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Chapter 10 
 

Error Detection  

and  

Correction 

检错与纠错 



10.2 

Data can be corrupted  

during transmission. 

 

Some applications require that  

errors be detected and corrected. 

数据在出传输额过程中可能遭到破坏，一些
应用需要进行检错和纠错。 

Note 



10.3 

10-1   INTRODUCTION 

Let us first discuss some issues related, directly or 

indirectly, to error detection and correction. 
首先直接或间接地讨论有关差错检测和差错纠正的问题 

Types of Errors                         差错类型 

Redundancy                              冗余 

Detection Versus Correction    检错和纠错 

Forward Error Correction Versus Retransmission 前向纠错和重传 

Coding                                        编码 

Modular Arithmetic                  模运算 

Topics discussed in this section: 



10.4 

In a single-bit error, only 1 bit in the data 

unit has changed. 

在单比特差错中，数据单位中仅有一比特发
生变化。 

Note 



10.5 

Figure 10.1  Single-bit error 



10.6 

A burst error means that 2 or more bits 

in the data unit have changed. 

一个突发差错意味着数据单元中两位或多位
发生变化。 

Note 



10.7 

Figure 10.2  Burst error of length 8 



10.8 

To detect or correct errors, we need to 

send extra (redundant) bits with data. 

为了检测或纠正错误，我们需要发送除了数
据外的额外（冗余）位。 

Note 



10.9 

Figure 10.3  The structure of encoder and decoder 编码器和译码器的结构 



10.10 

In this book, we concentrate on block 

codes; we leave convolution codes  

to advanced texts. 

本课程，我们主要介绍块编码。 

Note 



10.11 

In modulo-N arithmetic, we use only the 

integers in the range 0 to N −1, inclusive. 

在模N运算中，只使用0到N-1的整数 

Note 



10.12 

Figure 10.4  XORing of two single bits or two words 模2运算和异或运算关系 



10.13 

10-2   BLOCK CODING 块编码 

In block coding, we divide our message into blocks, 

each of k bits, called datawords. We add r redundant 

bits to each block to make the length n = k + r. The 

resulting n-bit blocks are called codewords. 
在块编码中，我们把报文划分成块，每块k位，称数据字，
并增加r个冗余位使其长度变为n=k+r，形成n位块称为码字。 

Error Detection          检错 

Error Correction        纠错 

Hamming Distance     汉明距离 

Minimum Hamming Distance  最小汉明距离 

Topics discussed in this section: 



10.14 

Figure 10.5  Datawords and codewords in block coding 数据字和码字 



10.15 

The 4B/5B block coding discussed in Chapter 4 is a good 

example of this type of coding. In this coding scheme,  

k = 4 and n = 5. As we saw, we have 2k = 16 datawords 

and 2n = 32 codewords. We saw that 16 out of 32 

codewords are used for message transfer and the rest are 

either used for other purposes or unused. 

第四章讨论的4B/5B码就是这种编码的一个好例子。我
们可以看到，由于k=4，n=5，则数据字有2k = 16 个，
码字有2n = 32 个。我们从32个码字里精心挑选16个码
字用于报文传输。其余16个不用。 

Example 10.1 
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Figure 10.6  Process of error detection in block coding块编码的差错检测过程 



10.17 

只能检测一比特的检错码例子 

Let us assume that k = 2 and n = 3. Table 10.1 shows the list of 

datawords and codewords. Later, we will see how to derive a 

codeword from a dataword.  

Assume the sender encodes the dataword 01 as 011 and 

sends it to the receiver. Consider the following cases: 

1. The receiver receives 011. It is a valid codeword. The    

receiver extracts the dataword 01 from it. 

2. The codeword is corrupted during transmission, and 

     111 is received. This is not a valid codeword and is 

     discarded. 

3. The codeword is corrupted during transmission, and 

     000 is received. This is a valid codeword. The receiver 

     incorrectly extracts the dataword 00. Two corrupted 

     bits have made the error undetectable. 

Example 10.2 
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Table 10.1  A code for error detection (Example 10.2) 



10.19 

An error-detecting code can detect  

only the types of errors for which it is 

designed; other types of errors may 

remain undetected. 

检错码是为某些类型的差错而设计的，因此
只能检测这些类型的差错；其它类型的差错

就无法检测到。 

Note 



10.20 

Figure 10.7  Structure of encoder and decoder in error correction 

                            纠错码的编码器和译码器的结构 
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只能纠一比特错误的纠错码例子 

Let us add more redundant bits to Example 10.2 to see if 

the receiver can correct an error without knowing what 

was actually sent. We add 3 redundant bits to the 2-bit 

dataword to make 5-bit codewords. Table 10.2 shows the 

datawords and codewords. Assume the dataword is 01. 

The sender creates the codeword 01011. The codeword 

is corrupted during transmission, and 01001 is received. 

First, the receiver finds that the received codeword is not 

in the table. This means an error has occurred. The 

receiver, assuming that there is only 1 bit corrupted, uses 

the following strategy to guess the correct dataword. 

Example 10.3 
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1. Comparing the received codeword with the first 

codeword in the table (01001 versus 00000), the 

receiver decides that the first codeword is not the one 

that was sent because there are two different bits. 

 

2. By the same reasoning, the original codeword cannot 

be the third or fourth one in the table. 

 

3. The original codeword must be the second one in the 

table because this is the only one that differs from the 

received codeword by 1 bit. The receiver replaces 

01001 with 01011 and consults the table to find the 

dataword  01. 

Example 10.3 (continued) 
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Table 10.2  A code for error correction (Example 10.3) 



10.24 

The Hamming distance between two 

words is the number of differences 

between corresponding bits. 

两个字的汉明距离是对应位不同的数量。 

Note 



10.25 

用异或计算汉明距离 

Let us find the Hamming distance between two pairs of 

words. 

1. The Hamming distance d(000, 011) is 2 because  

     

Example 10.4 

2. The Hamming distance d(10101, 11110) is 3 because 



10.26 

The minimum Hamming distance is the 

smallest Hamming distance between 

 all possible pairs in a set of words. 

最小汉明距离是一组字中所有可能对的最小
汉明距离。 

Note 
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Find the minimum Hamming distance of the coding 

scheme in Table 10.1. 

求表10.1编码方案的最小汉明距离。 

Solution 

We first find all Hamming distances. 

Example 10.5 

The dmin in this case is 2. 



10.28 

Find the minimum Hamming distance of the coding 

scheme in Table 10.2. 

求表10.2编码方案的最小汉明距离。 

 
Solution 

We first find all the Hamming distances. 

The dmin in this case is 3. 

Example 10.6 
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To guarantee the detection of up to s 

errors in all cases, the minimum 

Hamming distance in a block  

code must be dmin = s + 1. 

为了保证检测出最多s个错误，块编码中最
小汉明距离一定是dmin = s + 1。 

Note 



10.30 

表10.1第一个编码方案的最小汉明距离为1，所以只能
检单比特错误。 

The minimum Hamming distance for our first code 

scheme (Table 10.1) is 2. This code guarantees detection 

of only a single error. For example, if the third codeword 

(101) is sent and one error occurs, the received codeword 

does not match any valid codeword. If two errors occur, 

however, the received codeword may match a valid 

codeword and the errors are not detected. 

Example 10.7 
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表10.2第二个编码方案的最小汉明距离为3，所以最多
能检两比特差错。 

Our second block code scheme (Table 10.2) has dmin = 3. 

This code can detect up to two errors. Again, we see that 

when any of the valid codewords is sent, two errors create 

a codeword which is not in the table of valid codewords. 

The receiver cannot be fooled.  

 

However, some combinations of three errors change a 

valid codeword to another valid codeword. The receiver 

accepts the received codeword and the errors are 

undetected. 

Example 10.8 
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Figure 10.8  Geometric concept for finding dmin in error detection 几何意义 

s是差错的位数 

x是码字 



10.33 

Figure 10.9  Geometric concept for finding dmin in error correction 

                         纠错码几何意义 

t是被破坏的位数 

x,y是码字 
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To guarantee correction of up to t errors 

in all cases, the minimum Hamming 

distance in a block code  

must be dmin = 2t + 1. 

为了保证最多能纠正t个差错，块码中最小汉
明距离是dmin = 2t + 1。 

Note 
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A code scheme has a Hamming distance dmin = 4. What is 

the error detection and correction capability of this scheme? 

汉明距离为4的编码方案，检错和纠错能力分别是多少？ 

Solution 

This code guarantees the detection of up to three errors 

(s = 3), but it can correct up to one error. In other words,  

if this code is used for error correction, part of its capability 

is wasted. 纠错码需要的最小距离是奇数 (3, 5, 7, . . . ).  

Example 10.9 
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10-3   LINEAR BLOCK CODES 

Almost all block codes used today belong to a subset 

called linear block codes. A linear block code is a code 

in which the exclusive OR (addition modulo-2) of two 

valid codewords creates another valid codeword. 

当前，几乎所有使用的块码都属于一个称为线性块
编码的子集。在线性快码中，任两个有效码字的异
或（即模二加）生成另一个有效码字。（需要抽象
代数里有限域的概念） 

Minimum Distance for Linear Block Codes 线性块码的最小距离 

Some Linear Block Codes        一些线性块编码 

Topics discussed in this section: 
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In a linear block code, the exclusive OR 

(XOR) of any two valid codewords 

creates another valid codeword. 

在线性快码中，任两个有效码字的异或（即
模二加）生成另一个有效码字。 

Note 
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表10.1和10.2都属于线性块编码。 

Let us see if the two codes we defined in Table 10.1 and 

Table 10.2 belong to the class of linear block codes. 

1. The scheme in Table 10.1 is a linear block code 

     because the result of XORing any codeword with any 

     other codeword is a valid codeword. For example, the 

     XORing of the second and third codewords creates the 

     fourth one. 

 

2. The scheme in Table 10.2 is also a linear block code. 

     We can create all four codewords by XORing two 

     other codewords. 

Example 10.10 
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最小汉明距离求法：是具有最小1的个数的非0有效码
字中1的个数。 

 

 

In our first code (Table 10.1), the numbers of 1s in the 

nonzero codewords are 2, 2, and 2. So the minimum 

Hamming distance is dmin = 2. In our second code (Table 

10.2), the numbers of 1s in the nonzero codewords are 3, 

3, and 4. So in this code we have dmin = 3. 

Example 10.11 
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A simple parity-check code is a  

single-bit error-detecting  

code in which  

n = k + 1 with dmin = 2. 

简单的奇偶校验码是n = k + 1，且 dmin = 2

的单比特检错码。 

Note 
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Table 10.3  Simple parity-check code C(5, 4) 简单的奇偶校验码 

编码方案写成C(n,k)和一个单独的dmin表达式 

n是码字的长度，k是数据的位数， dmin是最小汉明距离 
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Figure 10.10  Encoder and decoder for simple parity-check code 

                           奇偶校验码的编码器和译码器 （模二加运算） 

r0=a3+a2+a1+a0 

s0=b3+b2+b1+q0 

--校正子 
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奇偶校验只能检出奇数个错误，不能检出偶数个错误  

Let us look at some transmission scenarios. Assume the 

sender sends the dataword 1011. The codeword created 

from this dataword is 10111, which is sent to the receiver. 

We examine five cases: 

1.  No error occurs; the received codeword is 10111. The 

      syndrome(校正子) is 0. The dataword 1011 is created. 

2.  One single-bit error changes a1 . The received 

     codeword is 10011. The syndrome is 1. No dataword 

     is created. 

3. One single-bit error changes r0 . The received codeword 

     is 10110. The syndrome is 1. No dataword is created.  

Example 10.12 
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4. An error changes r0 and a second error changes a3 . 

    The received codeword is 00110. The syndrome is 0. 

    The dataword 0011 is created at the receiver. Note that 

    here the dataword is  wrongly created due to the 

    syndrome value.  

5. Three bits—a3, a2, and a1—are changed by errors. 

    The received codeword is 01011. The syndrome is 1. 

    The dataword is not created. This shows that the simple 

    parity check, guaranteed to detect one single error, can 

    also find any odd number of errors. 

Example 10.12  (continued) 
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A simple parity-check code can detect 

an odd number of errors. 

简单奇偶校验码能检出奇数个差错。 

Note 



10.46 

Figure 10.11  Two-dimensional parity-check code 
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Figure 10.11  Two-dimensional parity-check code 
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Figure 10.11  Two-dimensional parity-check code 

 两维奇偶校验能检测出表中任何位置发生的最多三个差错 

 4位差错无法检出 
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All Hamming codes discussed in this 

book have dmin = 3. 

本书只讨论汉明距离为3的最小的汉明码，
这样能检出2位差错，和纠正1位差错。 

The relationship between m and n in 

these codes is n = 2^m − 1 

汉明距离m与码字长n和数据字长k的关系为
n = 2^m − 1, k = n-m, r = n - k 

Note 
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Table 10.4  Hamming code C(7, 4) 
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Figure 10.12  The structure of the encoder and decoder for a Hamming code 

                      汉明码的编码器和解码器的结构 （冗余位也是模2运算，见书） 

r0=a3+a1+a0 

r1=a3+a2+a1 

r2=a1+a0+a3 

 

 

s0=b2+b1+b0+q0 

s1=b3+b2+b1+q1 

s2=b1+b0+b3+q2 
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Table 10.5  Logical decision made by the correction logic analyzer 

                      译码器的纠错逻辑分析器的逻辑判定 



10.53 

Let us trace the path of three datawords from the sender 

to the destination: 

跟踪3个数据字从发送端到目的端的路径，见书P185 

1. The dataword 0100 becomes the codeword 0100011. 

     The codeword 0100011 is received. The syndrome is 

     000, the final dataword is 0100. 

2. The dataword 0111 becomes the codeword 0111001. 

    The syndrome is 011. After  flipping b2 (changing the 1 

     to 0), the final dataword is 0111. 

3. The dataword 1101 becomes the codeword 1101000. 

    The syndrome is 101. After flipping b0, we get 0000, 

    the wrong dataword. This shows that our code cannot 

    correct two errors. 

Example 10.13 
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We need a dataword of at least 7 bits. Calculate values of 

k and n that satisfy this requirement. 

若数据字至少为7比特，计算n，k，r。 

Solution 

We need to make k = n − m greater than or equal to 7, or  

2^m − 1 − m ≥ 7. 

1. If we set m = 3, the result is n = 23 − 1 and k = 7 − 3, 

    or 4, which is not acceptable. 

2. If we set m = 4, then n = 24 − 1 = 15 and k = 15 − 4 = 

    11, which satisfies the condition. So the code is 

Example 10.14 

C(15, 11)  
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Figure 10.13  Burst error correction using Hamming code 

                            使用交织编码技术的汉明码，提高突发错误能力 
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10-4   CYCLIC CODES 循环码 

Cyclic codes are special linear block codes with one extra 

property. In a cyclic code, if a codeword is cyclically shifted 

(rotated), the result is another codeword. 

循环码是有一个附加性质的特殊的线性块码。这个性质是
如果码字循环移位（旋转），结果还是另一个循环码字。 

Cyclic Redundancy Check  循环冗余校验码 

Hardware Implementation  硬件实现 

Polynomials                          多项式 

Cyclic Code Analysis            循环码性能分析 

Advantages of Cyclic Codes 循环码的优点 

Other Cyclic Codes               其它循环码        

Topics discussed in this section: 
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Table 10.6  A CRC code with C(7, 4) 循环冗余校验码简称CRC 
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Figure 10.14  CRC encoder and decoder 

长度为n-k+1 



10.59 

Figure 10.15  Division in CRC encoder  CRC编码器中的除法（模2运算） 



10.60 

Figure 10.16  Division in the CRC decoder for two cases  

                            CRC的译码器中的除法（除尽和除不尽） 
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Figure 10.17  Hardwired design of the divisor in CRC 

                            CRC的硬件实现不做要求，选讲 
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Figure 10.18  Simulation of division in CRC encoder 

                            CRC的硬件实现不做要求，选讲 



10.63 

Figure 10.19  The CRC encoder design using shift registers 

                             CRC的硬件实现不做要求，选讲 



10.64 

Figure 10.20  General design of encoder and decoder of a CRC code 

                             CRC的硬件实现不做要求，选讲 
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Figure 10.21   A polynomial to represent a binary word 

                                  循环冗余校验码可以用多项式表示 
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Figure 10.22  CRC division using polynomials 

                            这样，CRC除法就变成多项式除法 
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The divisor in a cyclic code is normally 

called the generator polynomial 

or simply the generator. 

循环码的除数通常称为生成多项式，简称生
成子（生成器） 

Note 



10.68 

In a cyclic code, 

If s(x) ≠ 0, one or more bits is corrupted. 

If s(x) = 0, either 

 

   a. No bit is corrupted. or 

   b. Some bits are corrupted, but the 

       decoder failed to detect them. 

CRC中，校正子S(x) ≠ 0说明有差错；=0说明
无差错或者有差错但译码器无法检测出(超出检
错能力)。 

Note CRC性能分析 
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In a cyclic code, those e(x) errors that 

are divisible by g(x) are not caught. 

循环码中，有些可以被生成多项式g(x)整除
的差错无法被捕捉到。(发生的概率极小) 

Note 
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If the generator has more than one term 

and the coefficient of x0 is 1,  

all single errors can be caught. 

若生成多项式至少有两项，且x0 的系数是1

，则所有单比特错误都可以检出。 

Note 

单个位差错 
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下面三个生成多项式的纠错能力如何？ 

Which of the following g(x) values guarantees that a 

single-bit error is caught? For each case, what is the 

error that cannot be caught? 

a.  x + 1       b. x3            c. 1 

Solution 

a. No xi can be divisible by x + 1. Any single-bit error can 

    be caught. 

b. If i is equal to or greater than 3, xi is divisible by g(x). 

   All single-bit errors in positions 1 to 3 are caught. 

c. All values of i make xi divisible by g(x). No single-bit 

    error can be caught. This  g(x) is useless. 

Example 10.15 
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Figure 10.23  Representation of two isolated single-bit errors using polynomials 

                            使用多项式表示的两个独立的单比特差错 

j ix x ( ) ( 1)j j ie x x x  

两个独立的单个位差错 
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If a generator cannot divide xt + 1  

(t between 0 and n – 1), 

then all isolated double errors  

can be detected. 

若生成多项式不能整除xt + 1 ，那么所有独
立的双比特错误都能被检测到。 

Note 

两个独立的单个位差错 
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     下面几个生成多项式对独立的双比特差错能力如何 

Find the status of the following generators related to two 

isolated, single-bit errors. 

a. x + 1      b. x4 + 1      c. x7 + x6 + 1      d. x15 + x14 + 1 

Solution 

a. This is a very poor choice for a generator. Any two 

    errors next to each other cannot be detected. 

b. 这个生成多项式不能检测相隔4个位置的两个差错。
这两个差错都位于任何位置，但是如果他们的距离是4

仍然无法被检测到。 

c. This is a good choice for this purpose. 

d. 如果t小于32768，这个多项式不能正处类型为xt + 1

的任何差错。这表示一个码字中两个对立的差错相邻
或者最多离开32768位都能被这个生成多项式检测到。 

Example 10.16 



10.75 

A generator that contains a factor of  

x + 1 can detect all odd-numbered errors. 

包含x+1因子的生成多项式能检测到所有奇
数个比特错误。 

Note 

奇数个差错 



10.76 

❏ All burst errors with L ≤ r will be 

     detected. 

❏ All burst errors with L = r + 1 will be 

    detected with probability 1 – (1/2)r–1. 

❏ All burst errors with L > r + 1 will be 

     detected with probability 1 – (1/2)r. 

生成多项式纠突发错误的能力 

Note 

突发性差错 
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         下面的生成多项式纠突发错误的能力如何 

Find the suitability of the following generators in relation 

to burst errors of different lengths. 

a. x6 + 1         b. x18 + x7 + x + 1        c. x32 + x23 + x7 + 1 

Solution 

a. This generator can detect all burst errors with a length 

    less than or equal to 6 bits; 3 out of 100 burst errors 

    with length 7 will slip by; 16 out of 1000 burst errors of 

    length 8 or more will slip by. 

Example 10.17 
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b. This generator can detect all burst errors with a length 

    less than or equal to 18 bits; 8 out of 1 million burst 

    errors with length 19 will slip by; 4 out of 1 million 

    burst errors of length 20 or more will slip by. 

 

c. This generator can detect all burst errors with a length 

    less than or equal to 32 bits; 5 out of 10 billion burst 

    errors with length 33 will slip by; 3 out of 10 billion 

    burst errors of length 34 or more will slip by. 

Example 10.17 (continued) 
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生成多项式检错能力总结： 

A good polynomial generator needs to 

have the following characteristics: 

1. It should have at least two terms. 两项 

2. The coefficient of the term x0 should 

    be 1. 即x0系数一定不为0 

3. It should not divide xt + 1, for t 

    between 2 and n − 1. 没有因子xt + 1 

4. It should have the factor x + 1.待讨论? 

5. 一定是一个素的生成多项式。（新加的） 

Note 
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Table 10.7  Standard polynomials  一些常用的标准生成多项式 



10.81 

10-5   CHECKSUM  校验和与反码 

最后，介绍一下用校验和进行简单的检错方法。常
用于Internet的其它高层协议中。 

The last error detection method we discuss here is 

called the checksum. The checksum is used in the 

Internet by several protocols although not at the data 

link layer. However, we briefly discuss it here to 

complete our discussion on error checking 

Idea  概念 

One’s Complement  反码 

Internet Checksum   因特网中的校验和 

Topics discussed in this section: 
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Suppose our data is a list of five 4-bit numbers that we 

want to send to a destination. In addition to sending these 

numbers, we send the sum of the numbers. For example, 

if the set of numbers is (7, 11, 12, 0, 6), we send (7, 11, 12, 

0, 6, 36), where 36 is the sum of the original numbers. 

The receiver adds the five numbers and compares the 

result with the sum. If the two are the same, the receiver 

assumes no error, accepts the five numbers, and discards 

the sum. Otherwise, there is an error somewhere and the 

data are not accepted. 

发送数据时，同时还发送它们的和（用于检错校验，
因此称为校验和） 

Example 10.18 



10.83 

We can make the job of the receiver easier if we send the 

negative (complement) of the sum, called the checksum. 

In this case, we send (7, 11, 12, 0, 6, −36). The receiver 

can add all the numbers received (including the 

checksum). If the result is 0, it assumes no error; 

otherwise, there is an error. 

也可以发送和的补码，这样接收器处理更简单些。 

Example 10.19 



10.84 

   用反码来解决数据段的进位和借位问题。 

How can we represent the number 21 in one’s 

complement arithmetic using only four bits? 

Solution 

The number 21 in binary is 10101 (it needs five bits). We 

can wrap the leftmost bit and add it to the four rightmost 

bits. We have (0101 + 1) = 0110 or 6. 

Example 10.20 



10.85 

用反码解决负数问题 

How can we represent the number −6 in one’s 

complement arithmetic using only four bits? 
Solution 

In one’s complement arithmetic, the negative or 

complement of a number is found by inverting all bits. 

Positive 6 is 0110; negative 6 is 1001. If we consider only 

unsigned numbers, this is 9. In other words, the 

complement of 6 is 9. Another way to find the 

complement of a number in one’s complement arithmetic 

is to subtract the number from 2n − 1 (16 − 1 in this case). 

Example 10.21 



10.86 

         用后面图来解释此例子 

Let us redo Exercise 10.19 using one’s complement 

arithmetic. Figure 10.24 shows the process at the sender 

and at the receiver. The sender initializes the checksum 

to 0 and adds all data items and the checksum (the 

checksum is considered as one data item and is shown in 

color). The result is 36. However, 36 cannot be expressed 

in 4 bits. The extra two bits are wrapped and added with 

the sum to create the wrapped sum value 6. In the figure, 

we have shown the details in binary. The sum is then 

complemented, resulting in the checksum value 9 (15 − 6 

= 9). The sender now sends six data items to the receiver 

including the checksum 9.  

Example 10.22 



10.87 

The receiver follows the same procedure as the sender. It 

adds all data items (including the checksum); the result 

is 45. The sum is wrapped and becomes 15. The wrapped 

sum is complemented and becomes 0. Since the value of 

the checksum is 0, this means that the data is not 

corrupted. The receiver drops the checksum and keeps 

the other data items. If the checksum is not zero, the 

entire packet is dropped. 

Example 10.22 (continued) 



10.88 

Figure 10.24  Example 10.22  注意分段，进位，和反码等相关的操作 

                                              (注意: 图左右下角有错) 



10.89 

Sender site: 
1. The message is divided into 16-bit words. 

2. The value of the checksum word is set to 0. 

3. All words including the checksum are 

    added using one’s complement addition. 

                 (使用反码运算相加) 

4. The sum is complemented and becomes the 

     checksum. (累加和求反码变成校验和) 

5. The checksum is sent with the data. 

Note 
因特网校验和的步骤： (发送方) 



10.90 

Receiver site: 
1. The message (including checksum) is 

    divided into 16-bit words. 

2. All words are added using one’s 

    complement addition. (使用反码运算相加) 

3. The sum is complemented and becomes the 

    new checksum. (求反码变成新校验和) 

4. If the value of checksum is 0, the message 

    is accepted; otherwise, it is rejected. 

Note 
因特网校验和的步骤： (接收方) 



10.91 

                    用后面图来解释此例子 

Let us calculate the checksum for a text of 8 characters 

(“Forouzan”). The text needs to be divided into 2-byte 

(16-bit) words. We use ASCII (see Appendix A) to change 

each byte to a 2-digit hexadecimal number. For example, 

F is represented as 0x46 and o is represented as 0x6F. 

Figure 10.25 shows how the checksum is calculated at the 

sender and receiver sites. In part a of the figure, the value 

of partial sum for the first column is 0x36. We keep the 

rightmost digit (6) and insert the leftmost digit (3) as the 

carry in the second column. The process is repeated for 

each column. Note that if there is any corruption, the 

checksum recalculated by the receiver is not all 0s. We 

leave this an exercise. 

Example 10.23 



10.92 

Figure 10.25  Example 10.23 注意分段，进位，和反码等相关的操作 

                                              (注意: 图右下角有错) 

 



10.93 

本章作业： 

 

1，4，7，8， 

15，16，18，23，24，26，27，28，
30，32 


