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Abstract—Federated learning (FL) has gained popularity in the
field of machine learning, which allows multiple participants to
collaboratively learn a highly-accurate global model without ex-
posing their sensitive data. However, FL is susceptible to poisoning
attacks, in which malicious clients manipulate local model parame-
ters to corrupt the global model. Existing FL frameworks based on
detecting malicious clients suffer from unreasonable assumptions
(e.g., clean validation datasets) or fail to balance robustness and
efficiency. To address these deficiencies, we propose FedDMC,
which implements robust federated learning by efficiently and pre-
cisely detecting malicious clients. Specifically, FedDMC first applies
principal component analysis to reduce the dimensionality of the
model parameters, which retains the primary parameter feature
and reduces the computational overhead for subsequent clustering.
Then, a binary tree-based clustering method with noise is designed
to eliminate the effect of noisy points in the clustering process,
facilitating accurate and efficient malicious client detection. Finally,
we design a self-ensemble detection correction module that utilizes
historical results via exponential moving averages to improve the
robustness of malicious client detection. Extensive experiments
conducted on three benchmark datasets demonstrate that FedDMC
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outperforms state-of-the-art methods in terms of detection preci-
sion, global model accuracy, and computational complexity.

Index Terms—Clustering, federated learning, malicious clients,
poisoning attack.

I. INTRODUCTION

F EDERATED learning (FL) [1] is an emerging collaborative
machine learning paradigm that is widely used in areas

such as medical imaging diagnosis [2], [3], risk identification
of banking transactions [4], and autopilot training [5]. FL’s key
advantage is enabling the central server to build highly-accurate
global models while keeping the client’s private data confiden-
tial. Specifically, the FL process involves three iterative steps: 1)
The clients train their local data to generate local models individ-
ually and transmit them to the central server. 2) The central server
aggregates the local models based on predefined aggregation
rules to update the global model. 3) The updated global model
is transmitted back to the clients for the next learning round.

However, FL is vulnerable to model poisoning attacks due
to its distributed nature [6], [7], [8], [9], [10], [11], [12], [13],
in which malicious clients send tamper model updates to the
server resulting in global model corruption. Adversaries can
tamper with the local training phase of malicious clients in two
ways: 1) by modifying local data, known as data poisoning
attacks, and 2) by manipulating local model updates, referred
to as local model poisoning attacks. In data poisoning attacks,
some attackers randomly flip normal labels to reduce global
accuracy or purposefully flip to target labels to achieve targeted
attacks [6]. Other attackers add a triggered backdoor to the
image and specifically tag the data [7], [8], [9], known as the
backdoor attack. In local model poisoning attacks [10], [11],
[12], [13], attackers typically manipulate local model parameters
by exploiting information such as aggregation rules and the
distribution of local models. This manipulation aims to evade
detection by defensive mechanisms while maximizing the detri-
mental impact on the global model.

Various efforts have been made to defend against malicious
client attacks, primarily from three perspectives. The first cate-
gory [7], [14] is based on differentiated privacy techniques [15]
that dilute the impact of poisoning attacks by adding noise.
The limitation of such approaches is that they would reduce
the accuracy of the primary task. The second category is based
on aggregation rule approaches, which achieve robust federated
learning by changing the aggregation rules [16], [17]. However,
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TABLE I
EXISTING APPROACHES BASED ON MALICIOUS CLIENT DETECTION IN FEDERATED LEARNING

malicious clients can circumvent these rules by designing covert
models in which the poisoned parameters are selectively incor-
porated into the global model. The third type is to distinguish
between benign and malicious clients by using clean validation
datasets [18], [19] or clustering model parameters [13], [20],
[21], [22], [23], [24]. Compared to the first two approaches, the
third category offers the benefit of more accurately detecting
malicious behavior, thereby minimizing the impact of malicious
models on the global model. However, all of approaches require
strong prior knowledge (e.g., clean validation dataset, preset
number of malicious clients) or fail to balance robustness and
efficiency. We list the detailed drawbacks of the third category
of approaches in Table I.

In this paper, we present FedDMC, an FL framework that aims
to defend against poisoning attacks by efficiently and precisely
detecting malicious clients. FedDMC addresses the limitations
of existing detection methods, such as the requirement of clean
validation datasets or presets for the number of malicious clients.
Moreover, FedDMC takes care of both the accuracy and effi-
ciency of malicious client detection. Our fundamental intuition
is that, due to the high dimensionality of the model parameters,
a malicious client can introduce a significant change to a single
parameter without significantly affecting the �p norm (euclidean
distance), rendering the model ineffective. Based on this in-
tuition, FedDMC detects malicious clients by performing the
dimension reduction of the model parameters before applying
clustering methods, thereby mitigating the influence of irrelevant
dimensions and highlighting the differentiation of malicious
model parameters.

Specifically, FedDMC is achieved by three modules: 1) di-
mensionality reduction (DR). Classical Principal Component
Analysis (PCA) [25] is utilized to reduce the dimensionality of
model parameters. This method preserves the main features of
the parameters while lowering the computational overhead for
subsequent clustering. 2) binary tree-based clustering with noise
(BTBCN). A simple and effective noise-removable clustering
method is proposed that can eliminate the effect of noisy points
to facilitate accurate and efficient malicious client detection.
3) self-ensemble detection correction (SEDC). A trust score is
formulated, integrating the detection outcomes from historical
rounds. This strategy aims to address the unreliability of single-
round detection, thereby enhancing the overall robustness of the

detection process. We evaluate FedDMC on three benchmark
datasets, demonstrating its superiority over existing state-of-
the-art methods in terms of detection accuracy, global model
accuracy, and computational complexity. Moreover, we conduct
separate analyzes for each of the three components, providing
insights into their contributions to the overall performance of
FedDMC.

In summary, we make the following contributions.
� We propose FedDMC, an FL framework to defend against

poisoning attacks by efficiently and precisely detecting
malicious clients. FedDMC achieves detection with high
accuracy and low computational overhead. After removing
a majority of the malicious clients, FedDMC is able to learn
an accurate global model.

� To construct FedDMC, we design three simple and effec-
tive modules: the DR module to remove irrelevant parame-
ters, the BTBCN module to detect malicious clients, and the
SEDC module to enhance the robustness of the detection
results.

� In the experimental evaluation, we comprehensively as-
sess the proposed framework on three benchmark datasets
under four widely-adopted attack scenarios. Additionally,
we validate the effectiveness of each of the three compo-
nents, providing insights into their impact on the overall
performance.

Organization: The rest of this paper is organized as follows.
In Section II, we summarise the existing FL defense methods.
In Section III, we describe the federated learning system model
and the defense objectives. Section IV provides the motivation
and details of the proposed framework. Section V presents the
experimental setup, and Section VI provides a detailed analysis
of the experimental results. Finally, we conclude the paper and
discuss future work in Section VII.

II. RELATED WORKS

A. Robust Federated Learning

Existing works defend against poisoning attacks primar-
ily from three perspectives, respectively, differential privacy-
based approaches [7], [14], [27], aggregation rule-based ap-
proaches [16], [17], and malicious client detection-based ap-
proaches [13], [18], [19], [20], [21], [22], [23], [24]. Our research
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belongs to the third category, which is orthogonal to the first
two and can be employed synergistically with them in the
aggregation phase.

1) Differential Privacy-Based Approaches: Differential Pri-
vacy (DP) [15] is a technique for protecting data privacy by
adding noise while keeping the data as effectively as possible.
Inspired by differential privacy (DP) techniques, [7] and [27]
dilute the effect of the poisoning model on the global model
by clipping the individual model parameters to a maximum
threshold and adding random noise to the model parameters.
FLAME [14] proposes filtering out poisoned models with high
attack impact before using differential privacy. The limitation
of these methods is that they reduce the accuracy of the global
model.

2) Aggregation Rule-Based Approaches: Aggregation rule-
based approaches guarantee robust aggregation by changing ag-
gregation rules. Krum [21] selects the local model most similar
to other models from a set of local models to serve as the global
model. Trimmed-Mean [16] aggregates each parameter of the
model separately by removing the largest and smallest several
values to avoid the effect of outliers. Median [16] selects the
median value of all dimensions as its aggregate global model.
Bulyan [17] is essentially a combination of Krum [21] and a
variant of Trimmed-Mean [16]. Bulyan first iteratively applies
Krum to select some of the locals model and then uses a
variant of the Trimmed-Mean to aggregate these local models.
RFA [28] propose a geometric median-based robust aggregation
method, aimed at enhancing resistance to corrupted updates.
FedRoC [29] employs bootstrap median-of-means for resilient
client clustering against non-IID data and model poisoning,
utilizing a dual-layer optimization and stochastic expectation
maximization for enhanced effectiveness. Ditto [30] employs
a personalized federated multi-task learning framework that
balances global and local models through regularization, allow-
ing individualized model learning that mitigates the impact of
malicious devices. Roughly speaking, these methods apply sta-
tistical methods to estimate the aggregated model updates. Nev-
ertheless, adversaries may bypass such defenses by introducing
stealth models, selectively incorporating poisoned parameters
into the global model.

3) Malicious Clients Detection-Based Approaches: Mali-
cious clients detection-based approaches aim to distinguish be-
tween benign and malicious clients by using clean validation
datasets or clustering model parameters.

Using clean validation datasets: FLTrust [18] maintains a
clean validation dataset on the server to generate an update
direction. Specifically, higher trust scores are given when local
model updates closely match server model updates. The server
then discriminates between malicious and benign clients using
these scores. Li et al. [19] utilize a variational autoencoder
(VAE) to capture model update statistics, assuming the server has
access to a clean validation dataset from the overall training data
distribution for model training. In brief, these approaches require
a clean validation dataset with a distribution closely matching the
local clients’ training data. However, this requirement is difficult
to meet in real-world applications, limiting the practical usability
of these approaches.

Clustering model parameters: Multi-Krum [21], an exten-
sion of Krum, selects multiple local models that exhibit the
highest similarity to others. It then computes their average to
form the global model. DnC [13] employs random sampling
for dimensionality reduction. Subsequently, it uses a spectral
approach, specifically Singular Value Decomposition (SVD), to
identify and remove malicious clients. However, both Multi-
Krum and DnC require a preset number of malicious clients,
leading to limitations in practical applications. Auror [20] uti-
lizes K-means [31] clustering to detect malicious clients. Fools-
Gold [22] uses client-contributed similarity to detect malicious
clients based on the diversity of client updates. SecFedNIDS [23]
selects important model parameters based on gradient-based
changes. It distinguishes malicious clients using the Stochas-
tic Outlier Selection (SOS) algorithm. SOS is a method that
evaluates the probability of outliers based on similarity scores
between data points, especially useful for quickly identifying
outliers in large datasets. FedPRC [26] employs K-means++
[32] for initial clustering and density-based anomaly detec-
tion to exclude malicious clients, enhancing robustness against
model poisoning in federated learning. These methods, while
innovative, still exhibit limitations when tackling specific at-
tacks and do not fully guarantee the reliability of the defense.
FLDetector [24] identifies malicious clients by leveraging model
consistency. However, it has a drawback of high computational
overhead.

Table I summarises the strengths and weaknesses of ap-
proaches based on malicious client detection in federated learn-
ing. As can be seen from the table, our proposed method
overcomes the limitations of existing methods and achieves
robust and effective federated learning without requiring prior
knowledge.

B. Clustered Federated Learning

Existing some Clustered Federated Learning (CFL) methods
utilize clustering techniques to address the challenge of non-
independent and identically distributed (non-IID) data. Sattler
et al. [33] designed a novel federated multi-task learning frame-
work, which leverages geometric properties to cluster client pop-
ulations based on their data distributions, addressing the issues
brought by non-IID data. Ghosh et al. [34] proposed the Iterative
Federated Clustering Algorithm (IFCA), which alternates be-
tween estimating user clustering identities and optimizing model
parameters via gradient descent, catering to user distribution
heterogeneity in federated learning. Long et al. [35] developed
a multi-center aggregation mechanism that aggregates clients
through model parameters and learns multiple global models as
cluster centers, simultaneously solving the optimal user-center
matching problem. Briggs et al. [36] introduced a hierarchi-
cal clustering into federated learning, separating clients into
different groups based on the similarity of local updates, and
conducting independent training on dedicated models. Lastly,
Ma et al. [37] revisited CFL, formalizing it as a bi-level op-
timization framework and proposed a new algorithm called
Weighted Clustered Federated Learning (WeCFL), proving its
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convergence in non-IID settings. Although both the aforemen-
tioned methods and FedDMC utilize clustering algorithms, there
are significant differences in the challenges addressed and the
underlying methodological framework.

III. SYSTEM MODEL

A. Federated Learning

A typical FL system consists of n clients and a cloud server.
Each client holds a local training dataset Di, i = 1, . . . , n. The
server is not allowed to access the private training data held by
the clients, and the clients collaborate to learn a global model
maintained on the server. Specifically, in the t-th iteration of FL,
the server broadcasts the current aggregation model wt to the
clients. To minimize the local empirical loss L(Di, w

t), clients
fine-tune individual local model parameters wt

i based on the
received global model wt over their local training dataset Di

using stochastic gradient descent as

wt+1
i = wt − ηΔL(wt,Di) (1)

where η is the learning rate. Subsequently, the trained local
model parameters wt+1

i are returned to the server. The server
aggregates the local model parameters received from the clients
according to a proper aggregation rule A, i.e.,

wt+1 = A(wt+1
1 , wt+1

2 , . . . , wt+1
n ) (2)

The client-server interaction is repeated until the global model
converges or reaches a predetermined number of communication
rounds.

In this study, the FL system involves one honest server that is
not compromised and two types of clients, benign and malicious.
The benign clients honestly train and report the local model
parameters wt+1

i . In contrast, malicious clients tamper with the
local training phase by modifying local data or manipulating
local model parameters to corrupt the global model. Assume
that the number of malicious clients is M , not more than half
of the total number of clients. The attacker is agnostic about
the server’s aggregation rule A, thus, cannot perform specific
attacks based on the aggregation rule.

B. Defense Objectives

A generic FL framework that is effective against poisoning
attacks needs to achieve the following three objectives:

1) High detection accuracy: A superior defense method
should detect all malicious clients (M < �n2 �) as far as
possible to ensure that the federated learning system is
not compromised.

2) Low computational overhead: An effective defense
method should be easy to deploy and fast to compute. It
must avoid imposing an excessive computational load on
the server while ensuring minimal disruption to the overall
operational timeline.

3) Broad applicability: An effective defense mechanism
should prevent attackers within a broad threat model.
Essentially, it should not require prior knowledge of the
method of attack, the proportion of clients being attacked,
and various data settings, such as whether the data distri-
bution follows an IID or non-IID distribution.

Algorithm 1: The FedDMC Framework.

IV. METHOD

In this section, we first discuss the motivation for designing the
FedDMC method, followed by a comprehensive overview and
design description of the proposed framework. Finally, we ana-
lyze the computational complexity of the FedDMC approach.

A. Motivation

In the FL framework based on malicious client detection,
clustering methods are widely regarded as potent detection
mechanisms due to their capacity to automatically classify
clients with similar characteristics. Nevertheless, traditional
clustering methods encounter challenges when dealing with
high-dimensional data, such as high computational complexity
and susceptibility to noise contamination. Due to the inherently
high-dimensional parameter space of deep learning models,
malicious clients are able to significantly alter individual pa-
rameters but with a negligible impact on the euclidean distance
between that model and other models. This situation creates
favorable conditions for adversarial attacks [10], [17]. Conse-
quently, it is desirable to reduce the dimensionality of the data
before adopting clustering methods.
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Fig. 1. Overview of FedDMC. The server receives the model parameters from the clients and performs malicious client detection with three modules, i)
dimensionality reduction (DR), ii) binary tree-based clustering with noise (BTBCN), and iii) self-ensemble detection correction (SEDC). Afterward, the parameters
of the malicious clients are removed, and the benign models are aggregated.

B. The Design of FedDMC

Based on the above motivations, we design a novel approach
to detect malicious clients in federated learning systems, dubbed
FedDMC. FedDMC consists of three modules: i) dimensional-
ity reduction (DR), ii) binary tree-based clustering with noise
(BTBCN), and iii) self-ensemble detection correction (SEDC).
First, we use PCA to project model parameters into a lower-
dimensional space, preserving the main features while reducing
computational complexity for subsequent clustering. In the di-
mensionality reduction process, PCA helps to highlight differ-
ences between clients’ models, allowing the clustering algorithm
to more easily distinguish between benign and malicious clients.
Subsequently, we design the BTBCN module to effectively
detect malicious clients. Finally, we introduce the SEDC mod-
ule that utilizes historical detection results through exponential
moving averages to gradually correct current detection results.
These modules and the workflow of FedDMC are shown in
Fig. 1. The process of FedDMC is summarised in Algorithm
1. Details of these modules are described subsequently.

1) Dimensionality Reduction: Principal Component Analy-
sis (PCA) was selected as the dimensionality reduction tech-
nique in this framework due to its effectiveness in facilitating
cluster analysis. PCA is computationally efficient compared to
methods, such as t-SNE [38], isomap [39], and UMAP [40],
making it particularly appropriate for large-scale parameters in
federated learning. As a linear technique, PCA adeptly handles
data with linear relationships and offers robust interpretability
compared to random projection [41] and Singular Value Decom-
position (SVD) [42].

Crucially, PCA highlights the differences between benign
and malicious clients. Considering the model parameters ma-
trix W = {w1, w2, . . . , wn} for n clients in a specific round,

Fig. 2. Schematic diagram of cluster distribution.

where each wi is a d-dimensional vector representing client
i’s model parameters. PCA is applied to this parameter ma-
trix W ∈ Rd×n, and the process can be expressed as W̃ =
P k

W (W ). Here, P k
W represents the PCA projection oper-

ator, k is the reduced dimension, significantly smaller than
d, and its value can be adjusted based on the specific client
data distribution and computational overhead. W̃ ∈ Rk×n is
the reduced-dimensional model parameters matrix obtained
after PCA projection. The detailed procedure for applying
PCA is provided in Algorithm 3 of Appendix A, available
online. Roughly speaking, PCA significantly reduces the with-
incluster distance of data points while only slightly reducing the
between-cluster distance, as shown in Fig. 2.

2) Binary Tree-Based Clustering With Noise (BTBCN): In
FL scenarios, the heterogeneity of local data distributions and the
uncertainty of malicious client behavior can result in noisy points
besides benign and malicious clusters, as illustrated in Fig. 4.
The accuracy of clustering methods such as K-means [43] and
hierarchical clustering [44] can be easily affected by these noisy
points. Existing clustering approaches, such as DBSCAN [45],
OPTICS [46], and HDBSCAN [47], can effectively exclude
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Fig. 3. Illustration of the workflow for BTBCN. The workflow consists of 4 steps: Obtain the model parameter vectors after PCA processing. Construct a
hierarchical clustering tree based on the euclidean distance between these model parameter vectors. Set the value of min_cluster_size and execute the Condensed
Clustering Tree algorithm to obtain the clustering tree. Assume min_cluster_size is 2. Splitting from top to bottom, the first split gives two clusters of 6 and 1. 1 is
smaller than min_cluster_size, so it is considered as an outlier. Finally, the detection results are obtained based on the clustering results.

Fig. 4. Schematic diagram of cluster distribution.

noisy points. However, distinguishing between malicious and
benign clients is a binary classification task. These methods have
limited performance when dealing with binary classification
tasks. Robust K-means++ [32] can be applicable for binary
classification that can eliminate noise, but it incurs a huge com-
putational overhead. To address these challenges, we propose
a binary tree-based clustering method with noise (BTBCN)
suitable for classifying malicious and benign clients.

Specifically, we construct a binary tree based on the euclidean
distance of the model parameters after dimension reduction.
Each leaf node represents a client, non-leaf nodes represent
subsets of clients, and the root node represents the set of all
clients. The number in each node represents the number of leaf
nodes in the subset. From top to bottom, each node splits into
two clusters with the maximum distance between them, which
are viewed as ideal benign and malicious client clusters, as
shown in Fig. 4(a). However, noisy points can cause incorrect
clustering, as shown in Fig. 4(b). Here, we propose a core
step called a condensed the binary tree, which filters out noisy
points before obtaining the clusters. We need to determine the
minimum cluster size, denoted as min_cluster_size, which
serves as a parameter for this module. If the number of leaf
nodes in a split cluster is less than min_cluster_size, these
leaf nodes are considered to be noisy points. These noisy points
are pruned from this binary tree. Pruning stops until the number
of nodes in both clusters of the binary tree split is more than
min_cluster_size. After the clustering tree splits into two
clusters, we regard the larger cluster as the benign client. The
workflow of the clustering algorithm is shown in Fig. 3, and
Algorithm 2 details the BTBCN.

Algorithm 2: Binary Tree-Based Clustering With Noise
(BTBCN).

3) Self-Ensemble Detection Correction (SEDC): Although
the BTBCN approach effectively distinguishes between mali-
cious and benign clients, it remains vulnerable to the challenges
posed by the uncertain data distribution of clients and the
agnostic attacks of malicious clients. Detection of malicious
clients may be influenced by random factors in the current round,
leading to inaccurate detection results. As a result, relying on a
single round of detection may be unreliable. To address these
challenges, we propose a simple and effective method called
Self-Ensemble Detection Correction (SEDC). This method
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integrates historical detection outcomes from multiple rounds
to reduce the inaccuracy of single detection instances, leading
to more reliable and robust detection results.

Specifically, we represent the detection results of round twith
S[t] = {st0, st1, . . . , stn}, where si ∈ 0, 1 indicates the detection
outcome for the ith client, with 1 representing a benign client
and 0 denoting a malicious one. Considering the varying cred-
ibility of detection results across rounds, SEDC summarizes
historical detection outcomes and generates a trust score Ŝ[t]

for each client, initialized at 0.5. As the FL process iterates,
we consider the most recent round’s results to be relatively
reliable and thus adjust the ratio of the current round’s score
to the accumulated historical scores using the hyperparam-
eter α, 0 ≤ α < 1. At round t, we have ensemble detection
results

Ŝ[t] =

{
0.5 if t = 0

αŜ[t−1] + (1− α)S[t] if t > 0
(3)

Based on Equation (3), we can derive the ensemble detec-
tion for round t as Ŝ[t] = 0.5 · αt +

∑t
i=1(1− α)αt−iS[i]. To

classify clients as benign or malicious, we use the trust scores
and establish a threshold. Specifically, clients with trust scores
above this threshold are classified as benign, while those with
trust scores below this threshold are classified as malicious.
Based on the previous research [48], the threshold value is set
to 0.5 to produce the most efficient classification results.

C. Theoretical Analysis

1) Effectiveness Analysis of FedDMC: FedDMC adopts the
well-established FedAvg [1] mechanism for model aggregation,
inheriting its convergence properties. Therefore, this paper fo-
cuses on demonstrating the effectiveness of FedDMC in detect-
ing malicious clients, rather than on the convergence aspects
of the model aggregation. To substantiate the effectiveness of
FedDMC in the detection of malicious clients, we delve into its
core concept: the enhancement of clustering algorithms through
the application of PCA, thereby elevating the precision of de-
tection. Theorem 1 provides a rigorous theoretical foundation,
elucidating how PCA affects the distances between data points
in clustering models.

Definition 1 (k-PC Relative Compression): Let u and v be
two vectors in the dataset A. The k-PC relative compression of
two vectors u and v is defined by the ratio:

ΔA,k(u,v) =
‖u− v‖

‖P k
A(u)− P k

A(v)‖

Theorem 1: Let Â be a d× n dataset in the random vector
clustering model, where each column vector u,v ∈ Â resides
in [0, 1]d. The variance of all coordinate wise random variables
in all cluster distributions is upper bounded by σ2. Let sk denote
the k-th singular value of Â, and assume there exists a constant
C0 such that σ ≥ C0

logn
n . Then, with probability at least 1−

O(n−3), the following compression ratio bounds hold for PCA:

1) For all intra-cluster pairs of points u,v ∈ Vj , the k-PC
compression ratio ΔA,k(u,v) is lower bounded by√

2dσ2
j −

√
3d logn

2

√
8k

(
σ + 4

√
log(nk)

)
+ C0

σ2
√

8d(d+n)

sk

(4)

2) For all inter-cluster pairs of points u ∈ Vj ,v ∈ Vj′ , j 
=
j′, the k-PC compression ratio ΔA,k(u,v) is upper
bounded by√

d(σ2
j + σ2

j′) + ‖cj − cj′ ‖2 +
√

3d logn
2

√
2‖cj − cj′ ‖ − 2

√
2k

(
σ + 4

√
log(nk)

)
−R

(5)

where R is
8C0σ

2
√

(d+n)(‖cj−cj′ ‖2+d(σ2
j+σ2

j′ ))

sk
.

For a detailed proof of Theorem 1, please refer to Appendix B,
available online. Theorem 1 suggests that the compression ratio
within clusters is significantly greater than the ratio between
clusters. Before PCA preprocessing, intra-cluster and inter-
cluster distances are highly similar. This similarity indicates
that the distribution D(j) significantly influences the pre-PCA
distances, leading to a high resemblance between the numerators
in Eqs. (4) and (5). Regarding the denominators, a noticeable dif-
ference between intra-cluster and inter-cluster distances emerges
when the size of ‖cj − c′j‖ substantially exceeds

√
k, and when

the kth singular value of Â significantly surpasses
√
d+ n.

Many natural clustering models meet these criteria [49]. Hence,
this demonstrates that PCA markedly reduces the distances be-
tween data points within clusters while only marginally reducing
the distances between clusters.

2) Complexity Analysis: FedDMC requires the server to
store n client model parameters, incurring a storage overhead of
O(nm). The space complexity of PCA is typically O(nm) for
ann×mmatrix. For a binary tree consisting ofnk-dimensional
data, the space complexity isO(kn log2 n). The ensemble detec-
tion results require an overhead of O(n). Thus the total storage
overhead of FedDMC isO(2nm+ kn log2 n+ n). We analyze
the time complexity of FedDMC in three aspects. 1) When
SVD is used for PCA, the time complexity mainly depends on
the computational complexity of SVD. For an n×m matrix
W , the time complexity of its singular value decomposition
is typically O(nm2). During the calculation process, SVD is
performed on W , and the SVD to the top k singular values is
selected to project the original data points onto these vectors. The
time complexity of this process isO(nmk). Therefore, the total
time complexity is O(nm2 + nmk). 2) The time complexity
of performing the BTBCN module on a matrix W̃ of n× k
depends primarily on the number of distance calculations and
cluster merges. The time complexity of distance computation
is usually O(nk2), where n is the number of vectors, and k is
the dimensionality of the vectors. As BTBCN performs O(n2)
merging operations, the total time complexity is O(n3k2). 3)
The time complexity of performing the SEDC module is O(n).
Overall, the total time complexity of FedDMC in each round of
detection is O(nm2 + nmk + n3k2 + n).
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V. EXPERIMENTAL SETUP

In this section, we present the experimental setup, which
includes details of the dataset, model structure, attack methods,
detection methods used for comparison, and the metrics to be
evaluated.

A. Datasets and Model Architectures

As with previous work [24], we evaluated the performance
of FedDMC on three standard benchmark datasets. To test the
robustness of the method, we also investigated three distinct
neural network architectures.
� MNIST [50] is a 10-class digital image classification

dataset consisting of 60,000 training examples and 10,000
test examples. For MNIST, we use a fully connected net-
work (FC) with layer sizes {784, 100, 10} as the global
model architecture.

� EMNIST [51] poses a more challenging task for classifi-
cation involving letters and numbers. The dataset includes
62 classes and 697,932 grayscale images, sharing the same
image structure and parameters as the original MNIST
task. For EMNIST, we employed a four-layer convolutional
neural network (CNN) with two 3×3 convolutional layers
with rectified linear unit (ReLU) activation, followed by
2× 2 max-pooling (the first with 30 channels and the
second with five channels) and one fully-connected layer
with ReLU activation (with 100 units).

� CIFAR10 [52] is a 10-class color image classification
dataset consisting of a predefined set of 50,000 training
and 10,000 test examples. Each class has an equal number
of samples, i.e., 6,000 images per class. For CIFAR10, we
utilized the widely used ResNet18 architecture [53] as the
global model.

� COVIDx [54] is a large-scale, multinational chest ra-
diograph dataset, containing over 30,000 images from
16,400 patients. For COVIDx, we utilized the widely used
ResNet50 architecture [53] as the global model.

We set up the FL system with 100 clients and employed the
Dirichlet distribution to create a non-IID data distribution among
local clients, following prior research [55], [56]. Specifically, we
extract qj ∼ DirN(β) from a Dirichlet distribution and assign
a qji percentage of the examples of class j to client i, where β is
the concentration parameter that determines client sameness in
the range of 1 to 10. Unless otherwise noted, we set the non-IID
degree β to 5.

B. Attack Settings

As in the previous work [8], [24], we randomly selected 28%
of the clients as malicious clients by default. We consider both
data poisoning attacks and local model poisoning attacks. For
data poisoning attacks, we consider the popular Label flipping
(LF)-attack and Scaling-attack [7]. For local model poisoning
attacks, we consider GS-attack and LIT-attack [10].
� Label flipping (LF)-attack [18]: The adversary can be

ignorant of the distribution of the training data. This attack
flips the labels of each training sample on each manipulated

malicious client. Specifically, we randomly flip the label l
to l′, where l′ ∈ L, l 
= l′, and L is the set of all labels.

� LIT-attack [10]: This is a targeted attack. The attacker
manipulates all malicious clients to provide a range of per-
turbations. The attacker uses the maximum value zmax ←
maxz(Φ(z) <

N−M−s
N−M ) to circumvent the defense.

� Scaling-attack [7]: This method uses constraint and scale
techniques to incorporate evasive anomaly detection into
the attacker’s loss function. The malicious clients scale the
weights of the model to what the detector allows in order to
keep the backdoor from being faded by the server average
parameters.

� Gaussian (GS)-attack [57]: The existence of Gaussian
attacks that send gradients following a certain distribution,
which is easily identified by defense methods. We enhance
the invisibility of the Gaussian attack by replacing the
unpoisoned data with Gaussian noise generated with the
mean and variance of the model parameters at each layer.

� Adaptive-attack [13]: We assume that attackers know that
FedDMC is used to detect malicious clients, and thus
they adapt their strategies to avoid detection. Specifically,
the adaptive attack strategy considers euclidean distance
constraints and dimension-specific differences. The model
parameters provided by the malicious client i in the t-th
iteration are denoted as wt

i and the global model param-
eters are wt

g . The malicious client i attempts to solve the
following optimization problem:

wt
i=argmin

wt
i

λ||wt
i − wt

g||2 − (1− λ)
∑
j∈d
|wt

i,j − wt
g,j |

The first term, λ||wt
i − wt

g||2, ensures that the model pa-
rameters provided by the malicious client closely align with
the global model in terms of overall euclidean distance,
thereby enhancing the stealthiness of the attack. The second
term, (1− λ)

∑
j∈d |wt

i,j − wt
g,j |, is designed to empha-

size significant differences between the malicious model
parameters and the global model to ensure the attack’s
effectiveness. The hyperparameter λ plays a pivotal role
in balancing these two aspects; a value of λ close to 1
increases the attack’s stealthiness by maintaining overall
similarity to the global model, while a lower λ value places
greater emphasis on discrepancies in specific dimensions,
thereby enhancing the attack’s effectiveness.

C. Compared Detection Methods

The defense methods we consider include Muti-Krum [21],
Auror [20], and FLDetector [24]. These methods do not re-
quire the server to have a trusted dataset and can output a
list of malicious clients to evaluate detection effectiveness. For
Multi-Krum, in general, the server is unaware of how many
malicious clients there are. Here, we relax the requirement and
set the Multi_value as the number of benign clients given. For
Auror, FoolsGold and FLDetector, we keep the same settings
as in previous work [20], [21], [24] to ensure the fairness of the
experiment. We only changed the detection method for detecting

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on December 16,2024 at 13:59:49 UTC from IEEE Xplore.  Restrictions apply. 



MU et al.: FEDDMC: EFFICIENT AND ROBUST FEDERATED LEARNING VIA DETECTING MALICIOUS CLIENTS 5267

TABLE II
THE DEFAULT CONFIGURATION OF OUR WORK

malicious users and using the same local network model struc-
ture, learning rate (η), batch size (B), concentration parameter
(β), ensemble parameter (α), and local epoch number (E) for
all methods, Table II summarizes the default configuration of
the experiments. We use PyTorch to implement FedDMC and
replicate the attack methods and defenses described above. The
code is publicly available.

D. Evaluation Metrics

Before introducing the evaluation metrics, we give the fol-
lowing definitions. True Positive (TP ): a client that is malicious
and is predicted to be malicious; False Positive (FP ): a client
that is benign but is predicted to be malicious. True Negative
(TN ): a client that is benign and is predicted to be benign; False
Negative (FN ): a client that is malicious but predicted to be
benign; We consider a set of metrics to evaluate the validity of
defense techniques.

Detection Accuracy Rate (DAR), the proportion of all
correct predictions to the total number of samples (including
malicious and benign clients), as

DAR =
TP + TN

TP + FP + TN + FN
(6)

Although the accuracy rate can determine the total correct
rate, it is not a suitable metric to measure the results. This is
because affect the aggregated results differently. For example,
a benign client identified as malicious only slightly affects the
global accuracy, while a malicious client identified as benign
significantly reduces the global accuracy.

Detection Precision Rate (DPR), the proportion of correctly
predicted malicious to all malicious, as

DPR =
TP

TP + FP
(7)

Recall Rate (RR), the proportion of correctly predicted ma-
licious to the proportion of predicted malicious, as

RR =
TP

TP + FN
(8)

To evaluate the learned global model, we use Test Accuracy
(TACC), the proportion of test instances the global model
correctly classifies. In addition, for target model poisoning at-
tacks, such as LIT-attack and Scaling-attack, we use the attack
success rate (ASR) to evaluate the global model. Specifically,
we embedded triggers into each test sample and considered the
attack successful if the test sample was classified as a target label

by the global model.ASR is the proportion of test inputs that are
successfully attacked, and a lower ASR means that the target
model poisoning attack is less successful. The experimental
result reported is an average of over five trials.

VI. EXPERIMENTAL RESULTS

In this section, we first evaluate the FedDMC framework,
then analyze the effectiveness of the three modules and finally
compare the efficiency of the extant detection methods.

A. FedDMC Evaluation

1) Detection Results: Table III shows the detection results
of three data sets under different attack and defense methods.
FedDMC achieves optimal results under these attack settings.
In particular, FedDMC achieves 100% detection accuracy for
LF-attack, GS-attack, and LIT-attack on MNIST and FMNIST
datasets. We analyze these defense methods. i) Multi_krum is
unable to defend against LIT-attack. For LIT-attack, the ad-
versary can manipulate all malicious clients and constrain the
uploaded model parameters. The adversary sets all malicious
model parameters the same to amplify the effect of the attack.
Multi_krum selects M model parameters that are most similar
to other clients so that the LIT-attack can escape detection by
Multi_krum. ii) Auror is a defense method based on K-means
clustering to detect malicious clients. K-means has apparent
defects, such as the poor clustering effect of K-means when
the data is in a certain distribution. This is why Auror is only
effective against LF-attack and is ineffective against other attack
methods. iii) FoolsGold is only effective with LIT-attack and has
little effect on other attack methods. This is because FoolsGold
assumes that the angle between malicious clients is smaller
than the angle between benign and malicious clients. FoolsGold
reflects this similarity in terms of cosine similarity. However, the
parameters of malicious clients are unknown and impossible to
estimate in most cases, so the angle between malicious users is
not necessarily slight. For example, in GS attacks, the parameters
of benign clients are more similar, while the parameters of mali-
cious clients are more scattered in distribution. Therefore, the de-
tection accuracy of FoolsGold on MNIST and EMNIST datasets
is 0. iv) FLDetector is the state-of-the-art among the existing de-
fense methods. FLDetector is defensive against these attacks and
can detect most malicious clients. However, FLDetector does not
work well in specific experimental settings, such as LIT-attack.
We reimplemented FedDMC following the experimental setup
in FLDetector, and the experimental results are shown in Ap-
pendix C, available online. Experimental results show that Fed-
DMC excels on the complex COVIDx dataset, outperforming
existing methods. This underscores our method ’s effectiveness
and practicality for large, complex datasets. In general, FedDMC
outperforms existing defense methods in varying degrees of
accuracy and can defend against a wider range of attacks.

2) Performance of the Global Models: Table IV shows the
TACC and ASR of the global model for the three benchmark
datasets under different attacks and detection methods. “No-
attack” implies learning the global model using the remaining
72% of benign clients. The experimental setup for the other four
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TABLE III
RESULTS (DAR, DPR AND RR) OF MALICIOUS CLIENT DETECTION FOR DIFFERENT ATTACKS, DETECTION METHODS UNDER THREE BENCHMARK DATASETS

TABLE IV
RESULTS (TACC AND ASR) OF THE GLOBAL MODEL FOR THREE BENCHMARK DATASETS WITH DIFFERENT ATTACKS AND DIFFERENT DETECTION METHODS

attacks remains 28% malicious clients and 72% benign clients.
The LIT-attack and the Scaling-attack are targeted backdoor
attacks. Therefore, the ASR of each detection method is tested
against these two attacks.

We observe that the global model is even more accurate under
some attacks than under no attacks. This is because there is still
residual value in the malicious client.

The models learned by FedDMC under several other attacks
reach the same level as the models learned under No-attack.
The accuracy of the global model learned by FedDMC is the
highest compared to other defense methods. In the LIT-attack

and Scaling-attack, FedDMC achieves the lowest ASR, which
means that FedDMC effectively suppresses backdoor infiltra-
tion by removing malicious clients. Scaling-attack amplifies
the parameters in order to make the backdoor not be faded
through the global average. If a small number of malicious
clients are undetected, the backdoor can be easily implanted
in the global model. FedDMC benefits from excellent detection,
thus weakening the backdoor implantation of the Scaling-attack.

3) Computational Overhead: We conducted experiments on
the defense methods on three datasets to show the superiority of
the computational overhead of FedDMC. Even though servers
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Fig. 5. Impact of the number of malicious clients on the defense methods under different attacks.

TABLE V
COMPUTATIONAL OVERHEAD OF DIFFERENT DEFENSE METHODS

possess greater computational resources, the efficiency of
processing and aggregating high-dimensional parameter models
from hundreds or thousands of clients simultaneously is critical,
especially in frequent aggregation and updating scenarios.
FedDMC focuses primarily on server-side optimization in
federated learning, specifically on efficiently processing data
from clients to detect and remove malicious clients, thereby
ensuring the security of the global model. Here we only consider
the time consumed to execute the detection algorithm on the
server side, excluding the local training time and the parameter
transfer time. Table V shows the experimental results of these
defense methods, and the computational overhead of FedDMC
is within an acceptable range. Compared to the state-of-the-art
method FLDetector, FedDMC shows advantages not only
in terms of detection accuracy but also achieves significant
improvements in computational efficiency.

Moreover, we measured the computation cost and overhead
of the FedDMC components under the COVIDx dataset, which
corresponds to a local client with a network model of ResNet50.
Specifically, the computation time of the PCA is 26.8 sec-
onds, the time of the BTBCN module is 0.99× 10−3 seconds,
and the processing time of the SEDC module is is less than
10−6 seconds. The experimental results demonstrate that Fed-
DMC is highly feasible and practical in resource-constrained
environments.

B. Impact of Key Parameters

1) Impact of the Number of Malicious Clients: We explore
the impact of different numbers of clients on FedDMC. We
compare different defense methods under different attacks af-
fected by the number of malicious clients, as shown in Fig 5.
We observe that, except for FedDMC, other defense methods
decrease in detection accuracy as the number of malicious clients
increases. Some defense methods work only under certain at-
tacks, e.g., Foolsgolds is effective only for LIT-attack, and Auror
is effective only for LF-attack. Because of space limitation, we
only show the experimental results for the dataset EMNIST in

Table VI. We can get some observations. i) FedDMC shows
strong stability under different attacks. ii) FedDMC detection
can always reach 100% accuracy under the condition that the
number of malicious clients M < �N2 � is satisfied. iii) The ac-
curacy of the global model decreases as the number of malicious
clients increases. iv) In targeted attacks, the ASR increases a little
with the increase of malicious clients, but it is still guaranteed
to be no more than 3%.

2) Impact of the Different Degrees of Non-IID: We explore
the impact of different degrees of non-IID on FedDMC and
conduct experiments on the dataset EMNIST. From Fig. 6,
we observe that the DAR of all defense methods increases
as the Concentration parameter (β) increases (The smaller
the β, the more unbalanced the distribution). This indicates
that the degree of non-IID affects the detection accuracy of
defense methods. FedDMC maintains a high DAR for dif-
ferent attacks, and FedDMC achieves 100% detection accu-
racy after the Concentration parameter (β) reaches a cer-
tain threshold. For example, the detection accuracy of Fed-
DMC starts to decrease for LF-attack with β < 3 and for
GS-attack with β < 5. Specifically, FedDMC exhibits better
detection than other defense methods at different levels of
non-IID.

3) Impact of Different Degrees of Dimensionality Reduction:
We explored the impact of the degree of dimensionality reduc-
tion (k) on FedDMC. We conduct experiments on three datasets
and set k as {100, 20, 10, 5, 2}, the attack method as LF-attack,
and the number of malicious clients as 28, respectively. For each
set of experiments, we compared the experimental results for
different concentration parameters (β). As shown in Fig. 7, the
overall trend is that as the degree of dimensionality reduction (k)
decreases, the detection accuracy (DAR) increases. However,
it is clear that the detection accuracy decreases as the skew
of the data distribution increases. In the case of skewed data
distribution, it is not that the lower the dimension, the higher the
detection accuracy. For example, in Fig. 7(c), when β = 1, this
set of experiments achieves the highest detection accuracy when
k = 10. The reason for the misclassification is that when the data
is unbalanced, the model parameters of the clients also drift,
and the dimensionality reduction can also widen the distance
between these clients and other clients. The goal of PCA is to
transform the original data into a set of linearly uncorrelated
representations, which are sorted according to variance. How-
ever, calculating distance based solely on the first component
isn’t necessarily the best approach. The euclidean distance takes
into account the differences across all components, offering a
comprehensive measure of similarity. Given the heterogeneityAuthorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on December 16,2024 at 13:59:49 UTC from IEEE Xplore.  Restrictions apply. 



5270 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 21, NO. 6, NOVEMBER/DECEMBER 2024

TABLE VI
IMPACT OF THE NUMBER OF MALICIOUS CLIENTS ON FEDDMC UNDER DIFFERENT ATTACKS

Fig. 6. Impact of the degree of non-IID on the EMNIST dataset under different attacks.

Fig. 7. Impact of different degradation levels on the effectiveness of FedDMC defense.

of client data, there might be biases in the model parameters.
This suggests that relying solely on the first component might
not ensure robust clustering.

4) Impact of Different min_cluster_size: We conducted
experiments to determine the most appropriate minimum
clustering size threshold. As shown in Fig. 9(a), for
min_cluster_size = 3, the detection accuracy is optimal on
multiple datasets. For future work, we will utilize machine
learning techniques to automatically adjust the thresholds based
on the distribution of data points. This strategy is expected to
enhance the adaptability of FedDMC.

5) Impact of the Adaptive Attack: Fig. 9(b) shows the per-
formance when applying the adaptive attack to FedDMC. As
the hyperparameter λ increases, the DAR exhibits a decreasing
trend. This indicates that larger values of λ can effectively

improve the stealthiness of the attack, making it more diffi-
cult to detect malicious clients. However, the TACC does not
significantly decrease, which is due to the fact that the pursuit
of attack covertness correspondingly diminishes the destructive
potency of the attack. In other words, although malicious clients
are not recognized by the defense mechanisms, the malicious
parameters they provide do not significantly affect the accuracy
of the global model.

C. Module Evaluation

1) Evaluation of PCA Dimensionality Reduction Perfor-
mance: PCA significantly decreases the distance of data points
belonging to the same cluster while relatively mildly decreasing
the inter-cluster distance. This means that the processing with

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on December 16,2024 at 13:59:49 UTC from IEEE Xplore.  Restrictions apply. 



MU et al.: FEDDMC: EFFICIENT AND ROBUST FEDERATED LEARNING VIA DETECTING MALICIOUS CLIENTS 5271

TABLE VII
DISTANCES OF LOCAL MODEL PARAMETERS IN DIFFERENT ROUNDS AFTER DIMENSIONALITY REDUCTION TO DIFFERENT DIMENSIONS

Fig. 8. Distance relationship between the 50 clients at different degrees of dimensionality reduction.

PCA relatively increases the distance between clusters. Table VII
describes this observation visually. We set up the FL system with
100 clients, among which 20 are malicious, and these malicious
clients are manipulated by the attacker to execute the LF-attack.
For the sake of description, the average distance between benign
clients is defined as Dbb and the average distance between
benign and malicious clients as Dmb, and the relative error
between Dbb and Dmb is denoted by RE, which is calculated
as RE = (Dmb −Dbb)/Dmb. What is clear from this table
is that before the dimensionality reduction, Dbb and Dmb are
similar. What stands out is that as the dimensionality decreases
(k), the relative error rises rapidly, as shown in each column
of Table VII. The distance between benign clients decreases
significantly, while the distance between benign and malicious
clients decreases slightly. Apart from that, it can be noticed
from Table VII that Dbb tends to decrease with the training
iterations (t), which is due to the gradient between benign clients
getting closer as the model converges. However, it is clear from
the relative error RE that this does not contribute much to
distinguishing between benign and malicious clients. In other
words, as the dimensionality decreases, it becomes more obvious
to distinguish between benign and malicious clients.

We visualize the distance relationship among 50 clients in
Fig. 8. It can be clearly seen that as the dimension decreases
(k : 100→ 20→ 5), the direct distance distinction between
malicious clients and benign clients becomes more obvious. This
also shows that PCA significantly reduces the distance between

Fig. 9. (a) Impact of different min_cluster_size; (b) Impact of different λ

on the effectiveness of FedDMC defense in adaptive attack.

data points belonging to the same cluster while relatively mildly
reducing the distance between clusters.

We conducted tests on the BTBCN module for different
values of k, specifically k = 105, 104, 103, 102, and 10. The
time overheads for these tests were 2.53 s, 0.217 s, 0.0229 s,
3.98× 10−3 s, and 1.06× 10−3 s, respectively. A significant
increase in computation time for distance calculations was ob-
served when the dimensionality of points increased from 10 to
105. This increase in computation time significantly impacted
the overall runtime of the algorithm. The time overhead for the
SEDC module remained below 10−6 seconds for different values
of k, thus it was considered negligible.
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TABLE VIII
COMPARISON OF THE RESULTS OF THE EXISTING CLUSTERING METHODS REPLACING BTBCN IN THE FEDDMC FRAMEWORK, AND THE COMPUTATIONAL

OVERHEAD OF EACH METHOD

2) Evaluation of BTBCN Effectiveness: To evaluate the ef-
ficiency of the proposed BTBCN module in terms of accu-
racy and computational cost, we replaced the clustering mod-
ule in FedDMC with various clustering methods, such as K-
means [43], Hierarchical clustering [44], DBSCAN [45], and
HDBSCAN [47]. We conducted experiments on the CIFAR-10
dataset, and the results presented in Table VIII demonstrate
that the BTBCN module outperforms other clustering methods.
Traditional clustering methods, such as K-means and Hierar-
chical clustering, are susceptible to extremely malicious values,
resulting in suboptimal performance. DBSCAN and HDBSCAN
outperform traditional methods but at the cost of extensive
computational resources. The Robust K-means++ algorithm
is comparable to BTBCN in terms of accuracy in detecting
malicious clients. However, BTBCN has a significant advantage
in terms of Computational overhead. This advantage is derived
from BTBCN’s implementation of a binary tree structure for
clustering, which offers faster performance. In contrast, the
Robust K-means++ algorithm necessitates a significant amount
of computational resources during the initialization of clus-
ter centers. In summary, the BTBCN demonstrates significant
advantages in malicious client detection due to its robustness
to noise and computational efficiency. We utilize BTBCN to
address the limitations of existing clustering-based malicious
client detection implementations, minimizing false positives in
poisoned model detection. We visualize the model parameters
for the 100 local clients using the t-SNE method. Fig. 11(a)
shows the result of direct visualization using t-SNE, while
Fig. 11(b) shows the result of first reducing the dimensionality
to 5 using PCA and then visualizing it using t-SNE.

3) Evaluation of SEDC Effectiveness: We evaluate the ef-
fectiveness of the Self-Ensemble Detection Correction (SEDC)
module in enhancing the overall stability and accuracy of ma-
licious client detection. To assess the impact of the SEDC
module, we compare the performance of our proposed method,
FedDMC, with and without the SEDC module. We conducted
experiments using the MNIST dataset and under LF-attack as
the adversarial setting. Considering the stability of the learning
process, the evaluation metrics include detection accuracy and
global model testing accuracy for all rounds. As depicted in
Fig. 10, the experimental results demonstrate that incorporating
the SEDC module into FedDMC significantly improves in de-
tection accuracy, along with an increased and stabilized global
model accuracy. By leveraging historical detection results, the

Fig. 10. Detection precision rate and global model test accuracy for all rounds.
The dataset is MNIST and the attack setting is LF-attack.

Fig. 11. Client distribution using t-SNE visualization.

SEDC module effectively mitigates the effects of single-round
detection inaccuracies, resulting in a more reliable and robust
malicious client detection process. This highlights the effective-
ness of the SEDC module in enhancing the performance of our
proposed method FedDMC under challenging conditions such as
different data distributions and uncertain attacks from malicious
clients.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have presented FedDMC, a novel approach
for detecting malicious clients in federated learning settings,
which combines PCA dimensionality reduction, the binary tree-
based clustering with noise (BTBCN), and the self-ensemble
detection correction (SEDC). Our experimental results demon-
strate the effectiveness of our proposed method in achieving high
detection accuracy while maintaining reasonable time and space
complexity. Although our proposed approach shows promising
results, it is essential to consider the privacy protection aspect
when detecting malicious clients. Detecting malicious clients
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becomes more challenging under the premise of privacy pro-
tection. For future work, we plan to explore the integration of
privacy-preserving techniques such as secure shuffling [58] and
secure multi-party computation [59] into our framework. This
would allow us to maintain a high level of privacy protection
while effectively detecting and mitigating the impact of mali-
cious clients in federated learning scenarios.
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