþ1

Xm
j¼1

aijðxj � xiÞðvj � _xiÞ

þ
Xm
i¼1

Xn
j¼mþ1

aijðxj � xiÞð _xj � viÞ

908 Y. Zheng and L. Wang
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þ
Xn

i¼mþ1

Xn
j¼mþ1

aijðxj � xiÞð _xj � _xiÞ

þ
Xm
i¼1

2ðviðtÞ � k1yiðtÞÞ
Xn
j¼1

aijðxj � xiÞ

þ
Xm
i¼1

2k1
k4

yiðtÞð�k3yi þ k4
Xn
j¼1

aijðxj � xiÞÞ:

As A¼ [aij]n�n is a symmetric matrix, we have

Xm
i¼1

Xm
j¼1

aijðxj�xiÞðvj� viÞ ¼�2
Xm
i¼1

Xm
j¼1

aijðxj�xiÞvi,

Xn
i¼mþ1

Xm
j¼1

aijðxj�xiÞðvj� _xiÞ ¼
Xm
i¼1

Xn
j¼mþ1

aijðxj�xiÞð _xj� viÞ

and

Xn
i¼mþ1

Xn
j¼mþ1

aijðxj � xiÞð _xj � _xiÞ

¼ 2
Xn

i¼mþ1

Xn
j¼mþ1

aijðxj � xiÞ _xj:

Hence,

_V1ðtÞ ¼�2
Xm
i¼1

Xn
j¼1

aijðxj�xiÞviþ 2
Xm
i¼1

Xn
j¼mþ1

aijðxj�xiÞ _xj

þ 2
Xn

i¼mþ1

Xn
j¼mþ1

aijðxj�xiÞ _xjþ
Xm
i¼1

2ðviðtÞ�k1yiðtÞÞ

�
Xn
j¼1

aijðxj�xiÞþ
Xm
i¼1

2k1
k4

yiðtÞ

� �k3yiþk4
Xn
j¼1

aijðxj�xiÞ

 !

¼ 2
Xn
i¼1

Xn
j¼mþ1

aijðxj�xiÞ _xj�
Xm
i¼1

2k1k3
k4

y2i

¼�2
Xn

i¼mþ1

_xi
Xn
j¼1

aijðxj�xiÞ�
Xm
i¼1

2k1k3
k4

y2i

¼�
2

k2

Xn
i¼mþ1

_x2i �
Xm
i¼1

2k1k3
k4

y2i � 0:

Then, we employ LaSalle’s invariance principle.

Denote the invariant set S ¼ fðx1, v1, y1, . . . , xm,

vm, ym, xmþ1, . . . , xnÞj _V1 � 0g. Note that _V1 � 0 implies

that yi¼ 0 (i2Im) and _xi ¼ 0 ði 2 fmþ 1, . . . , ngÞ,

which in turn implies that
Pn

j¼1 aijðxj � xiÞ ¼ 0 for all

i2In. Then we obtain

Xn
i¼1

xi
Xn
j¼1

aijðxj � xiÞ ¼ 0:

Since the undirected graph G(A) is connected, we have

Xn
i¼1

Xn
j¼1

aijðxj � xiÞ
2
¼ 0,

which implies that xi¼xj for all i, j2In. which in turn

implies that vi ¼ _xi ¼ _xj ¼ k2
Pn

k¼1 ajkðxk � xjÞ ¼ 0 for

all i2Im, j2 {mþ 1, . . . , n}. Therefore, we have vi¼

vj¼ 0 for all i, j2Im. It follows from LaSalle’s

invariance principle that

lim
t!1
jxiðtÞ � xjðtÞj ¼ 0, for i, j 2 In, and

lim
t!1
jviðtÞ � vjðtÞj ¼ 0, for i, j 2 Im:

Theorem 3.1 is proved. œ

Remark 1: Note that the heterogeneous multi-agent

system (1) is a second-order multi-agent system when

m¼ n, and the second-order multi-agent system (1)

with protocol (2)–(3) has been studied under undir-

ected connected graph by Ren (2008). Moreover, the

system (1) is a first-order multi-agent system when

m¼ 0 and has been considered by Olfati-Saber and

Murray (2004). Thus, the heterogeneous multi-agent

system (1) with protocol (2)–(3) presents a unified

viewpoint to solve the consensus problem of the work

in Ren (2008) and Olfati-Saber and Murray (2004).

The network studied in Theorem 3.1 is the

undirected connected graph. As an extension, we

consider the leader-following network.

Theorem 3.2: Suppose that the heterogeneous multi-

agent system (1) has a leader and n� 1 followers, and the

network among the followers is undirected and con-

nected. Then the heterogeneous multi-agent system (1)

can achieve the consensus with protocol (2)–(3) if the

leader is a first-order integrator agent.

Proof: Without loss of generality, we assume the

agents 1, 2, . . . , n� 1 are the followers and n is the

leader. Thus, we have �a¼ [aij]1�i,j�n�1¼ �AT, an1¼

an2¼ � � � ¼ ann¼ 0, �a� 0, where �a¼ [a1n,

a2n, . . . , a(n�1)n]
T
6¼ 0. We rewrite the protocol (2) as

follows:

uiðtÞ ¼

Xn�1
j¼1

aijðxj � xiÞ þ ainðxn � xiÞ þ k1 _yiðtÞ,

i 2 Im,

k2
Xn�1
j¼1

aijðxj � xiÞ þ k2ainðxn � xiÞ,

i 2 fmþ 1, . . . , n� 1g,

0,

i ¼ n,

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð5Þ
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where

_yiðtÞ ¼ �k3yiðtÞ þ k4
Xn�1
j¼1

aijðxj � xiÞ þ k4ainðxn � xiÞ,

i 2 Im: ð6Þ

Let zi(t)¼xi(t)� xn(t), i2In�1. Without loss of

generality, we assume (n�m)4 1. Then we have

_ziðtÞ ¼ viðtÞ, i 2 Im,

_viðtÞ ¼
Xn�1
j¼1

aijðzj� ziÞ� ainziþk1 _yiðtÞ, i 2 Im,

_yiðtÞ ¼�k3yiðtÞþk4
Xn�1
j¼1

aijðzj� ziÞ�k4ainzi, i 2 Im

_ziðtÞ ¼ k2
Xn�1
j¼1

aijðzj� ziÞ�k2ainzi,

i 2 fmþ 1, . . . ,n� 1g:

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ð7Þ

Take a Lyapunov function for (7) as

V2ðtÞ ¼
Xn�1
i¼1

Xn�1
j¼1

aij
ðziðtÞ � zjðtÞÞ

2

2
þ
Xn�1
i¼1

ainðziðtÞÞ
2

þ
Xm
i¼1

ðviðtÞ � k1yiðtÞÞ
2
þ
Xm
i¼1

k1
k4
ð yiðtÞÞ

2:

Differentiating V2(t) yields that

_V2ðtÞ ¼
Xn�1
i¼1

Xn�1
j¼1

aijðzj � ziÞð _zj � _ziÞ þ
Xn�1
i¼1

ain2ziðtÞ _ziðtÞ

þ
Xm
i¼1

2ðviðtÞ � k1yiðtÞÞð _viðtÞ � k1 _yiðtÞÞ

þ
Xm
i¼1

2k1
k4

yiðtÞ _yiðtÞ

¼ �
2

k2

Xn�1
i¼mþ1

_z2i �
Xm
i¼1

2k1k3
k4

y2i � 0:

Denote the invariant set S ¼ fðz1, z2, . . . , zn�1, v1,

y1, . . . , vm, ymÞj _V2 � 0g. Note that _V2 � 0 implies that

yi¼ 0 (i2Im) and _zi¼ 0 (i2 {mþ 1, . . . , n� 1}), which

in turn implies that
Pn�1

j¼1 aijðzj � ziÞ � ainzi ¼ 0 for all

i2In�1. Then we obtain

Xn�1
i¼1

zi
Xn�1
j¼1

aijðzj � ziÞ � ainzi

 !
¼ 0:

Since �A¼ [aij]1�i,j�n�1¼ �AT, we have zi(t)¼ 0 for all

i2In�1, i.e. xi(t)¼ xn(t) for all i2In�1. Therefore, we

have vi¼ vj for all i, j2Im. It follows from LaSalle’s
invariance principle that

lim
t!1
jxiðtÞ � xnðtÞj ¼ 0, for i 2 I n, and

lim
t!1
jviðtÞ � vjðtÞj ¼ 0, for i, j 2 Im:

Theorem 3.2 is proved. œ

Remark 2: Suppose that the communication topol-
ogy G(A) is strongly connected and satisfies the
detailed balance condition, i.e. there exists a vector
! ¼ ½!1,!2, . . . ,!n	

T
2 R

n
40 such that !iaij¼!jaji for

all i, j2In. Take a Lyapunov function for (4) as

�V1ðtÞ ¼
Xn
i¼1

Xn
j¼1

!iaij
ðxiðtÞ � xjðtÞÞ

2

2

þ
Xm
i¼1

ð!iviðtÞ � k1yiðtÞÞ
2
þ
Xm
i¼1

k1
k4
ð yiðtÞÞ

2:

Similar to the analysis of Theorem 3.1, the multi-agent
system (1) can achieve the consensus. The result can
also be extended to the leader-following network in
which the topology of the followers is strongly
connected and satisfies the detailed balance condition.

3.2 Consensus protocol II

Although the consensus problem of heterogeneous
multi-agent system (1) is solved in Section 3.1, the
proposed consensus protocol presents some limitations
due to actuator saturation. To overcome this problem,
we propose another consensus protocol without
velocity measurements for the heterogeneous multi-
agent system (1) with input constraints in this section.
Similar to the analysis in Section 3.1, we get the
consensus criterions for the heterogeneous multi-agent
system (1) under the undirected connected graphs and
the leader-following networks, respectively.

We propose the protocol without velocity measure-
ments for the heterogeneous multi-agent system (1)
with input constraints as follows:

uiðtÞ ¼

Xn
j¼1

aij tanhðxj�xiÞþk1 _yiðtÞ, i 2 Im,

k2
Xn
j¼1

aij tanhðxj�xiÞ, i 2 fmþ 1, . . . ,ng,

8>>>><
>>>>:

ð8Þ

where A¼ [aij]n�n is the weighted adjacency matrix,
k14 0, k24 0 are the feedback gains. yi2R is given by

_yiðtÞ ¼�k3 tanhðyiðtÞÞþk4
Xn
j¼1

aij tanhðxj�xiÞ, i 2 Im,

ð9Þ
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where k34 0, k44 0 and yi(0) can be chosen arbi-

trarily. Let y(0)¼ [ y1(0), y2(0), . . . , ym(0)]. Note that

juij � max ð1þ k1k4Þ
Xn
j¼1

aij þ k1k3, k2
Xn
j¼1

aij

( )
,

which is independent of the initial states of the agents.

Theorem 3.3: Suppose the communication network

G(A) is undirected and connected, i.e. aij¼ aji for all

i, j2In. Then the heterogeneous multi-agent system (1)

can achieve the consensus with protocol (8)–(9).

Proof: Analogous to the analysis of Theorem 3.1, the

heterogeneous multi-agent system (1) with protocol

(8)–(9) can be written as follows:

_xiðtÞ ¼ viðtÞ, i 2 Im,

_viðtÞ ¼
Xn
j¼1

aij tanhðxj�xiÞþk1 _yiðtÞ, i 2 Im,

_yiðtÞ ¼�k3 tanhðyiðtÞÞ

þk4
Xn
j¼1

aij tanhðxj�xiÞ, i 2 Im,

_xiðtÞ ¼ k2
Xn
j¼1

aij tanhðxj�xiÞ, i 2 fmþ 1, . . . ,ng:

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð10Þ

Take a Lyapunov function for (10) as

V3ðtÞ ¼
Xn
i¼1

Xn
j¼1

aij logðcoshðxiðtÞ � xjðtÞÞÞ

þ
Xm
i¼1

ðviðtÞ � k1yiðtÞÞ
2
þ
Xm
i¼1

k1
k4
ð yiðtÞÞ

2,

which is positive definite with respect to xi(t)� xj(t)

(8i 6¼ j, i, j2In), vi(t) (i2Im) and yi(t) (i2Im). Similar

to the analysis of _V1ðtÞ, we have

_V3ðtÞ ¼
Xn
i¼1

Xn
j¼1

aij tanhðxj � xiÞð _xj � _xiÞ

þ
Xm
i¼1

2ðviðtÞ � k1yiðtÞÞð _viðtÞ � k1 _yiðtÞÞ

þ
Xm
i¼1

2k1
k4

yiðtÞ _yiðtÞ

¼ �
2

k2

Xn
i¼mþ1

_x2i �
Xm
i¼1

2k1k3
k4

yi tanhð yiÞ � 0:

Denote the invariant set S ¼ fðx1, v1, y1, . . . , xm, vm,

ym,xmþ1, . . . , xnÞj _V3 � 0g. Note that _V3 � 0 implies

that yi¼ 0 (i2Im) and _xi ¼ 0 ði 2 fmþ 1, . . . , ngÞ,

which in turn implies that xi¼ xj for all i, j2In.

Therefore, we have vi¼ vj for all i, j2Im. It follows

LaSalle’s invariance principle that

lim
t!1
jxiðtÞ � xjðtÞj ¼ 0, for i, j 2 In, and

lim
t!1
jviðtÞ � vjðtÞj ¼ 0, for i, j 2 Im:

Theorem 3.3 is proved. œ

Theorem 3.4: Suppose that the heterogeneous multi-

agent system (1) has a leader and n� 1 followers, and the

network among the followers is undirected and con-

nected. Then the heterogeneous multi-agent system (1)

can achieve the consensus with protocol (8)–(9) if the

leader is a first-order integrator agent.

Proof: Analogous to the proof of Theorem 3.2 and

Theorem 3.3, it is easy to establish this theorem. œ

Remark 3: From the proof of consensus problem of

heterogeneous multi-agent system with input con-

straints, we propose the nonlinear consensus protocol

without velocity measurements as follows:

uiðtÞ ¼

Xn
j¼1

aij f1ðxj�xiÞþk1 _yiðtÞ, i 2 Im,

k2
Xn
j¼1

aij f1ðxj�xiÞ, i 2 fmþ 1, . . . ,ng,

8>>>>><
>>>>>:

ð11Þ

where A¼ [aij]n�n is the weighted adjacency matrix,

k14 0, k24 0 are the feedback gains. yi2R is given by

_yiðtÞ ¼ �k3f2ð yiðtÞÞ þ k4
Xn
j¼1

aij f1ðxj � xiÞ, i 2 Im,

ð12Þ

where k34 0, k44 0 and yi(0) can be chosen arbi-

trarily. Suppose that the function fi: R!R, (i¼ 1, 2)

satisfies the following assumptions:

(1) fi(�) is continuous;
(2) fi(0)¼ 0 and xfi(x)4 0 for x 6¼ 0;
(3) fi(�) is an odd function.

Then, take a Lyapunov function as follows:

V̂ðtÞ ¼
Xn
i¼1

Xn
j¼1

aij

Z ðxiðtÞ�xjðtÞÞ
0

f1ðsÞds

þ
Xm
i¼1

ðviðtÞ � k1yiðtÞÞ
2
þ
Xm
i¼1

k1
k4
ð yiðtÞÞ

2:

Similar to the proof of Theorems 3.1–3.4, the hetero-

geneous multi-agent system (1) can solve the

consensus problem with the nonlinear consensus

protocol (11)–(12).
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4. Simulations

In this section, we provide simulations to demonstrate

the effectiveness of the theoretical results in this article.
Figure 1 shows an undirected connected graph with

6 vertices, where the weight of each edge is 1. Suppose

that the vertices 1–4 denote the second-order integrator

agents and the vertices 5–6 denote the first-order

integrator agents. We further assume that ki¼ 1,

(i¼ 1, 2, 3, 4) and the initial states are x(0)¼ [8, 5,

2,�4, 1,�5], v(0)¼ [1,�5 5 3] and y(0)¼ [0, 0, 0, 0].

Then, we give Examples 4.1 and 4.2 to

illustrate the effectiveness of Theorems 3.1 and 3.3,

respectively.

Example 4.1: Figure 2 shows the state trajectories of

agents with consensus protocol (2)–(3) when the

communication topology is depicted in Figure 1.

From Figure 2, we know that the heterogeneous

multi-agent system (1) with consensus protocol (2)–

(3) can solve consensus problem under the undirected

connected graph.

Example 4.2: Figure 3 shows the state trajectories of

agents with consensus protocol (8)–(9) when the

communication topology is depicted in Figure 1.

From Figure 3, we know that the heterogeneous

multi-agent system (1) with consensus protocol (8)–(9)

can solve consensus problem under the undirected

connected graph.

Figure 4 shows a leader-following network with 6

vertices, where the weight of each edge is 1. Suppose

that the vertices 1–4 denote the second-order integrator

agents and the vertices 5–6 denote the first-order

integrator agents which the agent 6 is the leader. We

further assume that ki¼ 1, (i¼ 1, 2, 3, 4) and the initial

states are x(0)¼ [8, 5, 2,�4, 1,�5], v(0)¼ [1,�5 5 3] and

y(0)¼ [0, 0, 0, 0]. Then, we give Examples 4.3 and 4.4 to

illustrate the effectiveness of Theorems 3.2 and 3.4,

respectively.

Example 4.3: Figure 5 shows the state trajectories of

agents with consensus protocol (2)–(3) when the

communication topology is depicted in Figure 4.

From Figure 5, we know that the heterogeneous

multi-agent system (1) with consensus protocol

(2)–(3) can solve consensus problem under the leader-

following network in which the leader is a first-order

integrator agent.

Example 4.4: Figure 6 shows the state trajectories of

agents with consensus protocol (8)–(9) when the

communication topology is depicted in Figure 4.

0 5 10 15 20 25 30
−20

−10

0

10

20
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Figure 2. Simulation results with the network depicted in
Figure 1 and consensus protocol (2)–(3).
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Figure 3. Simulation results with the network depicted in
Figure 1 and consensus protocol (8)–(9).

Figure 4. A leader-following network.

Figure 1. An undirected connected graph.
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From Figure 6, we know that the heterogeneous multi-
agent system (1) with consensus protocol (8)–(9) can
solve consensus problem under the leader-following
network in which the leader is a first-order integrator
agent.

5. Conclusion

In this article, we consider the consensus problem of
heterogeneous multi-agent system which the second-
order integrator agents cannot obtain the velocity
measurements for feedback. Based on the auxiliary
system approach of second-order integrator agent, we
first propose a consensus protocol and obtain the

consensus criterions for heterogeneous multi-agent
system when the communication topologies are undir-
ected connected graphs and leader-following networks.
Although the consensus problem is solved, the
proposed consensus protocol presents some limitations
due to actuator saturation. To overcome this problem,
we propose another consensus protocol with input
constraint and obtain the same consensus criterions for
heterogeneous multi-agent system. Some examples are
given to illustrate the effectiveness of theoretical results
at the end.
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