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Abstract: In this study, the consensus problem of heterogeneous multi-agent system is considered. First, the heterogeneous
multi-agent system is proposed which is composed of first-order and second-order integrator agents in two aspects. Then,
the consensus problem of heterogeneous multi-agent system is discussed with the linear consensus protocol and the saturated
consensus protocol, respectively. By applying the graph theory and Lyapunov direct method, some sufficient conditions for
consensus are established when the communication topologies are undirected connected graphs and leader-following
networks. Finally, some examples are presented to illustrate the theoretical results.
1 Introduction

In recent years, distributed coordination of multi-agent
systems has attracted more and more attention in a wide
range including system control theory, applied mathematics,
statistical physics, biology, communication, computer
science etc. Consensus problem, which is fundamental to
distributed coordination, has been studied as an active
research area in many fields. Consensus means that a group
of agents reaches an agreement on a common value by
negotiating with their neighbours asymptotically or in a
finite time. Roughly speaking, the main objective of the
consensus problem is to design an appropriate control input
such that a group of agents converges to a consistent
quantity of interest. The control input is usually called
consensus protocol, and the consistent quantity that depends
on the initial state is usually called consensus state. Up to
now, by using the matrix theory, the graph theory, the
frequency-domain analysis method, the Lyapunov direct
method etc., consensus problem of multi-agent systems has
been studied in detail, and the consensus criterions have
been obtained under first-order, second-order or high-order
multi-agent systems [1].

The consensus problem of first-order multi-agent systems
is primarily studied. Vicsek et al. [2] proposed a discrete-
time model of n agents all moving in the plane with the
same speed and demonstrated by simulation that all agents
move to one direction asymptotically. Jabdabaie et al. [3]
provided a theoretical explanation of the consensus
behaviour in the Vecsek model, and analysed the alignment
of a network of agents with switching topologies that are
periodically connected. Olfati-Saber and Murray [4]
discussed the consensus problem for networks of dynamic
agents with switching topologies and time delays in a
continuous-time model by defining a disagreement function,
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and obtained some useful results for solving the average-
consensus problem. Ren and Beard [5] presented some
more relaxable conditions for consensus of states under
dynamically changing interaction topologies. With the
development of issue, a lot of new consensus results were
given out with different models and protocols by a single
integrator. Xiao and Wang studied the consensus problem
of discrete-time multi-gent systems with time-delays [6, 7],
asynchronous consensus of multi-agent systems with
switching topologies and time-varying delays [8]. The
finite-time consensus problem of multi-agent systems for
both the bidirectional and unidirectional interaction case
was also considered by Wang and Xiao [9]. Sun et al. [10]
discussed the average-consensus problem in undirected
networks of multi-agent systems with fixed and switching
topologies as well as multiple time-varying communication
delays. Hui and Haddad [11] investigated the consensus
problem for non-linear multi-agent systems with fixed and
switching topologies, and Liu et al. [12] considered the
consensus problem in directed networks via non-linear
protocols. Li and Zhang [13] gave the necessary and
sufficient condition of mean square average-consensus for
multi-agent systems with noises. Hatano and Mesbahi [14]
considered the consensus problem for multi-agent systems
with random topology for the first time and Tahbaz-Salehi
and Jadbabaie [15] gave a necessary and sufficient
condition for consensus with random topology. Unlike the
first-order case, a (directed) spanning tree is a necessary
rather than a sufficient condition for consensus seeking with
second-order dynamics. Therefore the extension of
consensus algorithms from first order to second order is
non-trivial [16]. Xie and Wang [17] investigated the
consensus problem of second-order multi-agent systems
with fixed and switching topologies. Ren [18] considered
the consensus problem of multi-agent systems with
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double-integrator dynamics in four cases. Hong et al. [19]
designed the distributed observers for the leader-following
problem of multi-agents systems with switching topology.
Zhu et al. [20] considered the general consensus protocol of
multi-agent systems with second-order dynamics and
obtained the necessary and sufficient conditions for solving
the consensus problem. Tian and Liu [21] obtained the
robust consensus of second-order multi-agent systems with
diverse input delays and asymmetric interconnection
perturbations based on the frequency-domain analysis
method. Lin and Jia [22] investigated the consensus problem
of second-order discrete-time multi-agent systems with non-
uniform time delays and dynamically changing topologies.
Yu et al. [23] studied the second-order consensus for non-
linear multi-agent systems with directed topologies, and Song
et al. [24] investigated second-order leader-following
consensus of non-linear multi-agent via pinning control.
Wang and Hong [25] considered the finite-time consensus
problem for the second-order multi-agent systems.

To the best of our knowledge, however, the existing results
of consensus analysis are on the multi-agent systems with the
same-order integrators, that is, all the agents have the same
dynamics behaviours. In the practical systems, the dynamics
of the agents coupled with each others are different because
of various restrictions or the common goals with mixed
agents, but there is little attention to the consensus problem
of heterogeneous multi-agent systems, in which the agents
have the different dynamics. Different from the previous
multi-agent systems, a kind of consensus problem in
dynamics networks with different-order integrator agents is
considered in this paper, which are first-order and second-
order integrator agents, respectively. The main contribution
of this paper is threefold. First, we propose the
heterogeneous multi-agent system and give the definition of
consensus. Second, we obtain the consensus criterions for
heterogeneous multi-agent system with the linear consensus
protocol when the communication topologies are undirected
connected graphs and leader-following networks. Finally,
we discuss the consensus problem of heterogeneous multi-
agent system with the saturated consensus protocol.

An outline of this paper is shown as follows. In Section 2,
we present some concepts in graph theory and formulate the
model to be studied. The consensus problem of
heterogeneous multi-agent system is discussed with the
linear consensus protocol and the saturated consensus
protocol in Sections 3 and 4, respectively. The simulation
results are presented to illustrate the effectiveness of the
theoretical results in Section 5. Finally, we present the
conclusion in Section 6.

Notation: Throughout this paper, we let R, R.0 and R≥0 be
the set of real number, positive real number and non-negative
real number, Rn be the n-dimensional real vector space.
I n = {1, 2, . . . , n}. For a given vector or matrix X, X T

denotes its transpose, ‖X‖ denotes the Euclidean norm of a
vector X. 1n is a vector with all elements being one. Matrix
A ¼ [aij] is said to be non-negative (resp. positive) if all
entries aij are non-negative (resp. positive), denoted by
A ≥ 0 (resp. A . 0).

2 Preliminaries

2.1 Graph theory

In this subsection, we shall review the graph theory [26]
which is fundamental to the later development. In the multi-
1882
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agent system, each agent can communicate with other
agents that are defined as its neighbours. Let G(A) ¼ (V, E,
A) be a weighted undirected graph of order n with a vertex
set V ¼ {s1, s2, . . . , sn}, an edge set E ¼ {eij ¼ (si, sj)} ,
V × V and a non-negative symmetric matrix A ¼ [aij]. (sj,
si) [ E ⇔ aij . 0 ⇔ agents i and j can communicate with
each other, namely, they are adjacent. Moreover, we assume
aii ¼ 0. A is called the weighted matrix and aij is the weigh
of eij ¼ (si, sj). The set of neighbours of si is denoted by
Ni ¼ {sj: eji ¼ (sj, si) [ E}. A path that connects si and sj

in the graph G is a sequence of distinct vertices
si0

, si1
, si2

, . . . , sim
, where si0

= si, sim
= sj and (sir

, sir+1
) [

E, 0 ≤ r ≤ m 2 1. An undirected graph is said to be
connected if there exists a path between any two distinct
vertices of the graph. It is easy to see that adjacency matrix
A is symmetric if G is an undirected graph. In the multi-
agent system, we refer to the agent as the leader if it only
sends the information to other agents and cannot
receive any information from other agents, that is, an1 ¼

an2 ¼ . . . ¼ ann ¼ 0 and �a = [a1n, a2n, . . . , a(n−1)n]T ≥ 0
if the agent n is the leader.

2.2 Heterogeneous multi-agent systems

In this subsection, we propose the heterogeneous multi-agent
system and define the concept of consensus.

Suppose that the heterogeneous multi-agent system
consists of first-order and second-order integrator agents.
The number of agents is n, labelled 1 through n, where the
number of second-order integrator agents is m (m , n).
Each second-order agent dynamics is given as follows

ẋi(t) = vi(t)
v̇i(t) = ui(t), i [ Im

{
(1)

where xi [ R, vi [ R and ui [ R are the position-like,
velocity-like and control input, respectively, of agent i. The
initial conditions are xi(0) ¼ xi0, vi(0) ¼ vi0. Each first-order
agent dynamics is given as follows

ẋi(t) = ui(t), i [ {m + 1, . . . , n} (2)

where xi [ R and ui [ R are the position-like and control
input, respectively, of agent i. The initial condition
is xi(0) ¼ xi0. Let x(0) ¼ [x10, x20, . . . , xn0], v(0) ¼ [v10,
v20, . . . , vm0].

Definition 1: The heterogeneous multi-agent system (1–2) is
said to reach consensus if for any initial condition we have

lim
t�1

‖xi(t) − xj(t)‖ = 0, for i, j [ I n

lim
t�1

‖vi(t) − vj(t)‖ = 0, for i, j [ Im

3 Consensus with a linear consensus
protocol

In this section, we first give a linear consensus protocol
(control input) for the heterogeneous multi-agent system
(1–2). Then, we obtain the consensus criterions for the
heterogeneous multi-agent system (1–2) when
communication topology is undirected and connected by
using Lasalle’s invariance principle. Finally, we obtain the
consensus criterions for the heterogeneous multi-agent
system (1–2) when the agents have a leader and the
IET Control Theory Appl., 2011, Vol. 5, Iss. 16, pp. 1881–1888
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communication topology of followers is undirected and
connected (leader-following network in short).

The linear consensus protocol has been widely applied for
multi-agent systems with the same-order integrators. We
present the linear consensus protocol for the heterogeneous
multi-agent system (1–2) as follows

ui(t) =

∑n

j=1

aij(xj − xi) − k1vi, i [ Im

k2

∑n

j=1

aij(xj − xi), i [ {m + 1, . . . , n}

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(3)

where A ¼ [aij]n×n is the weighted adjacency matrix, k1 . 0,
k2 . 0 are the feedback gains.

Theorem 1: Suppose the communication network G(A) is
undirected and connected, that is, aij ¼ aji for all i, j [ I n.
Then the heterogeneous multi-agent system (1–2) can solve
the consensus problem with consensus protocol (3).

Proof: The heterogeneous multi-agent system (1–2) with
consensus protocol (3) can be written as follows

ẋi(t) = vi(t), i [ Im

v̇i(t) =
∑n

j=1

aij(xj − xi) − k1vi, i [ Im

ẋi(t) = k2

∑n

j=1

aij(xj − xi), i [ {m + 1, . . . , n}

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(4)

Take a Lyapunov function for (4) as

V1(t) =
∑n

i=1

∑n

j=1

aij

(xi(t) − xj(t))
2

2
+
∑m

i=1

(vi(t))
2

which is positive definite with respect to xi(t) 2 xj(t)
(∀i = j, i, j [ I n) and vi(t) (i [ Im). Differentiating V1(t),
gives

V̇ 1(t) =
∑n

i=1

∑n

j=1

aij(xj − xi)(ẋj − ẋi) +
∑m

i=1

2viv̇i

=
∑m

i=1

2vi

∑n

j=1

aij(xj − xi) − k1vi

( )

+
∑m

i=1

∑m

j=1

aij(xj − xi)(vj − vi)

+
∑n

i=m+1

∑m

j=1

aij(xj − xi)(vj − ẋi)

+
∑m

i=1

∑n

j=m+1

aij(xj − xi)(ẋj − vi)

+
∑n

i=m+1

∑n

j=m+1

aij(xj − xi)(ẋj − ẋi)
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As A ¼ [aij]n×n is a symmetric matrix, we have

∑m

i=1

∑m

j=1

aij(xj − xi)(vj − vi) = −2
∑m

i=1

∑m

j=1

aij(xj − xi)vi

∑n

i=m+1

∑m

j=1

aij(xj − xi)(vj − ẋi) =
∑m

i=1

∑n

j=m+1

aij(xj − xi)(ẋj − vi)

and

∑n

i=m+1

∑n

j=m+1

aij(xj − xi)(ẋj − ẋi) = 2
∑n

i=m+1

∑n

j=m+1

aij(xj − xi)ẋj

Hence

V̇ 1(t) = −2k1

∑m

i=1

v2
i + 2

∑m

i=1

∑n

j=m+1

aij(xj − xi)ẋj

+ 2
∑n

i=m+1

∑n

j=m+1

aij(xj − xi)ẋj

= −2k1

∑m

i=1

v2
i + 2

∑n

i=1

∑n

j=m+1

aij(xj − xi)ẋj

= −2k1

∑m

i=1

v2
i − 2

∑n

i=m+1

ẋi

∑n

j=1

aij(xj − xi)

= −2k1

∑m

i=1

v2
i −

2

k2

∑n

i=m+1

ẋ2
i ≤ 0

Then, we employ Lasalle’s invariance principle. Denote the
invariant set S = {(x1, v1, . . . , xm, vm, xm+1, . . . , xm)
|V̇ 1 ; 0}. Note that V̇ 1 ; 0 implies that vi = 0(i [ Im)
and ẋi = 0(i [ {m + 1, . . . , n}), which in turn implies that∑n

j=1 aij(xj − xi) = 0 for all i [ I n. Then we obtain

∑n

i=1

xi

∑n

j=1

aij(xj − xi) = 0

Since the undirected graph G(A) is connected, we have

∑n

i=1

∑n

j=1

aij(xj − xi)
2 = 0

which implies that xi ¼ xj for all i, j [ I n. It follows from
Lasalle’s invariance principle that

lim
t�1

‖xi(t) − xj(t)‖ = 0, for i, j [ In

lim
t�1

‖vi(t)‖ = 0, for i [ Im

Theorem 1 is proved. A

The network studied in Theorem 1 is the undirected
connected graph. As an extension, we consider the leader-
following network.

Theorem 2: Suppose that the heterogeneous multi-agent
system (1–2) has a leader and n 2 1 followers, and the
network among the followers is undirected and connected.
Then the heterogeneous multi-agent system (1–2) can solve
1883
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the consensus problem with consensus protocol (3) if the
leader is a first-order integrator agent.

Proof: Without loss of generality, we assume that the agents
1, 2, . . . , n 2 1 are the follower and n is the leader. Thus, we

have �A = [aij]1≤i, j≤n−1 = �A
T
, an1 ¼ an2 ¼ . . . ¼ ann ¼ 0,

�a ≥ 0, where �a = [a1n, a2n, . . . , a(n−1)n]T. We rewrite the
protocol (3) as follows (see (5))

Let yi(t) ¼ xi(t) 2 xn(t), i [ I n−1. Without loss of
generality, we assume (n 2 m) . 1. Then we have

ẏi(t) = vi(t), i [ Im

v̇i(t) =
∑n−1

j=1

aij(yj − yi)− ainyi − k1vi, i [ Im

ẏi(t) = k2

∑n−1

j=1

aij(yj − yi)− k2ainyi, i [ {m+ 1, . . . , n− 1}

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(6)

Take a Lyapunov function for (8) as

V2(t) =
∑n−1

i=1

∑n−1

j=1

aij

(yi(t) − yj(t))
2

2

+
∑n−1

i=1

ain(yi(t))
2 +

∑m

i=1

(vi(t))
2

Differentiating V2(t), yields that

V̇ 2(t) = −2k1

∑m

i=1

v2
i −

2

k2

∑n−1

i=m+1

ẏ2
i ≤ 0

Denote the invariant set S = {(y1, y2, . . . , yn−1,
v1, . . . , vm)|V̇ 2 ; 0}. Note that V̇ 2 ; 0 implies that
vi = 0(i [ Im) and ẏi = 0(i [ {m + 1, . . . , n − 1}), which
in turn implies that

∑n−1
j=1 aij(yj − yi) − ainyi = 0 for all

i [ I n−1. Then we obtain

∑n−1

i=1

yi

∑n−1

j=1

aij(yj − yi) − ainyi

( )
= 0

Since �A = [aij]1≤i, j≤n−1 = �A
T
, we have yi(t) ¼ 0 for all

i [ I n−1. It follows from Lasalle’s invariance principle that

lim
t�1

‖xi(t) − xn(t)‖ = 0, for i [ I n

lim
t�1

‖vi(t)‖ = 0, for i [ Im

Theorem 2 is proved. A
1884
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We know that the linear consensus protocol of a second-
order integrator agent can also be given as

ui(t) =
∑n

j=1

aij(xj − xi) + k1

∑n

j=1

bij(vj − vi)

if the number of agents is n. Therefore the linear consensus
protocol of a heterogeneous multi-agent system can also be
presented as follows

ui(t)=

∑n

j=1

aij(xj − xi)+ k1

∑m

j=1

bij(vj − vi), i [ Im

k2

∑n

j=1

aij(xj − xi), i [ {m+1, . . . , n}

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(7)

where A ¼ [aij]n×n and B ¼ [bij]m×m are the weighted
adjacency matrix, k1 . 0, k2 . 0 are the feedback gains.

Corollary 1: Suppose the communication networks G(A) and
G(B) are undirected connected graphs (or leader-following
networks and the leader is a first-order integrator agent).
Then the heterogeneous multi-agent system (1–2) can solve
a consensus problem with consensus protocol (7).

Proof: The heterogeneous multi-agent system (1–2) with
consensus protocol (7) can be written as follows

ẋi(t)= vi(t), i [ Im

v̇i(t)=
∑n

j=1

aij(xj − xi)+ k1

∑m

j=1

bij(vj − vi), i [ Im

ẋi(t)= k2

∑n

j=1

aij(xj − xi), i [ {m+1, . . . , n}

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(8)

If the communication networks G(A) and G(B) are undirected
connected graphs, similar to the analysis of Theorem 1,
differentiating V1(t), gives

V̇ 1(t) =
∑n

i=1

∑n

j=1

aij(xj − xi)(ẋj − ẋi) +
∑m

i=1

2viv̇i

=
∑m

i=1

∑m

j=1

aij(xj − xi)(vj − vi)

+
∑n

i=m+1

∑m

j=1

aij(xj − xi)(vj − ẋi)
ui(t) =

∑n−1

j=1

aij(xj − xi) + ain(xn − xi) − k1vi, i [ Im

k2

∑n−1

j=1

aij(xj − xi) + k2ain(xn − xi), i [ {m + 1, . . . , n − 1}

0, i = n

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(5)
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+
∑m

i=1

∑n

j=m+1

aij(xj − xi)(ẋj − vi)

+
∑n

i=m+1

∑n

j=m+1

aij(xj − xi)(ẋj − ẋi)

+
∑m

i=1

2vi

∑n

j=1

aij(xj − xi) + k1

∑m

j=1

bij(vj − vi)

( )

As A ¼ [aij]n×n and B ¼ [bij]m×m are symmetric matrices, we
have

V̇ 1(t) = −2k1

∑m

i=1

bij(vj − vi)
2 − 2

k2

∑n

i=m+1

ẋ2
i ≤ 0

Denote the invariant set S = {(x1, v1, . . . , xm, vm,
xm+1, . . . , xm)|V̇ 1 ; 0}. Note that V̇ 1 ; 0 implies that
vi = vj(i, j [ Im) and ẋi = 0(i [ {m + 1, . . . , n}), which in
turn implies that

∑n
k=1 aik(xk − xi) =

∑n
k=1 ajk(xk − xj)(i, j [

Im) and
∑n

k=1 aik(xk − xi) = 0(i [ {m + 1, . . . , n}). As
G(A) is an undirected connected graph, we have

0 =
∑n

i=m+1

∑n

k=1

aik(xk − xi)

=
∑n

i=m+1

∑m

k=1

aik(xk − xi) +
∑n

i=m+1

∑n

k=m+1

aik(xk − xi)

=
∑n

i=m+1

∑m

k=1

aik(xk − xi)

and

∑m

i=1

∑n

k=1

aik(xk − xi) =
∑m

i=1

∑m

k=1

aik(xk − xi)

+
∑m

i=1

∑n

k=m+1

aik(xk − xi)

=
∑m

i=1

∑n

k=m+1

aik(xk − xi)

=
∑n

i=m+1

∑m

k=1

aik(xi − xk) = 0

Hence,
∑n

k=1 aik(xk − xi) = 0(i [ I n), which implies that
xi ¼ xj for all i, j [ In. It follows from Lasalle’s invariance
principle that

lim
t�1

‖xi(t) − xj(t)‖ = 0, for i, j [ I n

lim
t�1

‖vi(t) − vj(t)‖ = 0, for i, j [ Im

that is, the heterogeneous multi-agent system (1–2) can solve
the consensus problem with consensus protocol (7) when the
communication networks G(A) and G(B) are undirected
connected graphs.

If the communication networks G(A) is a leader-following
network and the leader is a first-order integrator agent, G(B) is
an undirected connected graph, the proof is similar to the
analysis of Theorem 2 and is omitted here. A
IET Control Theory Appl., 2011, Vol. 5, Iss. 16, pp. 1881–1888
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Remark 1: In fact, the velocities of all second-order integrator
agents converge to zero with both protocol (3) and (7). As a
heterogeneous multi-agent system (1–2) can solve a
consensus problem, we have limt�1‖xi(t) 2 xj(t)‖ ¼ 0 for
i, j [ I n, which implies that limt�1 ‖ẋi(t) − ẋj(t)‖ = 0(i [
Im, j [ {m + 1, . . . , n}) and limt�1 ‖

∑n
j=1 aij(xj − xi)‖ =

0(i [ {m + 1, . . . , n}), which in turn implies that
limt�1 ‖ẋi(t) − ẋj(t)‖ = limt�1 ‖vi(t)‖ = 0(i [ Im, j [
{m + 1, . . . , n}). It means that the velocities of second-
order integrator agents are decided by the control input of
first-order integrator agents and all agents will stay in one
place through cooperation.

4 Consensus with a saturated consensus
protocol

In this section, we first give a saturated consensus protocol for
the heterogeneous multi-agent system (1–2). Similar to the
analysis in Section 3, we obtain the consensus criterions for
the heterogeneous multi-agent system (1–2) under the
undirected connected graphs and the leader-following
networks, respectively.

Note that (3) does not explicitly take into account actuator
saturation. We propose a consensus protocol for the
heterogeneous multi-agent system (1–2) with a saturated
consensus protocol as follows

ui(t)=

∑n

j=1

aij tanh(xj − xi)− k1 tanh(vi), i [ Im

k2

∑n

j=1

aij tanh(xj − xi), i [ {m+1, . . . , n}

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(9)

where A ¼ [aij]n×n is the weighted adjacency matrix, k1 . 0,
k2 . 0 are the feedback gains. Note that

‖ui‖1 ≤ max
∑n

j=1

aij + k1, k2

∑n

j=1

aij

{ }

which is independent of the initial states of the agents.

Theorem 3: Suppose the communication network G(A) is
undirected and connected, that is, aij ¼ aji for all i, j [ I n.
Then the heterogeneous multi-agent system (1–2) can solve
the consensus problem with consensus protocol (9).

Proof: Analogous to the analysis of Theorem 1, the
heterogeneous multi-agent system (1–2) with consensus
protocol (9) can be written as follows

ẋi(t) = vi(t), i [ Im

v̇i(t) =
∑n

j=1

aij tanh(xj − xi)− k1 tanh(vi), i [ Im

ẋi(t) = k2

∑n

j=1

aij tanh(xj − xi), i [ {m+1, . . . , n}

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(10)

Take a Lyapunov function for (10) as

V3(t) =
∑n

i=1

∑n

j=1

aij log( cos h(xi(t) − xj(t))) +
∑m

i=1

(vi(t))
2
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which is positive definite with respect to
xi(t) − xj(t)(∀i = j, i, j [ I n) and vi(t)(i [ Im). Similar to
the proof of Theorem 1, we have

V̇ 3(t) =
∑n

i=1

∑n

j=1

aij tan h(xj − xi)(ẋj − ẋi) +
∑m

i=1

2viv̇i

= −2k1

∑m

i=1

vi tan h(vi) −
2

k2

∑n

i=m+1

ẋ2
i ≤ 0

Denote the invariant set S = {(x1, v1, . . . , xm, vm,
xm+1, . . . , xm)|V̇ 3 ; 0}. Note that V̇ 3 ; 0 implies that
vi = 0(i [ Im) and ẋi = 0(i [ {m + 1, . . . , n}), which in
turn implies that xi ¼ xj for all i, j [ I n. It follows from
Lasalle’s invariance principle that

lim
t�1

‖xi(t) − xj(t)‖ = 0, for i, j [ In

lim
t�1

‖vi(t)‖ = 0, for i [ Im

Theorem 3 is proved. A

Theorem 4: Suppose that the heterogeneous multi-agent
system (1–2) has a leader and n 2 1 followers, and the
network among the followers is undirected and connected.
Then the heterogeneous multi-agent system (1–2) can solve
the consensus problem with consensus protocol (9) if the
leader is a first-order integrator agent.

Proof: Analogous to the proof of Theorems 2 and 3, it is easy
to establish this theorem. A

From the proof of the consensus problem with a saturated
consensus protocol for heterogeneous multi-agent system,
we propose the non-linear consensus protocol as follows

ui(t) =

∑n

j=1

aijf1(xj − xi) − k1f2(vi), i [ Im

k2

∑n

j=1

aijf1(xj − xi), i [ {m + 1, . . . , n}

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(11)

where A ¼ [aij]n×n is the weighted adjacency matrix, k1 . 0,
k2 . 0 are the feedback gains. Suppose that function
fi: R � R, (i = 1, 2) satisfies the following assumptions

1. fi(.) is continuous;
2. fi(0) ¼ 0 and xfi(x) . 0 for x = 0;
3. fi(.) is an odd function.

Corollary 2: Suppose the communication network G(A) is
undirected and connected (or a leader-following network
and the leader is a first-order integrator agent), and
the assumptions (1)–(3) are established. Then the
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heterogeneous multi-agent system (1–2) can solve the
consensus problem with consensus protocol (11).

Proof: Take a Lyapunov function as follows

V (t) =
∑n

i=1

∑n

j=1

aij

∫(xi(t)−xj(t))

0

f1(s)ds +
∑m

i=1

(vi(t))
2

Then, similar to the proof of Theorems 1–4, the
heterogeneous multi-agent system (1–2) can solve the
consensus problem with the non-linear consensus
protocol (11). A

The saturated consensus protocol of a heterogeneous multi-
agent system can also been presented as follows (see (12))

where A ¼ [aij]n×n and B ¼ [bij]m×m are the weighted
adjacency matrices, k1 . 0, k2 . 0 are the feedback gains.
Note that

‖ui‖1 ≤ max
∑n

j=1

aij + k1

∑m

j=1

bij, k2

∑n

j=1

aij

{ }

which is independent of the initial states of the agents.

Corollary 3: Suppose the communication network G(A) and
G(B) are undirected connected graphs (or leader-following
networks and the leader is a first-order integrator agent).
Then the heterogeneous multi-agent system (1–2) can solve
the consensus problem with consensus protocol (12).

Proof: The proof is similar to the analysis of Corollary 3 and
Theorem 3 (Theorem 4), and is omitted here. A

5 Simulations

In this section, we provide simulations to demonstrate the
effectiveness of the theoretical results in this paper.

Example 1: Fig. 1 shows an undirected connected graph with
six vertices. Suppose that the vertices 1–4 denote the second-
order integrator agents and the vertices 5–6 denote the first-
order integrator agents, and aij ¼ 1 if (sj, si) [ E, otherwise
aij ¼ 0, where i, j [ I6. We further assume that
k1 ¼ k2 ¼ 1 and x(0) ¼ [8, 5, 2, 24, 1, 25], v(0) ¼ [1, 25
5 3]. Then Figs. 2 and 3 show the simulation results of the

Fig. 1 Undirected connected graph
ui(t) =

∑n

j=1

aij tan h(xj − xi) + k1

∑m

j=1

bij tan h(vj − vi), i [ Im

k2

∑n

j=1

aij tan h(xj − xi), i [ {m + 1, . . . , n}

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(12)
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heterogeneous multi-agent system (1–2) with consensus
protocols (3) and (9), respectively. From Fig. 2, we know
that the heterogeneous multi-agent system (1–2) with
consensus protocol (3) can solve consensus problem under
the undirected connected graph. From Fig. 3, we know that
the heterogeneous multi-agent system (1–2) with consensus
protocol (9) can solve consensus problem under the
undirected connected graph.

Example 2: Fig. 4 shows a leader-following network with six
vertices. With the same assumption of Example 1, Figs. 5 and
6 show the simulation results of the heterogeneous multi-

Fig. 2 Simulation results with the network depicted in Fig. 1 and
consensus protocol (3)

Fig. 4 Leader-following network

Fig. 3 Simulation results with the network depicted in Fig. 1 and
consensus protocol (9)
IET Control Theory Appl., 2011, Vol. 5, Iss. 16, pp. 1881–1888
doi: 10.1049/iet-cta.2011.0033
agent system (1–2) with consensus protocols (3) and (9),
respectively. From Fig. 5, we know that the heterogeneous
multi-agent system (1–2) with consensus protocol (3) can
solve the consensus problem under the leader-following
network. From Fig. 6, we know that the heterogeneous
multi-agent system (1–2) with consensus protocol (9) can
solve the consensus problem under the leader-following
network.

6 Conclusion

In this paper, we consider the consensus problem of
heterogeneous multi-agent system with linear consensus
protocol and saturated consensus protocol, respectively.
Through using Lyapunov function method and Lasalle’s
invariance principle, the heterogeneous multi-agent system
can solve the consensus problem when the communication
topologies are undirected connected graphs and leader-
following networks, respectively. Some examples are given
to illustrate the effectiveness of theoretical results in the
last. The future work will focus on the more complex
consensus problem of heterogeneous multi-agent systems,

Fig. 6 Simulation results with the network depicted in Fig. 4 and
consensus protocol (9)

Fig. 5 Simulation results with the network depicted in Fig. 4 and
consensus protocol (3)
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for example, heterogeneous multi-agent systems with delays,
heterogeneous multi-agent systems under directed graphs/
switching topologies/random networks, discrete-time
heterogeneous multi-agent systems etc.
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