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Background

=» (Web) service

B (Web) Service

» A (Web) service is a self-describing programmable
application used to achieve interoperability and accessibility
over a network

* Traditional (Web) Service ==

WSDL xmL) Interface _

— WSDL: an XML file following some standards
— Interface: a function
— SOAP: Simple Object Access Protocol

* Modern (Web) Service == an independent resource in =x =
a network or Internet
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=» (Web) service

B Example 1

> Amazon Database Service

» Amazon Storage Service 2> AWS

» Windows Aure Storage Service

awsdocumentatio

awsdocumentation
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Available Libraries

Troubleshooting
Applications

Setting up the Command
Line Tools

Document History

Amazon RDS Resources

Amazon Database
Service
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=» (Web) service

B Example 2
» Open API:
— Douban, Sina Welibo, Baidu Map, Xiami...
— Facebook, Twitter, eBay, Google Map, Bing Map...
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Background

=» (Web) service

B Example 3:

» Some other resources in Internet, a network or a system
— Online tools
Google docs, Slideshare PPT, Online Latex, Online Mall,

Online Storage, Online Bus Query, Online NLP
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Background

=» (Web) service

B Service Computing

» a sub-field of software engineering and distributed
computing

» Research topics: service selection, service composition,
service discovery, service recommendation, service
orchestration, etc.

» Conference: IEEE ICWS (Inter. Conf. Web Services),
ICSOC (Inter. Conf. Service-oriented Computing)

» Journal: IEEE trans. Service Computing (TSC)

» CCF: CCF Technical Committee on Service Computmg
(CCF TCSC)
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=» service recommendation

B Service explosion

» Cloud computing (a lot of applications are provided as
services)

» Mobile computing (a lot of apps are based on open apis)

-2 the number of (Web) services is exploding

« Challnge I]]|

» People want to use the ‘best’ service, but people don’t
know where the ‘best’ one is.

» |s there a service suitable for everyone? No - Why? -
Context




Background

=» service recommendation

» So the problem is : which one should | use?

B Measure / Criteria
» Quality of Service, QoS
» E.qg., response time, throughput, reliability, etc.

\ J

Y

» Similar to the rating prediction problem in e-commerce
systems

» User -<>- User; Item -<>- Service; QoS -<>- Rating




Background

=» service recommendation

B Formalization of the Problem
» Personalized QoS prediction
» User-Service Invocation Matrix

Sufficient
A servicel service2 service3 service4d Features
million
L userl Oy % 3 ” » +
i -z = = Effective
user3 » Y3 V3 ¢ Model
user4 U4z » 4 Usa
users » Os3 »
>
B Challenge million
» Data Sparsity - Cold Start Problem Cold-Start
Problem

> Large Scale - Feasibility



Context-aware recommendation

B Contextual Features Selection
» Basis: factors dominating QoS: physical configuration

Service
\) Provider »

CPU, Memory,
Bandwidth etc.

Bandwidth etc. Network

Connection etc.

B Feature Modeling
» User-User: Geographical Distance
» Service-Service: Service Provider




Context-aware recommendation

B Observation

» For the exactly same service or user: Just the same as
Eity’ town, communit)/ browsing in Internet
Y

v’ Users in different locations usually experience different QoS
v Users in the same location usually experience similar QoS

v’ Services operated by different providers usually offer different QoS
v’ Services operated by the same providers usually offer similar QoS

B Assumption:

» Users located nearly with each other have similar IT
infrastructure

» Services provided by the same company have similar




Context-aware recommendation

B Probabilistic Matrix Factorization

» MF can factorize the high-rank user-service invocation
feature space into the joint low-rank feature space
» Q={q;}: mXn user-service invocation matrix
» UeRMM SR user and service feature matrices
=
oF zUiTSj

Inner product of two d-rank feature vectors

min == 31,0, ~U7S, )+ [} + s}

=1l j=1
\ J

\ Regularization Term
Objective Function




Context-aware features learning

= User Side

B User Feature Learning

k
- A T . T Learned from his/her neighbors’
Gy ~ dy =l S;+(1 a)zw”u' J invocation experience

B New Objective Function
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rﬁzailu S (eU]S,; +(1- a)Zw..U S; =)+ AU

m k
g—zlu(au S, +(1- a)ZW,,U S, —0;)x(aU; +(1-a)> WU)) + As8iny =
i=1 =1 "F L




Context-aware features learning

=» Service Side

B Reasonable Combination

Oij zf]ij :anTS + (11— a) )‘ ZUiTSC

ceC(])

Learned from its neighbors’
invocated experience

B New Objective Function

=5 22 ~(@UTS, e s SISO+ S+ ISl

2 i=1 j=1 ceC(j)

(Stochastic) Gradient Descent = Local Minimum
the same with the computation process of user-side




Experiment

B Preparation
» Dataset: real world dataset
» Matrix Density: 5%~20%
» Evaluation Metrics: RMSE and MAE
» Result: average of multiple testing

Matrix Density (MD)
Approach MD=5% MD=10% MD=15% MD=20%
RMSE| MAE |[RMSE| MAE [RMSE| MAE [RMSE| MAE
UPCC | 1.6940| 0.7229 | 1.6101 | 0.6473 | 1.4959 | 0.5674 |1.3993 | 0.5087
IPCC 1.6346 | 0.7347 | 1.5439 | 0.6610 | 1.4104 | 0.5813 |1.3109 | 0.5130
UIPCC | 1.5837 | 0.7043 | 1.4744| 0.6208 [ 1.3458 | 0.5436 |1.2594| 0.4819
ML-based RegionKNN| 1.5681 | 0.6958 | 1.4554 ] 0.6092 | 1.3335| 0.5343 |1.2532| 0.4752
Basie-MFE | 1.4952 | 0.7251 [ 1.3127 [ 0.5902 | 1.2671 | 0.5431 | 1.2261| 0.5078
EMF_F | 1.4790| 0.7162 | 1.2955 | 0.5737 | 1.2451 | 0.5316 | 1.2156 | 0.5040
I-\ NIMF 1.4023 | 0.6316 | 1.2702| 0.5384 | 1.2215| 0.5164 |1.1908 | 0.4903
Service-side \ SN-EMF [1.3935|0.6273 |1.2689| 0.5363 [1.2276] 0.5022 [1.2065| 0.4872
- I-\ UN-EMF [1.3850{0.6139 |1.2666| 0.5359 |1.2207| 0.5077 [1.1898| 0.4900

Unification U-EME |1.3503] 0.5840 |1.2548] 0.5171 [1.2117] 0.4000 |[1.1701] 0.4681

Memory-
based




Experiment

B I[mpact of «

» The parameter « controls the individual contributions of
the user/service and their neighbors to the predicted
value
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