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In this article, we study the finite-time consensus in probability for stochastic multi-agent systems. First, we give
the nonlinear consensus protocol for multi-agent systems with Gaussian white noise, and define the concept of
finite-time consensus in probability. Second, we prove that multi-agent systems can achieve the finite-time
consensus in probability under five different kinds of communication topologies by using graph theory,
stochastic Lyapunov theory and probability theory. Finally, some simulation examples are provided to illustrate
the effectiveness of the theoretical results.
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1. Introduction

Recent years have witnessed an enormous growth of
research on consensus problem for multi-agent sys-
tems. It is fundamental in decentralised coordination
and control of networks of dynamic agents and has
been applied in many fields, such as swarming,
flocking, synchronisation and formation control of
social insects, unmanned air vehicles, robots and
sensor networks (Tsitsiklis 1984; Vicsek, Czirok,
Jacob, Cohen, and Schochet 1995; Jabdabaie, Lin,
and Morse 2003; Olfati-Saber and Murray 2004;
Moreau 2005; Ren and Beard 2005; Chu, Wang,
Chen, and Mu 2006; Wu 2006; Bauso, Giarré, and
Pesenti 2009; Chandra and Ladde 2010).

In collective behaviours of multi-agent systems,
consensus is one of the most interesting behaviours. An
early work of multi-agent model was studied by Vicsek
et al. (1995) which contained the noise effects, and it
was demonstrated by simulation that the system will
synchronise if the population density is large and the
noise is small. Jabdabaie et al. (2003) provided a
theoretical explanation of the consensus behaviour in
Vicsek model, and analysed the alignment of a network
of agents with switching topologies that are periodi-
cally connected. Olfati-Saber and Murray (2004)
discussed the consensus problem for networks of
dynamic agents with switching topologies and time
delays in a continuous-time model by defining a
disagreement function, and obtained some useful
results for solving the average-consensus problem.

Other theoretical explanations for the consensus

behaviour of the Vicsek model were given in Ren and

Beard (2005), Xiao and Wang (2006a,b), Lin and Jia

(2009), Hatano and Mesbahi (2005), Porfiri and

Stilwell (2007), without noise. The robust consensus

of discrete-time multi-agent systems with noise was

studied under undirected networks (Wang and Liu

2008) and directed networks (Wang and Guo 2008).

Li and Zhang (2009) gave the necessary and sufficient

condition of mean square average consensus for multi-

agent systems with noise. Huang and Manton (2009)

considered the coordination and consensus of multi-

agent systems where each agent has noisy measure-

ments of its neighbours’ states. Chandra and Ladde

(2010) investigated the qualitative and quantitative

properties by formulating stochastic multi-agent

systems.
On the other hand, the finite-time stability problem

has been studied for various cases. Bhat and Bernstein

(2000) considered the finite-time stability of continuous

autonomous systems. Moulay and Perruquetti (2006)

extended the results of Bhat and Bernstein (2000) to

the non-autonomous continuous systems. Chen and

Jiao (2010) gave the finite-time stability (finite-time

attractiveness) theorem of stochastic nonlinear sys-

tems. The idea of finite-time stability has been applied

to the finite-time consensus for multi-agent systems.

Based on the non-smooth stability analysis, Cortés

(2006) discussed the finite-time consensus problem for

multi-agent systems under some discontinuous
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consensus protocols. Xiao, Wang and Jia (2008) and
Xiao and Wang (2010) showed that the multi-agent
systems could achieve the finite-time consensus for
both the bidirectional and unidirectional interaction
cases. Jiang and Wang (2009) investigated the finite-
time consensus for multi-agent systems with fixed and
switching topologies under nonlinear protocol. Wang
and Guo (2008) considered the finite-time consensus
problem for the multi-agent systems with second-order
dynamics.

Real networks are often in uncertain communica-
tion environments, it is natural to consider the random
perturbation in the distributive protocols (consensus
protocols) for multi-agent systems (Wang and Guo
2008; Huang and Manton 2009; Li and Zhang 2009;
Wang and Liu 2009; Chandra and Ladde 2010).
Moreover, convergence rate is an important index to
evaluate the consensus protocols in the analysis of
consensus problems for multi-agent systems
(Cortés 2006; Kim and Mesbahi 2006; Xiao and
Boyd 2006). Thus, the finite-time consensus problem
has attracted considerable attention of researchers and
has become an active area of research in the consensus
for multi-agent systems (Wang and Hong 2008; Xiao
et al. 2008; Jiang and Wang 2009; Wang and Xiao
2010). To the best of our knowledge, almost all the
existing literature on the consensus problem have not
considered the finite-time consensus problem for multi-
agent systems with noise (stochastic multi-agent
systems) which is inevitable and significant in the
real world.

In this article, we study the finite-time consensus in
probability for stochastic multi-agent systems. The
main contribution of this article is threefold. First, we
give the nonlinear consensus protocol with Gaussian
white noise, which is an extension of stochastic multi-
agent systems in Chandra and Ladde (2010). Second,
the finite-time stability for stochastic nonlinear system
is successfully applied to solving the finite-time
consensus problem for stochastic multi-agent systems.
The idea is motivated by the works of Xiao et al.
(2008), Wang and Xiao (2010) which consider the
finite-time consensus for multi-agent systems without
noise. Third, we prove the finite-time consensus
theorems in probability for multi-agent systems by
using the corollary in Chen and Jiao (2010), which is an
extension of the work of Wang and Xiao (2010).

This article is organised as follows. In Section 2, we
formulate the problem. In Section 3, we establish the
finite-time consensus theorems in probability for multi-
agent systems. In Section 4, we give some examples to
explain our results. Finally, we summarise the main
conclusions in Section 5.

Throughout this article, we letR,R40 andR�0 be the
set of real number, positive real number and non-

negative real number, R
n be the n-dimensional real

vector space and In¼ {1, 2, . . . , n}. For a given vector or
matrix X, XT denotes its transpose, Tr{X} denotes its
trace when X is square, and kXk denotes the Euclidean
norm of a vectorX. 1n is a vector with elements being all
ones, diag{a1, a2, . . . , an} defines a diagonal matrix with
diagonal elements being a1, a2 , . . . , an, �(A) represents
the spectral radius of matrix A. A¼ [aij] is said to be
non-negative (resp. positive) if all entries aij are
non-negative (resp. positive), denoted by A� 0 (resp.
A40). P(x) denotes the probability of stochastic
variable x, E(x) denotes the expectation of stochastic
variable x. sigðxÞ� ¼ signðxÞjxj�, where sign(�) is sign
function.

2. Problem formulation

2.1 Algebraic graph theory preliminaries

The network formed by multi-agent system can be
always represented by a graph. Thus, graph theory is
an important tool to analyse consensus problem for
multi-agent system. We present some basic definitions
in graph theory (Godsil and Royal 2001).

An undirected (directed) graph G¼ (V,E ) consists
of a vertex set V¼ {v1, v2 , . . . , vn} and an edge set
E¼ {eij¼ (vi, vj)}�V�V. Denote the set of neighbours
of vi by Ni¼ {vj : eji¼ (vj, vi)2E}. A path that connects
vi and vj in the graph G is a sequence of distinct
vertices vi0 , vi1 , vi2 , . . . vim , where vi0 ¼ vi, vim ¼ vj and
ðvir , virþ1Þ 2 E, 0� r�m� 1. An undirected (directed)
graph is said to be connected (strong connected) if
there exists a path between any two distinct vertices of
the graph. For directed graph, if (vi, vj) is an edge of G,
vi is called the parent of vj and vj is called the child of vi.
A directed tree is a directed graph, where every vertex,
except one special vertex without any parent, which is
called the root, has exactly one parent, and the root
can be connected to any other vertices through paths.
The weighted adjacency matrix A¼ [aij]n�n of a graph
G is a non-negative matrix with rows and columns
indexed by the vertices, all entries of which are
non-negative, where aij40 if and only if
eji¼ (vj, vi)2E. The degree matrix D¼ [dij]n�n is a
diagonal matrix with dii ¼

P
vj2Ni

aij, and the
Laplacian matrix of the graph is defined as
L¼ [lij]n�n¼D�A. It is easy to see that adjacency
matrix A is symmetric if G is an undirected graph. It
has been shown in Olfati-Saber and Murray (2004) and
Godsil and Royal (2001) that L1n¼ 0. When G is a
connected undirected graph, L is positive semi-definite
and has a simple zero eigenvalue, �TL� ¼ 1

2 �Pn
i,j¼1 aijð�j � �iÞ

2 and min� 6¼0,1Tn �¼0
�TL�
�T� ¼ �2 for any

�¼ [�1, �2 , . . . , �n]
T
2R

n, where �2 is the second smallest
eigenvalue of L.
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2.2 Consensus protocol

We consider n autonomous agents, labelled 1 through

n. Let xi2R denote the the state of agent i and

x(t)¼ [x1(t),x2(t), . . . , xn(t)]
T. We assume that each

agent obeys a single integrator model:

_xiðtÞ ¼ uiðtÞ, i 2 I n, ð1Þ

where ui(t) is control input, called consensus protocol.

The initial state is xi(0)¼ xi0, and x0¼ [x10,

x20, . . . , xn0]
T.

We give the nonlinear control input with random

perturbation as

uiðtÞ ¼
Xn
j¼1

�
ðaij f ðxj � xiÞ þ b2ijgðxj � xiÞÞ

þ bijgðxj � xiÞ _wijðtÞ
�
, i 2 I n, ð2Þ

where A¼ [aij]n�n is the weighted adjacency matrix, the

noise intensity bij� 0 and bij40 if and only if agent j is

the neighbour of agent i. f _wijðtÞ, i, j ¼ 1, 2, . . . , ng are

independent standard white noises. We assume that Ft

is an increasing family of sub-�-algebras of F on a

complete probability space (�,F,P), wij(t) is Ft

measurable for all t� 0 and is a standard

Wiener process with independent increments,

wij(t)¼wji(t), i, j2In.

Remark 1: In the same communication channel, the

noises are often regarded as the same for agent i and j

(Nguyen and Shwedyk 2009; Chandra and Ladde

2010). Therefore, the assumption of wij(t)¼wji(t) is

reasonable.
Hence, we can obtain the following Itô type

stochastic multi-agent system:

dxiðtÞ ¼
Xn
j¼1

ðaij f ðxj � xiÞ þ b2ijgðxj � xiÞÞdt

þ
Xn
j¼1

bijgðxj � xiÞdwijðtÞ, i 2 In: ð3Þ

We make the following assumptions on (3):

(i) f(�) :R!R and g(�) :R!R are continuously

differential and odd functions.
(ii) f(�)¼ g(�)¼ 0 if only if �¼ 0, and �f(�)40

when � 6¼ 0.
(iii) There exist �,�2R and 0<�< 1, �40 such

that k f(�)k��k�k�.
(iv) g(�)(g(�)� �)� 0.

Remark 2: The existence and uniqueness for the

solution of system (3) can be obtained directly from

Theorem 170 in Situ (2005) if f(�) and g(�) satisfy a

�-condition. Compared with stochastic multi-agent

system in Chandra and Ladde (2010), deterministic

item of the model (3) is related to the stochastic item,

i.e. we consider the portion of deterministic item has

random perturbation which is actual in real world. In

order to move forward to this novel problem, we give

the assumptions (i)–(iv) which are achievable,

e.g. f(�)¼ sig(�)� and g(�)¼ �.

Similar to stability in probability and finite-time

stability in probability (globally stochastic finite-time

stability) (Chen and Jiao 2010), the definition of finite-

time consensus in probability is given through the

following definition of consensus with probability one

and the stochastic settling time function.

Definition 2.1 (Consensus with probability one): The

agents are said to reach consensus with probability one

if for any initial states, there exists a constant �x such

that Pðlimt!1 kxiðtÞ � �xk ¼ 0, for all i2In)¼ 1.

Definition 2.2 (Finite-time consensus in

probability): Given the control input ui, i2In, ui is

said to solve the finite-time consensus in probability

if for any initial states, there exists some stochastic

settling time function T(x0,w) in probability

and E [T(x0,w)]<1, such that Pðlimt!Tðx0,wÞ
� �

kxiðtÞ� �xk¼ 0, for all i2In)¼ 1.

Lemma 2.3 (Xiao et al. 2008): Let �1, �2, . . . , �n� 0

and 0< p� 1. Then

Xn
i¼1

�i

 !p

�
Xn
i¼1

�pi :

Lemma 2.4 (Xiao et al. 2008): Let b¼ [b1,

b2, . . . , bn]
T
� 0, b 6¼ 0, and let G be undirected and

connected with adjacency matrix A. Then L(A)þ diag(b)

is positive definite.

Lemma 2.5 (Chen and Jiao 2010): Consider stochas-

tic nonlinear system

dx ¼ f ðxÞdtþ gðxÞdw,

which has the unique global solution. If there exists a

positive definite, twice continuously differentiable and

radially unbounded Lyapunov function V :Rn
!R40 and

real numbers K40 and 0<�< 1, such that

LVðxÞ � �KðVðxÞÞ�,

where f :Rn
!R

n and g :Rn
!R

n�r are continuous,

LVðxÞ ¼ @V
@x f ðxÞ þ

1
2 Trfg

TðxÞ @
2V
@x2

gðxÞg. Then the origin

of the stochastic nonlinear system is globally stochastic

finite-time stable, and stochastic settling time

T(x0,w) satisfies E½Tðx0,wÞ� �
ðVðx0ÞÞ

1��

Kð1��Þ , which implies

T(x0,w)<1 a.s.

1646 Y. Zheng et al.
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3. Main results

In this section, we will study the finite-time consensus
in probability for the multi-agent system (3) under
undirected and directed graphs, respectively.

3.1 Finite-time consensus under undirected graph

For undirected graph, we consider the communication
topology G with two cases, one is undirected and
connected, the other has a vertex which is a leader in
the multi-agent system (1) and the network among the
followers is undirected and connected.

Theorem 3.1: Consider the network of the multi-agent
system (1) with fixed topology G. Suppose G is
undirected and connected, i.e. aij¼ aji and bij¼ bji for
all i, j2In, and the assumptions (i)–(iv) hold. Then the
multi-agent system (3) can achieve the finite-time
consensus in probability.

Proof: Let yðtÞ ¼ 1
n

Pn
i¼1 xiðtÞ. Since aij¼ aji, bij¼ bji

and wij¼wji for all i, j2In, f(�) and g(�) are odd
functions, we have

dyðtÞ ¼
1

n

Xn
i¼1

dxiðtÞ

¼
1

n

Xn
i¼1

 Xn
j¼1

ðaij f ðxj � xiÞ þ b2ijgðxj � xiÞÞdt

þ
Xn
j¼1

bijgðxj � xiÞdwijðtÞ

!

¼
1

2n

 Xn
i¼1

 Xn
j¼1

ðaij f ðxj � xiÞ þ b2ijgðxj � xiÞÞdt

þ
Xn
j¼1

bijgðxj � xiÞdwijðtÞ

!

þ
Xn
j¼1

 Xn
i¼1

ðaji f ðxi � xjÞ þ b2jigðxi � xjÞÞdt

þ
Xn
i¼1

bjigðxi � xjÞdwjiðtÞ

!!

¼
1

2n

 Xn
i¼1

 Xn
j¼1

ðaij f ðxj � xiÞ þ b2ijgðxj � xiÞÞdt

þ
Xn
j¼1

bijgðxj � xiÞdwijðtÞ

!

�
Xn
i¼1

 Xn
j¼1

ðaij f ðxj � xiÞ þ b2ijgðxj � xiÞÞdt

þ
Xn
j¼1

bijgðxj � xiÞdwijðtÞ

!!

¼ 0: ð4Þ

Therefore, y(t) is time-invariant, i.e. y(t)¼ y(0). Let

	i(t)¼xi(t)� y(t) and 	(t)¼ [	1(t), 	2(t), . . . , 	n(t)]
T.

Then we have 1Tn 	ðtÞ ¼ 0, d	iðtÞ
dt ¼

dxiðtÞ
dt �

dyðtÞ
dt ¼

dxiðtÞ
dt and

	i(t)� 	j(t)¼ xi(t)�xj(t). Hence

d	iðtÞ ¼
Xn
j¼1

ðaij f ð	j � 	iÞ þ b2ijgð	j � 	iÞÞdt

þ
Xn
j¼1

bijgð	j � 	iÞdwijðtÞ, i 2 In: ð5Þ

We consider candidate Lyapunov function as

Vð	ðtÞÞ ¼
Xn
i¼1

	2i ðtÞ:

According to the Itô formula, we have

dVð	ðtÞÞ ¼
Xn
i¼1

2	iðtÞ

 Xn
j¼1

ðaij f ð	j � 	iÞ þ b2ijgð	j � 	iÞÞdt

þ
Xn
i¼1

2	iðtÞ
Xn
j¼1

bijgð	j � 	iÞdwijðtÞ

!

þ
Xn
i¼1

Xn
j¼1

b2ijg
2ð	j � 	iÞdt: ð6Þ

By virtue of the assumption (i), we have

LVð	ðtÞÞ¼
Xn
i¼1

2	iðtÞ
Xn
j¼1

ðaij fð	j�	iÞþb
2
ijgð	j�	iÞÞ

þ
Xn
i¼1

Xn
j¼1

b2ijg
2ð	j�	iÞ

¼
Xn
i¼1

Xn
j¼1

ðaij	iðtÞfð	j�	iÞþaji	jðtÞfð	i�	jÞÞ

þ
Xn
i¼1

Xn
j¼1

ðb2ij	iðtÞgð	j�	iÞþb
2
ji	jðtÞgð	i�	jÞÞ

þ
Xn
i¼1

Xn
j¼1

b2ijg
2ð	j�	iÞ

¼
Xn
i¼1

Xn
j¼1

aijð	iðtÞ�	jðtÞÞfð	j�	iÞ

þ
Xn
i¼1

Xn
j¼1

b2ijgð	j�	iÞ gð	j�	iÞ�ð	jðtÞ�	iðtÞÞ
� �

:

ð7Þ

Using the assumptions (ii)–(iv) and Lemma 2.3, we get

LVð	ðtÞÞ � �
Xn
i¼1

Xn
j¼1

aijð	jðtÞ � 	iðtÞÞ f ð	j � 	iÞ

� �
Xn
i¼1

Xn
j¼1

aij�k	jðtÞ � 	iðtÞk
1þ�

International Journal of Control 1647
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¼ ��
Xn
i¼1

Xn
j¼1

h
a

2
1þ�

ij ð	jðtÞ � 	iðtÞÞ
2
i1þ�

2

� ��

"Xn
i¼1

Xn
j¼1

a
2

1þ�

ij ð	jðtÞ � 	iðtÞÞ
2

#1þ�
2

: ð8Þ

Let C ¼ ½a
2

1þ�

ij �n�n, then

Xn
i¼1

Xn
j¼1

a
2

1þ�

ij ð	jðtÞ � 	iðtÞÞ
2
¼ 2	TðtÞLðCÞ	ðtÞ,

and because of 1Tn 	ðtÞ ¼ 0, then

2	TðtÞLðCÞ	ðtÞ � 2�2ðLðCÞÞ	
T	 ¼ 2�2ðLðCÞÞVð	ðtÞÞ:

Therefore,

LVð	ðtÞÞ � ��½2�2ðLðCÞÞVð	ðtÞÞ�
1þ�
2

¼ ��ð2�2ðLðCÞÞ
1þ�
2 Vð	ðtÞÞ

1þ�
2 : ð9Þ

Thus, by Lemma 2.5, the multi-agent system (3)

achieves the finite-time consensus in probability.

Let K1 ¼ �ð2�2ðLðCÞÞ
1þ�
2 , we have E½Tðx0,wÞ� �

2ðVðx0ÞÞ
1��
2

K1ð1��Þ
: œ

Remark 3: In the assumption k f(�)k��k�k�, if the

parameter � is affected by �, i.e. k f ðxj � xiÞk �

�kxj � xik
�ij , the proof is similar to Theorem 3.1 and

Wang and Xiao (2010). For limitation of the space, it is

left to the interested readers as an exercise.

The network studied in Theorem 3.1 is undirected.

To some extension, we consider the multi-agent system

(1) with a leader.

Theorem 3.2: Under the assumptions (i)–(iv), Suppose

that the multi-agent system (1) has a leader and n� 1

followers, and the communication topology among the

followers is undirected and connected. Then the multi-

agent system (3) achieves the finite-time consensus in

probability.

Proof: Without loss of generality, we assume agents

1, 2, . . . , n� 1 are the followers and agent n is the

leader. Thus, we have �A¼ [aij]1�i,j�n�1¼ �AT,

an1¼ an2¼ � � � ¼ ann¼ 0 and bn1¼ bn2¼ � � � ¼ bnn¼ 0,
�a� 0, where �a¼ [a1n, a2n, . . . , a(n� 1)n]

T. We rewrite the

protocol (2) as follows:

uiðtÞ ¼
Xn�1
j¼1

½ðaij f ðxj � xiÞ þ b2ijgðxj � xiÞÞ

þ bijgðxj � xiÞ _wijðtÞ�

þ ainf ðxn � xiÞ þ b2ingðxn � xiÞ

þ bingðxn � xiÞ _winðtÞ, i 2 In�1 ð10Þ

and

unðtÞ ¼ 0:

Let 	0iðtÞ ¼ xiðtÞ � xnðtÞ, i2In, �	ðtÞ ¼ ½	01ðtÞ,
	02ðtÞ, . . . , 	0n�1ðtÞ�

T: Then, we have

d	0iðtÞ ¼ dxiðtÞ ¼
Xn�1
j¼1

½ðaij f ð	
0
j � 	

0
iÞ þ b2ijgð	

0
j � 	

0
iÞÞdt

þ bijgð	
0
j � 	

0
iÞdwijðtÞ� � ainf ð	

0
iÞdt

� b2ingð	
0
iÞdt� bingð	

0
iÞdwinðtÞ, i 2 In�1

ð11Þ

and

	0nðtÞ ¼ 0:

Similar to Theorem 3.1, the Lyapunov function is

defined as

V1ðtÞ ¼
Xn
i¼1

	
02
i ðtÞ:

Then,

LV1ðtÞ ¼
Xn�1
i¼1

2	0iðtÞ

" Xn�1
j¼1

ðaij f ð	
0
j� 	

0
iÞþb2ijgð	

0
j� 	

0
iÞÞ

!

�ain fð	
0
iÞ�b2ingð	

0
iÞ

#

þ
Xn�1
i¼1

"Xn�1
j¼1

b2ijg
2ð	j� 	iÞþb2ing

2ð	0iÞ

#

��
Xn�1
i¼1

Xn�1
j¼1

aijð	
0
j� 	

0
iÞfð	

0
j� 	

0
iÞ�

Xn�1
i¼1

2ain	
0
iðtÞf ð	

0
iÞ

���
Xn�1
i¼1

Xn�1
j¼1

aijk	
0
j� 	

0
ik

1þ��2�
Xn�1
i¼1

aink	
0
ik

1þ�

���

"Xn�1
i¼1

Xn�1
j¼1

a
2

1þ�

ij ð	
0
j� 	

0
iÞ
2
þ2

Xn�1
i¼1

a
2

1þ�

in ð	
0
iÞ
2

#1þ�
2

:

ð12Þ

Let �C ¼ ½a
2

1þ�

ij �1�i,j�n�1, ~a ¼ ½a
2

1þ�

1n , a
2

1þ�

2n , . . . , a
2

1þ�

ðn�1Þn�
T:

Since the communication topology among the fol-

lowers is undirected and connected, Lð �CÞ þ diagð ~aÞ is

positive definite by Lemma 2.4. We denote the smallest

eigenvalue by �1ðLð �CÞ þ diagð ~aÞÞ: Then

Xn�1
i¼1

Xn�1
j¼1

a
2

1þ�

ij ð	
0
j � 	

0
iÞ
2
þ 2

Xn�1
i¼1

a
2

1þ�

in ð	
0
iÞ
2

¼ 2 �	TðLð �CÞ þ diagð ~aÞÞ �	

� 2�1ðLð �CÞ þ diagð ~aÞÞ �	T �	: ð13Þ
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Therefore,

LV1ðtÞ � ��½2�1ðLð �CÞ þ diagð ~aÞÞV1ðtÞ�
1þ�
2

¼ ��ð2�1ðLð �CÞ þ diagð ~aÞÞÞ
1þ�
2 V1ðtÞ

1þ�
2 : ð14Þ

Thus, by Lemma 2.5, the multi-agent system (3)
achieves the finite-time consensus in probability. Let
K2 ¼ �ð2�1ðLð �C Þ þ diagð ~aÞÞÞ

1þ�
2 , we have E½Tðx0,wÞ� �

2ðV1ðx0ÞÞ
1��
2

K2ð1��Þ
: œ

3.2 Finite-time consensus under directed graph

For directed graph, we first give a corollary of
Theorem 3.2. Then, we discuss the finite-time con-
sensus in probability when the communication topol-
ogy G is a directed tree, and we extend the result to a
special directed graph.

Corollary 3.3: Under the assumptions (i)–(iv), suppose
that the multi-agent system (1) has a leader and n� 1
followers, and the followers receive information only
from the leader. Then the multi-agent system (3)
achieves the finite-time consensus in probability.

Proof: Without loss of generality, we assume agents
1, 2, . . . , n� 1 are the followers and agent n is the
leader. Thus, we have [aij]1�i,j�n�1¼ [bij]1�i,j�n�1¼ 0,
an1¼ an2¼ � � � ¼ ann¼ 0 and bn1¼ bn2¼ � � � ¼ bnn¼ 0,
�a40, where �a¼ [a1n, a2n, . . . , a(n�1)n]

T. Therefore, it is
easy to get the conclusion of Corollary 3.3 from
Theorem 3.2. œ

In Theorem 3.1, the network is undirected and
connected, and in Theorem 3.2, the network among the
followers is undirected and connected. Motivated by
Corollary 3.3, we extend the previous results to a class
of special directed network – directed tree as follows.

Theorem 3.4: Under the assumptions (i)–(iv), suppose
that the network G is a directed tree. Then the multi-
agent system (3) can achieve the finite-time consensus in
probability.

Proof: Without loss of generality, we assume agent 1
is the leader. Assume further that all vertices of the
directed tree G can be classified into the following
subsets: V0¼ {v1}, V1¼ {vj2V : vj only receives infor-
mation from v1 at any time t}, . . . ,Vq¼ {vj2V : vj only
receives information from vertex in Vq�1 at any time t}.
Moreover,

Sq
p¼1 Vp ¼ V:

Let the event A: the agents corresponding to the
vertices in subset V1, achieve the finite-time consensus.
From Corollary 3.3, we have P(A)¼ 1. Let the event B:
the agents corresponding to the vertices in
subset V2, achieve the finite-time consensus. If the
event A holds, i.e. there exists a settling time T1,

limt!T�
1
kxjðtÞ � x1k ¼ 0 and xj(t)¼ x1 when t�T1 for

all j2 { j : vj2V1}. Hence,

dxiðtÞ ¼ aij f ðxj � xiÞ þ b2ijgðxj � xiÞ þ bijgðxj � xiÞ _wijðtÞ

¼ aij f ðx1 � xiÞ þ b2ijgðx1 � xiÞ

þ bijgðx1 � xiÞ _wijðtÞ, vi 2 V2, vj 2 V1 ð15Þ

when t�T1.
Let �	iðtÞ ¼ xiðtÞ � x1ðtÞ and V2ðtÞ ¼

P
i2fi:vi2V2g

�	2i ðtÞ:
We conclude that the agents corresponding to the
vertices in subset V2 achieve the finite-time consensus
in probability when the event A holds, i.e. P(B jA)¼ 1.

Based on the conditional probability formula:
PðB j AÞ ¼ PðABÞ

PðAÞ ¼ PðABÞ, the agents corresponding
to the vertices in V1

S
V2 achieve the finite-time

consensus in probability. By induction, the multi-
agent system (3) achieves the finite-time consensus in
probability. œ

Here, we consider the other special directed net-
work which is an extension of directed tree. We assume
that agent 1 is the leader. Assume further that all
vertices of the directed network G can be classified into
the following subsets: V0¼ {v1}, V1¼ {vj2V : vj only
receives information from v1 at any time t}, . . . ,
Vq¼ {vj2V : vj only receives information from
vertex in

Sq�1
p¼0 Vp at any time t}. Moreover,Sq

p¼1 Vp ¼ V: Under this directed network, we get
the following result on the finite-time consensus in
probability.

Theorem 3.5: Suppose the directed network G satisfies
the above assumption, and the assumptions (i)–(iv) hold.
Then the multi-agent system (3) can achieve the finite-
time consensus in probability. œ

4. Simulation examples

In this section, we present some examples to illustrate
the theorems and corollary established above.

We consider the network G¼ (V,E ) formed by five
autonomous agents with the dynamics (1). It is assumed
that aij¼ bij¼ 1 if (vj, vi)2E, otherwise aij¼ bij¼ 0,
where i, j2I5 and vi, vj2V. Let f ð�Þ ¼ sigð�Þ

1
3 and

g(�)¼ �, wij are equal for all i, j2I5, then the assump-
tion holds obviously. Moreover, the initial value of
agents are set to be x0¼ [1,�5, 5, 3, 2]T. In the following
numerical simulations, we resort to the MATLAB
Simulink Toolbox.

Example 4.1: Consider the network G in Figure 1. It
can be noted that G is an undirected and connected
graph. Then, the motion trajectories of the five
autonomous agents are illustrated in Figure 2. It is
easy to see that the consensus state of the five agents is
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1
5

P5
i¼1 xi0 ¼ 1:2 in probability in Figure 2, which

accords with the results established in Theorem 3.1.

Example 4.2: The multi-agent system (1) has a
leader 5 and the four followers, and the

communication topology among the followers is

undirected and connected group (Figure 3). Then,

Figure 4 demonstrates the motion trajectories of the

five autonomous agents. We can see that the consensus
state of the five agents is the leader’s state in probability
in Figure 4, which accords with the results established in
Theorem 3.2.

Example 4.3: The multi-agent system (1) has a
leader 5 and four followers, and relevant communica-
tion topology is shown in Figure 5. Obviously, these
four followers can just receive information from the
leader 5. Then, the motion trajectories of the five
autonomous agents are given in Figure 6. Note that the
consensus state of the five agents is the leader’s state in
probability in Figure 6, which accords with the results
established in Corollary 3.3.

Example 4.4: Consider the network G which is a
directed tree in Figure 7. By virtue of numerical
simulation, the motion trajectories of the five auton-
omous agents are illustrated in Figure 8. Note that
the consensus state of the five agents is the root
vertex’s (the agent 1) state in probability in Figure 8,
which accords with the results established in
Theorem 3.4.

0 0.5 1 1.5 2 2.5 3
−5

−4

−3

−2

−1

0

1

2

3

4

5

t

S
ta

te

agent 1

agent 2

agent 3

agent 4

agent 5

Figure 2. Motion trajectories with network G in Figure 1.
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Figure 4. Motion trajectories with network G in Figure 3.

Figure 3. G in Example 4.2.

Figure 1. G in Example 4.1.

Figure 5. G in Example 4.3.
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Example 4.5: Consider the network G in Figure 9,
then the motion trajectories of the five autonomous
agents are given in Figure 10. Note that the consensus
state of the five agents is the agent 1’s state in

probability in Figure 10, which accords with the results
established in Theorem 3.5.

5. Conclusions

In this article, we study the finite-time consensus in
probability for stochastic multi-agent system under five
different kinds of communication topologies, and give
some examples to illustrate the effectiveness of the
theoretical results. We will extend the idea in this
article to the more complicated multi-agent systems in
the future works such as stochastic multi-agent systems
with non-symmetric noises or communication delays.
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