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‘ Note \

Data can be corrupted
during transmission.

Some applications require that
errors be detected and corrected.
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Let us first discuss some issues related, directly or

indirectly, to error detection and correction.
B 76 E BEBG (5] BE A 1 101 A 22 42 1 12 45 2 IE 1Y 1 8%

Topics discussed in this section:

Types of Errors
Redundancy

Detection Versus Correction
Forward Error Correction Versus Retransmission Bi 7] 2445 F1

Coding
Modular Arithmetic
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‘ Note I

In a single-bit error, only 1 bit in the data
unit has changed.
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Figure 10.1 Single-biterror
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‘ Note I

A burst error means that 2 or more bits
In the data unit have changed.
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Figure 10.2 Bursterror of length 8
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‘ Note I

To detec

t or correct errors, we need to

send extra (redundant) bits with data.
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Figure 10.3 The structure of encoder and decoder 47/5#5 ARG #HTEE 1)
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‘ Note I

In this book, we concentrate on block
codes: we |leave convolution codes
to advanced texts.
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‘ Note I

In modulo-N arithmetic, we use only the
integers |n the range 0 to N -1, inclusive.
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Figure 10.4 XORing of two single bits or two words 22 ZE AL Z I EHEHKF

0O®0=0 1 ®1 =0
. . 10 1 1 0
a. Two bits are the same, the result is O. @ 1 : : 0 0
0 1 0 1 0

0 D1 =1 1 @0 =1
b. Two bits are different, the result is 1. c. Result of XORing two patterns
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10-2 BLOCK CODING gmhy

In block coding, we divide our message into blocks,
each of k bits, called datawords. We add r redundant
bits to each block to make the length n = k + r. The

resulting n-bit blocks are called codewords.
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Topics discussed In this section:

Error Detection k]

Error Correction 248

Hamming Distance X BHFEE

Minimum Hamming Distance /X BH RS
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Figure 10.5 Datawords and codewords in block coding ## Z /5 F
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i Example 10.1

The 4B/5B block coding discussed in Chapter 4 is a good
example of this type of coding. In this coding scheme,
k=4 and n = 5. As we saw, we have 2k = 16 datawords
and 2" = 32 codewords. We saw that 16 out of 32
codewords are used for message transfer and the rest are
either used for other purposes or unused.

EVIZ i 16 #94BI5B Bl A X PGS 1] — T O 7
11U EZ], H7k=4, n=5, HHEIEFEFH2 =16 1,
fGFERE2" = 32 4 BAIM2MEGEEFG LB 1T
FHFRIEAfed. ERL6 .
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Figure 10.6 Process of error detection in block coding 247 /5 #9 2 £ #2- M 1L 7
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,L Example 10.2
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Let us assume that k = 2 and n = 3. Table 10.1 shows the list of
datawords and codewords. Later, we will see how to derive a
codeword from a dataword.

Assume the sender encodes the dataword 01 as 011 and

sends it to the receiver. Consider the following cases:

1. The receiver receives 011. It i1s a valid codeword. The

receiver extracts the dataword 01 from it.

2. The codeword 1Is corrupted during transmission, and
111 1s received. This 1s not a valid codeword and is
discarded.

3. The codeword 1iIs corrupted during transmission, and
000 1s received. This 1s a valid codeword. The receiver
Incorrectly extracts the dataword 00. Two corrupted
bits have made the error undetectable.
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Table 10.1 A code for error detection (Example 10.2)

Datawords Codewords
00 000
01 011
10 101
11 110

10.18




‘ Note \

An error-detecting code can detect
only the types of errors for which it is
designed; other types of errors may
remain undetected
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Figure 10.7 Structure of encoder and decoder in error correction
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,L Example 10.3
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Let us add more redundant bits to Example 10.2 to see if
the receiver can correct an error without knowing what
was actually sent. We add 3 redundant bits to the 2-bit
dataword to make 5-bit codewords. Table 10.2 shows the
datawords and codewords. Assume the dataword is 01.

The sender creates the codeword O1011. The codeword

is corrupted during transmission, and 01001 is received.
First, the receiver finds that the received codeword is not
In the table. This means an error has occurred. The
receiver, assuming that there is only 1 bit corrupted, uses
the following strategy to guess the correct dataword.
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,L Example 10.3 (continued)

1. Comparing the received codeword with the first
codeword iIn the table (01001 versus 00000), the
receiver decides that the first codeword Is not the one
that was sent because there are two different bits.

2. By the same reasoning, the original codeword cannot
be the third or fourth one in the table.

3. The original codeword must be the second one In the
table because this is the only one that differs from the
received codeword by 1 bit. The receiver replaces
01001 with 01011 and consults the table to find the
dataword O1.
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Table 10.2 A code for error correction (Example 10.3)

Dataword Codeword
00 00000
01 01011
10 10101
11 11110
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‘ NoteI

The Hamming distance between two
words is the number of differences
between corresponding bits.
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i Example 10.4

SR T T IX B 5
Let us find the Hamming distance between two pairs of
words.

1. The Hamming distance d(000, 011) is 2 because

000 @ 011 is 011 (two 1s)

2. The Hamming distance d(10101, 11110) is 3 because

10101 @ 111101is 01011 (three 1s)
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‘ NOtEI

The minimum Hamming distance is the
smallest Hamming distance between
all possible pairs in a set of words.
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Example 10.5

Ind the minimum Hamming distance of the coding
scheme in Table 10.1.

KZ10.1 4715 77 L HIR D IX BT 5 -

Solution
We first find all Hamming distances.

d(000,011)=2  d(000, 101)=2  d(000,110)=2  d(O11, 101)=2

d011,110)=2 d(101, 110) =2

The d,;, in this case is 2.

Datawords Codewords
00 000
01 011
10 101
11 110
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Example 10.6

the minimum Hamming distance of the coding
scheme In Table 10.2.

K710.2 945705 7 IR DK 5

Solution
We first find all the Hamming distances.

d(00000, 01011) =3 d(00000, 10101) =3 d(00000, 11110)=4
d(O1011, 10101)=4 d(0O1011, 11110)=3 d(10101,11110)=3
The d_... In this case is 3. o o —
00 00000
01 01011
10 10101
11 11110
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‘ Note \

To guarantee the detection of up to s
errors In all cases, the minimum
Hamming distance in a block
code must bed.,,=5s + 1.
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i Example 10.7
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The minimum Hamming distance for our first code
scheme (Table 10.1) is 2. This code guarantees detection
of only a single error. For example, if the third codeword
(101) is sent and one error occurs, the received codeword
does not match any valid codeword. If two errors occur,
however, the received codeword may match a valid

codeword and the errors are not detected.

Datawords

Codewords

00

000

01

011

10

101

11

110
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i Example 10.8
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Our second block code scheme (Table 10.2) has d.;, = 3.
This code can detect up to two errors. Again, we see that
when any of the valid codewords is sent, two errors create
a codeword which is not in the table of valid codewords.

The recelver cannot be fool

ed.

However, some combinations of three errors change a

valid codeword to anothe

Dataword

Codeword

accepts the received cl

00

00000

01

01011

undetected.

10

10101
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Figure 10.8 Geometric concept for finding dmin in error detection /I /& X

Legend
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® Any corrupted codeword
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Figure 10.9 Geometric concept for finding dmin in error correction
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‘ Note \

To guarantee correction of up to t errors
In all cases, the minimum Hamming
distance in a block code

must be d,,j, = 2t + 1.
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i Example 10.9

A code scheme has a Hamming distance dnin = 4. What is
the error detection and correction capability of this scheme?

DR N4 RIS R, REMAMBERII DA RZD?

Solution

This code guarantees the detection of up to three errors
(s = 3), but it can correct up to one error. In other words,
if this code is used for error correction, part of its capability

is wasted. 25 F IR DEFATEH (3, 5, 7. .. )
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10-3 LINEAR BLOCK CODES

Almost all block codes used today belong to a subset
called linear block codes. A linear block code Is a code
In which the exclusive OR (addition modulo-2) of two
valid codewords creates another valid codeword.

=80, JLPRTA ,mﬁ%@%ﬁﬁ—*—/\*’”ﬁ% LR
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Topics discussed In this section:

Minimum Distance for Linear Block Codes £& 45 i) 5 /NI ES
Some Linear Block Codes — BB 2R M B g
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‘ NOtEI

In a linear block code, the exclusive OR
(XOR) of any two valid codewords
creates another valid codeword.

LR 1k
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i Example 10.10

F10.1F110.2#0 8 T L& 1B 4w g .

Let us see if the two codes we defined in Table 10.1 and

Table 10.2 belong to the class of linear block codes.

1. The scheme Iin Table 10.1 is a linear block code
because the result of XORiIng any codeword with any
other codeword is a valid codeword. For example, the
XORIng of the second and third codewords creates the
fourth one.

2. The scheme In Table 10.2 is also a linear block code.
We can create all four codewords by XORing two
other codewords.

10.38



i Example 10.11

BB EXRE: 2EF
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In our first code (Table 10.1), the numbers of 1s in the
nonzero codewords are 2, 2, and 2. So the minimum
Hamming distance is d,,;; = 2. In our second code (Table
10.2), the numbers of 1s in the nonzero codewords are 3,

3, and 4. So In this code we have d ., = 3.
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‘ NOtEI

A simple parity-check code is a
single-bit error-detecting

code in which

n=k+ 1with d, = 2.

fif ER. Eﬁ#g&%@mn =k +1, H dni
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Table 10.3 Simple parity-check code C(5, 4) /4 FI 37 1B 545

Datawords Codewords Datawords Codewords
0000 00000 1000 10001
0001 00011 1001 10010
0010 00101 1010 10100
0011 00110 1011 10111
0100 01001 1100 11000
0101 01010 1101 11011
0110 01100 1110 11101
Ol11 01111 1111 11110




Figure 10.10 Encoder and decoder for simple parity-check code
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i Example 10.12

FERE R R HTHEA M EIR, Ao HERNER
Let us look at some transmission scenarios. Assume the
sender sends the dataword 1011. The codeword created
from this dataword is 10111, which 1s sent to the receiver.
We examine five cases:
1. No error occurs; the received codeword i1s 10111. The
syndrome(£ZE /) is 0. The dataword 1011 is created.
2. One single-bit error changes a; . The received
codeword iIs 10011. The syndrome is 1. No dataword
IS created.
3. One single-bit error changes ry. The received codeword
Is 10110. The syndrome is 1. No dataword Is created.
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i Example 10.12 (continued)

4. An error changes ro and a second error changes as.

10.44

The received codeword is 00110. The syndrome is O.
The dataword 0011 is created at the receiver. Note that
here the dataword is wrongly created due to the
syndrome value.

"hree bits—as, a,, and a;—are changed by errors.

ne received codeword is 01011. The syndrome is 1.

ne dataword Is not created. This shows that the simple
parity check, guaranteed to detect one single error, can
also find any odd number of errors.
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‘ Note I

A simple parity-check code can detect
an odd number of errors.
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10.45



Figure 10.11 Two-dimensional parity-check code
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Figure 10.11 Two-dimensional parity-check code

1 1 0 O 1 1 1 1 11 0 o0 1 1 1 1

1T o0 |1 1 1 0 1 | - 1T 0 1] 1 1] O 1 1

o 1 1 1 0 0 1 0 o 1 1 1 0 0 1 0

O 1 0 1T 0 0 1 1 O 1 0 1 0 0 1 1

o 1 o 1 0 1 O 1 o 1 0 1 0 1 O 1
b. One error affects two parities c. Two errors affect two parities
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Figure 10.11 Two-dimensional parity-check code

o
o
© o o
—
o

d. Three errors affect four parities e. Four errors cannot be detected
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‘ Note \

All Hamming codes discussed in this
book have d,,i, = 3.

A5 i 1 OB B N 3HY
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he relationship between m and n in

these codesisn=2"m - 1
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n=2"m-=-1,k=n-m,r=n-k

10.49



Table 10.4 Hamming code C(7, 4)

Datawords Codewords Datawords Codewords
0000 0000000 1000 1000110
0001 0001101 1001 1001011
0010 0010111 1010 1010001
0011 0011010 1011 1011100
0100 0100011 1100 1100101
0101 0101110 1101 1101000
0110 0110100 1110 1110010
0111 0111001 1111 1111111
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Figure 10.12 The structure of the encoder and decoder for a Hamming code
DA K s MR a4 (IR BRAR2IEHE, )
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Table 10.5 Logical decision made by the correction logic analyzer

IS It B 7 W as I

Syndrome 000 001 010 Ol1 100 101 110 111

Error None q0 qd1 bz q- b() b3 bl
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:h Example 10.13

us trace the path of three datawords from the sender

to the destination:

REB 19 F N RX L2 H HI0m I 5 2, I 1P185

1. The dataword 0100 becomes the codeword 0100011.
The codeword 0100011 is received. The syndrome is
000, the final dataword is 0100.

2. The dataword 0111 becomes the codeword 0111001.
The syndrome is 011. After flipping b, (changing the 1
to 0), the final dataword is 0111.

3. The dataword 1101 becomes the codeword 1101000.
The syndrome is 101. After flipping by, we get 0000,
the wrong dataword. This shows that our code cannot

correct two errors.
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Example 10.14

viweed a dataword of at least 7 bits. Calculate values of
k and n that satisfy this requirement.

EHEFEL AR, ifEn, K, 1o

Solution

We need to make k = n — m greater than or equal to 7, or

2"m—1—m2=7.

1. If we set m = 3, the resultisn=2°—1and k=7 — 3,
or 4, which is not acceptable.

2. If wesetm=4,thenn=2*—1=15andk=15— 4=
11, which satisfies the condition. So the code is
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Figure 10.13 Burst error correction using Hamming code
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10-4 CYCLIC CODES 784

Cyclic codes are special linear block codes with one extra
property. In a cyclic code, if a codeword is cyclically shifted
(rotated), the result is another codeword.

PEEF AL —A B )ﬁm’%ﬁ%‘km%rf g, XA R 2
MRBZEARBA () , EGRERA —MEHREFE,

Topics discussed in this section:

Cyclic Redundancy Check ¥ )T &R KAG
Hardware Implementation #844SZ3R
Polynomials Z I

Cyclic Code Analysis TSP RS T
Advantages of Cyclic Codes S KA A
Other Cyclic Codes HEEHY
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Table 10.6 ACRC code with C(7, 4) JEFF LR WAL HFRCRC

Dataword Codeword Dataword Codeword
0000 0000000 1000 1000101
0001 0001011 1001 1001110
0010 0010110 1010 1010011
0011 0011101 1011 1011000
0100 0100111 1100 1100010
0101 0101100 1101 1101001
0110 0110001 1110 1110100
0111 0111010 1111 I111111
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Figure 10.14 CRC encoder and decoder
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Figure 10.15 Division in CRC encoder CRCZmi% g ki (H2EH)
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Figure 10.16 Division in the CRC decoder for two cases
CRCHIBER &% HIBRIE (BRRARRAD)
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Figure 10.17 Hardwired design of the divisor in CRC
CRCHIBEMFSEBAMMER, &V
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Figure 10.18 Simulation of division in CRC encoder
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Figure 10.19 The CRC encoder design using shift registers
CRCHIBESEIMAMBER, &
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Figure 10.20 General design of encoder and decoder of a CRC code
CRCHIMEF SEIUAMHER, %P

Note:
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Figure 10.21 A polynomial to represent a binary word
TEH LRI TG AT LU 2 (27
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Figure 10.22 CRC division using polynomials
X, CRCEIZERLZ/HLE T ERIE
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‘ Note I

The divisor in a cyclic code is normally
called the generator polynomial
or simply the generator.

MRS I BRBOE
T (ERER)
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! Note \ CRCHEEA DT

In a cyclic code,
If s(x) # 0, one or more bits is corrupted.
If s(x) =0, either

a. No bit is corrupted. or
b. Some bits are corrupted, but the
decoder failed to detect them.
CRCH, RIETFS(x)# 0iiiHA £=4; =01
%%ﬁﬁ%ﬁ%éﬂﬁ PERD AR TR R I HY (B H A
tHHEST)o
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1

‘ Note I

In a cyclic code, those e(x) errors that
are divisible by g(x) are not caught.
TIPS, 7 LA] DA AR Bl T g (X) BERR

R ZE LA IRE. (RERBRE /)
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‘ Note \

AR 24

If the generator has more than one term
and the coefficient of x°%is 1,
all single errors can be caught.

ﬁiﬁi%ﬁﬁmﬁ/)‘ﬁﬂﬁlﬁ, HxO B & $=21

, WIpTA BT
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| Example 10.15

= AL TR R S8 e 1 a0 2

Which of the following g(x) values guarantees that a
single-bit error is caught? For each case, what is the

error that cannot be caught?

a. x+1 b.x3 c.1

Solution

a. No x' can be divisible by x + 1. Any single-bit error can
be caught.

b. If i is equal to or greater than 3, x'is divisible by g(x).
All single-bit errors in positions 1 to 3 are caught.
c. All values of i make x' divisible by g(x). No single-bit
error can be caught. This g(x) is useless.
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Figure 10.23 Representation of two isolated single-bit errors using polynomials

1/ Z AT HIPT I BT L pF 25

Difference: j - i

- .

O11T10f(1T(1]T]J011(OfT|O|O|JO[O(1]1

xI+x' e(x)=xI(x" +1)
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‘ Note \

If a generator cannot divide xt + 1
(t between Oand n - 1),
then all iIsolated double errors
can be detected.
HERZMANGEER +1, BLAFES
SR EE AR IR B RE A U B .

7=
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i Example 10.16
T JLANAE B2 TR O B X LR Z2 45 B 7 el
Find the status of the following generators related to two

Isolated, single-bit errors.
ax+1l b.xt+1 cx+x0+1 dxP+xt4+1

Solution
a. This is a very poor choice for a generator. Any two
errors next to each other cannot be detected.

b. XA jiH 2 T A FERL T 1 g T2 E I P12 -

I ZEGHN TAEANE, (HEURMANTH B 2 A4

VIR TEI% B 12 2

c. This is a good choice for this purpose.

d. 2051 TF32768, P EZIHAANFEIELIEZ Fox' + 1

I X2 —IMGF N L[] Z S
10K 2R ZE BIH32768 17 BEEE#E X T A A T ZY
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‘ Note I

A generator that contains a factor of
X + 1 can detect all odd-numbered errors.
UEXx+H1E fﬂ'}éﬁl@lﬁ BRIl B pr e &
A LR R

\
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‘ Note \

J All burst errors with L = r will be
detected.

J All burst errors with L =r + 1 will be
detected with probability 1 — (1/2).

J All burst errors with L >r + 1 will be
detected with probability 1 — (1/2)".

RS A R TE R HIBE ST
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i Example 10.17
 TH] PR AR i 22 T 4N SRR B iR ) e 7 ]
Find the suitability of the following generators in relation

to burst errors of different lengths.
a. xb+1 b.xB+x"+x+1 C.X¥%+x3+x'+1

Solution
a. This generator can detect all burst errors with a length

less than or equal to 6 bits; 3 out of 100 burst errors
with length 7 will slip by; 16 out of 1000 burst errors of
length 8 or more will slip by.
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i Example 10.17 (continued)

b.

10.78

This generator can detect all burst errors with a length
less than or equal to 18 bits; 8 out of 1 million burst
errors with length 19 will slip by; 4 out of 1 million
burst errors of length 20 or more will slip by.

This generator can detect all burst errors with a length
less than or equal to 32 bits; 5 out of 10 billion burst
errors with length 33 will slip by; 3 out of 10 billion
burst errors of length 34 or more will slip by.
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A good polynomial generator needs to

have the following characteristics:

1. It should have at least two terms. P§IR

2. The coefficient of the term x° should
be 1. BIXORE—EANO

3. It should not divide xt + 1, for t
between 2 and n = 1. EEHRFxt + 1

4. It should have the factor x + 1.£Hi87?

5. —ER—NMENAEREZTHR. g

s




Table 10.7 Standard polynomials — &% FH (IR HEAE R TR

Name Polynomial Application
CRC-8 B+ x+1 ATM header
CRC-10 | x0+ 2+ +x*+x%+1 ATM AAL
CRC-16 | x'0+x2+ ¥ +1 HDLC
CRC-32 O x0 P + x0 x  0 LANSs

B+ 0+ + 0 +x+1
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10-5 CHECKSUM KI5 &G

B, Sh—T AR AT i 2
I FInternetI B EHNF.
] he last error ¢

LR TS W

etection method we discuss here Is
called the checksum. The checksum Is used In the
Internet by several protocols although not at the data
link layer. However, we briefly discuss it here to
complete our discussion on error checking

Topics discussed in this section:

ldea &

One’s Complement 2h5

Internet Checksum

10.81
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i Example 10.18

Suppose our data Is a list of five 4-bit numbers that we
want to send to a destination. In addition to sending these
numbers, we send the sum of the numbers. For example,
If the set of numbers is (7, 11, 12, 0, 6), we send (7, 11, 12,
0, 6, 36), where 36 Is the sum of the original numbers.
The receiver adds the five numbers and compares the
result with the sum. If the two are the same, the receiver
assumes no error, accepts the five numbers, and discards
the sum. Otherwise, there Is an error somewhere and the
data are not accepted.

RIEBIHERN, FRNEREBMNHM (HTRERR,
PR SHE AR RS )
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i Example 10.19

We can make the job of the receiver easier if we send the
negative (complement) of the sum, called the checksum.
In this case, we send (7, 11, 12, 0, 6, —36). The receiver
can add all the numbers received (including the
checksum). If the result I1s 0, It assumes no error,
otherwise, there Is an error.

WA USRI AMD, XA A% A B B f] Bt
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i Example 10.20

] I R SR AR G B4 B B AL AN AL 6] R
How can we represent the number 21 In one’s
complement arithmetic using only four bits?

Solution
The number 21 in binary is 10101 (it needs five bits). We

can wrap the leftmost bit and add it to the four rightmost
bits. We have (0101 + 1) = 0110 or 6.

10.84



i Example 10.21

HH IR GRS H )
How can we represent the number —6 In one’s

complement arithmetic using only four bits?
Solution

In one’s complement arithmetic, the negative or
complement of a number is found by inverting all bits.
Positive 6 is 0110; negative 6 is 1001. If we consider only
unsigned numbers, this is 9. In other words, the
complement of 6 is 9. Another way to find the
complement of a number in one’s complement arithmetic
is to subtract the number from 2" — 1 (16 — 1 in this case).
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i Example 10.22

i TH] B R AR L 451

Let us redo Exercise 10.19 using omne’s complement
arithmetic. Figure 10.24 shows the process at the sender
and at the receiver. The sender initializes the checksum
to 0 and adds all data items and the checksum (the
checksum iIs considered as one data item and is shown In
color). The result is 36. However, 36 cannot be expressed
In 4 bits. The extra two bits are wrapped and added with
the sum to create the wrapped sum value 6. In the figure,
we have shown the details in binary. The sum is then
complemented, resulting in the checksum value 9 (15 -6
= 9). The sender now sends six data items to the receiver
Including the checksum 9.

10.86




i Example 10.22 (continued)

The receiver follows the same procedure as the sender. It
adds all data items (including the checksum); the result
IS 45. The sum Is wrapped and becomes 15. The wrapped
sum iIs complemented and becomes 0. Since the value of
the checksum is 0, this means that the data is not
corrupted. The receiver drops the checksum and keeps
the other data items. If the checksum is not zero, the
entire packet is dropped.
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Figure 10.24 Example 10.22 =B, #AL, FIRIGEHCHIEAE
ER: BAEATHES)

Sender site Receiver site
7 7
11 11
12 12
0 0
6 6
0 9
7,11,12,0,6,9 p—> —
Sum —>» 36 Sum —>» 45
Wrapped sum —>» 6 Packet Wrapped sum —>» 15
Checksum —>» 9 Checksum —>» 0
100100 36 1T01101 45
10 10
0110 6 0110 15
1000 9 1000 0
Details of wrapping Details of wrapping
and complementing and complementing
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Note

R MRRAKIZER: (RIET)

Sender site:

1. The message is divided into 16-bit words.

2. The value of the checksum word

IS set to O.

3. All words including the checksum are
added using one’s complement addition.

(15 FH [ 53z S AR )

4. The sum is complemented and b

checksum. (B I0F1K RHS2E pliL

ecomes the

gty

‘5. The checksum iIs sent with the data.

10.89



1

Note

Recelver site:

1.

2.

3.

4.

10.90

divided into 16-bit words.

complement addition. ({#
The sum Is complementec

RGP R (EWE)

The message (including checksum) is

All words are added using one’s

] iz AR )

and becomes the

new checksum. (3R #5232 BT B K )

If the value of checksum is O, the message

IS accepted; otherwise, it is rejected.



i Example 10.23
Ji T P SRR R L 57 1

Let us calculate the checksum for a text of 8 characters
(“Forouzan”). The text needs to be divided into 2-byte
(16-bit) words. We use ASCII (see Appendix A) to change
each byte to a 2-digit hexadecimal number. For example,
F Is represented as 0x46 and o Is represented as Ox6F
Figure 10.25 shows how the checksum is calculated at the
sender and receiver sites. In part a of the figure, the value
of partial sum for the first column Is 0x36. We keep the
rightmost digit (6) and insert the leftmost digit (3) as the
carry in the second column. The process Is repeated for
each column. Note that If there Is any corruption, the
checksum recalculated by the receiver is not all 0s. We
10 15ave this an exercise.




Figure 10.25 Example 10.23 BB, #hr, MRABFMHERIIERE
ER: BETHES)

O O N N B
O = U1 N O
O OO N O O
O m > N T

8 F C 6

>

8 F C 7
/7 0 3 8

Carries

(Fo)
(ro)
(uz)
(an

)
Checksum (initial)

Sum (partial)

Sum

Checksum (to send)

N OO NN N
O = U1 N O
w O N O O
cO m > N T

F F F E
> 1

8 F C 7
O 0 0 O

Carries

(Fo)
(ro)
(uz)
(an)

Checksum (received)

Sum (partial)

Sum

Checksum (new)

a. Checksum at the sender site
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a. Checksum at the receiver site




AR

1, 4, 7, 8,

15, 16, 18, 23, 24, 26, 2/, 28,
30, 32
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