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Distributed data storage is a key technology in the data collection in wireless sensor networks. The storage scheme based on
network coding is applied to data collection in wireless sensor networks because of its high reliability and low overhead. However,
it is an open problem to reduce data repair communication overhead caused by the failure of storage nodes. This paper focuses on
this issue and presents a two-layer distributed data storage scheme. The lower-layer nodes store the encoded data blocks and the
upper-layer nodes store the re-encoded blocks that are responsible for failure data recovery. Based on the two-layer data storage
scheme, a data repair method is proposed to decrease the repair communication overhead with only sacrificing lower storage
overhead. Compared with MSR, interference alignment-based scheme and group interference alignment scheme, the proposed
method has lower repair communication overhead. We prove that the proposed method can reduce the repair communication
overhead to o(1/

√
k) times and it is suitable to resource-constrained distributed wireless sensor networks.

1. Introduction

Wireless sensor networks, Internet of things and M2 M make
the computer networks extended to things. The data col-
lection in wireless sensor networks perform environmental
monitoring, information transmission, data storage, and
independent provided service. The collected data are dis-
tributed stored at the data storage nodes. In the case of node
failure, high reliability and low-overhead distributed data
storage is an open problem which has received widespread
attention in recent years [1, 2]. With the consideration of
resource-constrained property of the storage nodes in the
data collection in wireless sensor networks, some effective
distributed storage methods are proposed in [3–8]. The
distributed storage scheme based on network coding is one
of them and it has been researched extensively. It encodes
the original data into a number of encoded data blocks and
then stores them at different storage nodes. To reconstruct
the original data, users only need to get a reasonable number
of encoded data blocks (not less than the original data
amount). Compared with the data backup method, the
network coding technique has advantages of low storage
overhead and robustness.

But it also brings the repair problem: When a storage
node fails, the data on nonfailure nodes are used to repair
the failure data to keep the same level reliability. To repair
the failure encoded data blocks, the traditional method is
that the newly added storage node collect sufficient encoded
data (not less than the original data amount), then decode
the encoded data to get the original data, and reencode the
original data blocks to recover the failure data. As a result,
traditional method causes great repair communication
overhead which makes it not optimal for the wireless
sensor networks because of the strict limitation of energy.
Therefore, communication overhead becomes the primary
factor of designing data repair algorithm. In order to reduce
the repair communication overhead, some researchers focus
their attention on designing data repair algorithms. Among
these repair algorithms, the interference alignment repair
algorithm presented in [9] and regenerating codes repair
algorithm introduced in [7, 8] are outstanding.

For regenerating codes repair algorithm, there are two
interesting points on its optimal tradeoff curve: minimum-
bandwidth regenerating (MBR) codes and minimum-storage
regenerating (MSR) codes [7, 8]. For MSR codes, its core
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constructive techniques are interference alignment and the
network coding. With the interference alignment technique,
MSR codes can reduce the repair communication overhead.
The more interference elements are aligned, the more
communication overhead is reduced. In order to decrease
the interference dimension to a maximum extent, a common
eigenvector should be computed and used. But when the
interference dimension is more than 3, the complexity of
computing the common eigenvector will increase greatly
and that will become a significant challenge to the wireless
network nodes with limited calculation ability. Dimakis et al.
[7] have proved that the repair communication overhead
of exact-MSR codes repair algorithm can be achieved with
interference alignment only when the code rate is not
higher than 1/2. For MBR codes, it can decrease the repair
communication overhead to the minimum by sacrificing
significant storage overhead. Its storage overhead is about 2
times of MSR. So for the given redundancy, the MBR codes
are no longer optimal in terms of reliability.

The interference alignment repair algorithm is based on
a hybrid storage model. In this model, the data consist of
two parts. One is systematic part which is composed of the
original data blocks. The other is nonsystematic part which
is composed of the linear combination of the systematic
part. Using the interference alignment algorithm to repair
the failure data, the newly added node should first collect
sufficient data to reduce the interference factors to 3 and
then use the interference alignment technique to repair the
failure data. The method proposed in [9] can reduce the
repair communication overhead, but it is still high.

This paper focuses on optimizing the repair communi-
cation overhead of distributed storage. Having analyzed the
tradeoff between storage overhead and repair communica-
tion overhead and turned the flat storage structure into hier-
archical storage structure, this paper proposes a distributed
storage method, which is based on two-layer storage struc-
ture, and a data repair algorithm. The proposed algorithm
decreases the repair communication overhead by sacrificing
lower storage overhead. The two-layer storage structure has
two kinds of encoded data. They are the encoded network
coding data and reencoded data. The lower-layer nodes are
responsible for the original data reconstruction. The upper-
layer nodes are responsible for failure data recovery. The data
repair algorithm based on two-layer storage structure can
ensure the restored data and the original encoded data have
the recoverability property. Moreover, the two-layer storage
structure keeps the storage system in a dynamic steady state
all the time. That is, the data reliability of the entire system
is stable. The analysis shows that the proposed method can
greatly reduce the repair communication overhead by sac-
rificing lower storage overhead. This paper also proves that
the proposed method can reduce the repair communication
overhead to o(1/

√
k) times of the traditional method at least

and satisfies the basic requirements of sensor networks.
This paper is organized as follows. Section 2 is related

works. Section 3 proposes two-layer data storage scheme
and data repair method. Section 4 evaluates the repair
communication overhead of the proposed method. The
conclusion is in Section 5 .

2. Related Work

There is a tradeoff between the communication overhead
of repairing failure data and the storage overhead in a
distributed data storage system. To ensure the availability
of the stored data, some methods to balance the storage
overhead and the communication overhead of repairing the
failure data are proposed in [1, 7, 9–14]. There are three
kinds of recovery algorithms: regenerating codes recovery
algorithm [1, 7, 11–14], interference alignment recovery
algorithm [1, 9], and tree-structured recovery algorithm
based on network topology [10].

For the regenerating codes recovery algorithm, MSR
codes and MBR codes [7] can be its representation because
of most researchers having a huge interest in them. With
the consideration of the minimum storage overhead, MSR
codes have minimal storage overhead on a single storage
node. MSR codes use the interference alignment technique
to reduce the repair communication overhead and the
repair process can be seen in [7]. Compared with the
traditional backup method, MSR codes repair algorithm can
significantly reduce the repair communication overhead by
interference alignment technique. But MSR codes have some
deficiencies. (1) Using interference alignment technique to
reduce the interference dimension to 1 should use the
common eigenvectors of all the interfering elements. But
the complexity of computing the common eigenvectors will
greatly increase with the increase of interference elements.
It will be a great challenge to the wireless storage nodes
with limited calculation ability. (2) Repair communication
overhead of exact-MSR codes repair algorithm can be
achieved only when the coding rate is at most 1/2 [7],
otherwise its desired results cannot be guaranteed.

MBR codes consider the repair problem with the view of
minimum repair communication overhead. Repair commu-
nication overhead of MBR codes is equal to its single-node
storage overhead. And its repair communication overhead
is minimal among all the known data repair algorithms.
The meticulous process of building MBR codes is in [7].
Nevertheless, the shortcoming of MBR codes is its great
storage overhead. That is because each data block is stored
twice. So for the given redundancy, the reliability of MBR
codes is no longer optimal.

With minimal storage overhead for a single storage node,
the data repair method based on interference alignment
reduces repair communication overhead by merging inter-
ference elements. The interference alignment technique can
reduce the interference elements to 1 by collecting sufficient
data. Then the failure data can be repaired by solving linear
equations. The details are shown in [9]. The shortcomings
of the interference alignment repair algorithm are as follows:
(1) Interference alignment repair algorithm is mainly acted
on the systematic data. When non-systematic data are
failure, they are turned into systematic. (2) Compared with
the traditional method, the interference alignment repair
algorithm does not decrease the repair communication
overhead significantly.

Data repair algorithm based on network topology is
named tree-structured data regeneration. This method views
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the data repair as recoding of the encoded data blocks. This
method is based on the random network coding theory. And
it is chiefly used to reduce the repair time. Compared with
the traditional method, its repair communication overhead
is not reduced.

For these shortcomings of the available data repair
algorithms, this paper analyzes the tradeoff between the
storage overhead and repair communication overhead,
transforms the flat node storage method into hierarchical
network coding storage method which is inspired by the
tree-structured data regeneration, and then proposes the
distributed network coding storage method and repair
algorithm.

3. Two-Layer Storage Structure and
Data Repair Method

In this section, two-layer storage structure and data repair
method are proposed. In the two-layer storage structure, the
encoded data blocks are organized into two layers.

3.1. The Construct of Two-Layer Data Storage Structure.
There are two types of encoded data blocks in the two-
layer storage structure and they constitute the lower-layer
and the upper-layer of the two-layer data storage structure,
respectively. The network coding data blocks of the original
data consist of the lower-layer data blocks; while the upper-
layer encoded data blocks are the linear combination of
the lower-layer data blocks. The construction process is as
follows.

The original data of size M bits are divided equally
into k blocks (of size M/k bits each), represented by a
k-dimension vector E = [e1, e2, . . . , ek−1, ek]T . These k
data blocks are expended into n encoded blocks by linear
network coding, represented by a n-dimension vector B =
[b1, b2, . . . , bn−1, bn]T , that is, B = AE:

B = AE =

⎡
⎢⎢⎢⎢⎣

a1,1 a1,2 . . . a1,k

a2,1 a2,2 . . . a2,k

...
an,1

...
an,2

. . .

. . .

...
an,k

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

e1

e2
...
ek

⎤
⎥⎥⎥⎥⎦

, (1)

where A denotes the n ∗ k encoding matrix. The n encoded
data blocks are allocated to the lower-layer storage nodes.
The corresponding nodes that stored these encoded data
blocks are the lower-layer nodes of the two-layer storage
structure. From the property of the network coding, we know
that the data at lower layer can reconstruct the original data.

The traditional data repair method illustrates that the
data repair is essentially the process of solving linear equa-
tions. The communication overhead of the data recovery
depends on the required data blocks, which are also the
number of linear equations. Thus, reducing the communi-
cation overhead of data recovery is to decrease the number
of equations.

To reduce the number of equations, the upper-layer
encoded data scheme is proposed. The upper-layer nodes
store the reencoded data from the lower-layer data by

b1 b2
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a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11
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f5
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Figure 1: Two-layer encoded data structure with (3, 11, 6) code.

(m,n) code, where m is the number of the upper-layer
encoded data blocks. Similar to the original data blocks,
the upper-layer encoded data can also be denoted by C =
[c1, c2, . . . , cm−1, cm]T , that is, C = FB′:

C = FB′ =

⎡
⎢⎢⎢⎢⎣

f1,1 f1,2 . . . f1,mp

f2,1 f2,2 . . . f2,mp

...
fm,1

...
fm,2

. . .

. . .

...
fm,mp

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

b1

b2
...

bmp

⎤
⎥⎥⎥⎥⎦

, (2)

where F is the m ∗ mp encoding matrix of the upper layer
encoded data. p is the number of the lower layer data blocks
for encoding a data block of the upper layer and p < k.
Each row of F has p non-zero elements and every column
of F has only one nonzero element. Moreover, m ≤ �n/p�
and n − mp are the number of the lower layer data blocks
that are not involved in re-encoding the upper layer data
blocks. The upper layer encoded data blocks can be expressed
by ci = fiB

′
. ci denotes the upper layer encoded data. fi

is a mp-dimension row vector of Fm∗mp. B
′
, which is the

subvector of B, is a mp-dimension row vector and represents
the lower-layer encoded data participated in re-encoding the
upper-layer data. Afterwards, the upper layer data blocks are
stored at different nodes which are different from the lower-
layer nodes, and these nodes are the upper-layer nodes of the
two-layer storage structure. For convenience, the two-layer
encoded data structure is represented by triple (m,n, k) code.
Figure 1 is an example and shows a two-layer encoded data
structure with (3, 11, 6) code.

3.2. The Methods of Repairing the Failure Data. The exact
repair means that the recovered data are exactly the same as
the failures. For all of the upper-layer nodes and the lower-
layer nodes involved in re-encoding process, when any of
them is failure, the failure data can be exactly repaired. For
the rest of the lower-layer nodes, when one of them fails,
there are two ways, exact repair and functional repair, to
recover the failure data. The functional repair is that the
newly generated block can contain the different failure data
as long as the system maintains the network coding (n, k)
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property. Two types of repairs are presented as follows: exact
repair and hybrid repair.

3.2.1. Exact Repair. In exact repair, when the upper-layer
nodes failed, the new joined node should only collect
the lower-layer data blocks which are responsible for the
previous re-encoded block to exact repair the failure data.
For the lower-layer node participated in re-encoding, such
as node a1 in Figure 1, if it failed to repair the failure data
exactly, the data stored at a2, a3, and b1 are only required.

For the rest of the lower-layer nodes, if one of them
failed, the upper-layer data blocks are used to realize the
exact repair. The subsets of the upper-layer encoded blocks
can exactly repair the failure data blocks stored at the lower
layer nodes that are not involved in re-encoding process
and the number of elements in each subset is p′ (p′ is
the number of the upper-layer data blocks that are used
for data repair. To maintain (n, k) network coding property,
pp′ ≥ k). Moreover, any two of the subsets are required
to have no intersection to ensure the failure data can be
accurately repaired. As a result, m should satisfy m/p′ ≥
n − mp. The left of the inequality represents the number of
the subsets, while the other side of the inequality represents
the number of the lower layer nodes that are not involved in
re-encoding process. Then with the help of the well-designed
repair matrix, the failure data blocks can be repaired exactly
by collecting the corresponding data blocks of the upper layer
and combining them linearly afterwards.

3.2.2. Hybrid Repair. Hybrid repair is a hybrid model of the
exact repair and functional repair. The hybrid model is: If any
of the upper-layer nodes or the lower-layer nodes involved in
reencoding process failed, the data stored at them are exactly
repaired; however, if the lower-layer nodes which are not
involved in the reencoding process failed, the data stored
at them are functionally repaired. The functional repair is
actually the linear combination of p′ (p′ ≥ 2) blocks of the
upper-layer data. For example, as show in Figure 1, if a10

failed, the data stored at a10 can be functionally repaired by
the data stored at b1 and b2. With the help of the accurately
calculated repair coefficients, the repaired data can preserve
the network coding (n, k) property. For convenience, the new
joined node storing the recovered data is still named a10.
To keep the same level reliability of the data, the functional
repair must make sure that the repaired lower layer storage
system maintains (n, k) network coding property.

The functional repair of the data stored at the lower
layer nodes which are not involved in re-encoding process
is a linear combination of data blocks of the upper layer.
Therefore, the functional repair can be represented by ri =
ξiC. ri is the recovered data and ξi is a m-dimension row
vector for repair. Each row of S = [ξ1ξ2· · · ξ j−1ξj]

T has p′

nonzero elements, where j values at least n − mp and each
column of S has only one nonzero element. To ensure the
repaired lower layer storage system maintains (n, k) network
coding property, we should work out all the encoding vectors
that have (n, k) network coding property with that of the
data stored at the lower layer in advance and their number
is set to n1 which is not less than n − mp. Then strictly

calculate the encoding coefficients of the upper layer data
and make the final repair vectors equal to the vectors
we calculated beforehand. At this time j is equal to n1.
Therefore, the key problem of functional repair is to calculate
these coefficients. Their number is mp+ (n−mp)p′. Among
them mp coefficients are used for encoding the upper-layer
data and the others are used to repair the failure data. The
repair vector of the data repaired can be expressed in the
form of the summation of the product of these coefficients.
These coefficients can be calculated with the help of repair
vectors of the ultimate repaired data. Data repair can also be
represented by R = S[F(AE)] and Rank (R) ≤ j. To maintain
(n, k) network coding property, the rank of R must be greater
than n−mp. The solution of these coefficients exists when the
rank of R equals to that of its augmented matrix by choosing
the value of the non-zero elements reasonable. Because of
n−mp < mp + (n−mp)p′, the solution will not be unique.

4. Evaluation

In this section, we analyze the proposed data repair method
and evaluate the communication overhead for data repair,
namely, repair communication overhead. We also compare
it with the existing data repair method. The communication
overhead for data repair is represented by the amount of
communication data in the data repair process.

4.1. Repair Communication Overhead Evaluation of

the Exact Repair

4.1.1. Repair Communication Overhead. Whether the lower-
layer data blocks that are involved in re-encoding process
or not brings the difference of the repair schemes and
even makes the repair communication overhead not the
same. From the repair methods mentioned above, we know
that the repair communication overhead of the upper-layer
data blocks and the lower-layer data blocks involved in
re-encoding process is p, and the repair communication
overhead of the rest of the lower layer data blocks is p′.
p is not necessarily equal to p′. When we compute the
communication overhead of data repair, it is not logical to
use an accurate value to represent the repair communication
overhead of the entire storage system. Therefore, the expec-
tation value of the repair communication overhead provides
a good idea to represent the repair communication overhead
of the entire storage system. Let m be x, let p be y, and let p′

be z. We assume that each storage node has the same failure
probability in the entire storage system. When a storage node
failed, the expectation of its repair communication overhead
is

E
(
x, y, z

) =
(
x + xy

)
y

n + x
+

(
n− xy

)
z

n + x
, (3)

where x, y, and z are subject to

k ≤ yz ≤
⌈√

k
⌉2

, (4)

2 ≤ y ≤
⌈
k

2

⌉
, (5)
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2 ≤ z ≤
⌈
k

2

⌉
, (6)

x ≥ z
(
n− xy

)
, (7)

n− xy ≥ 0, (8)

E
(
x, y, z

) =
(
x + xy

)
y

n + x
+

(
n− xy

)
z

n + x

= xy2 − xyz + nz + xy

n + x
.

(9)

Set t = n− xy, then n/x = y + t/x. E will be turned into

E
(
x, y, z

) = xy
(
y − z + 1

)
+ nz

n + x

= y
(
y − z + 1

)
+
(
y + t/x

)
z

1 + y + t/x

= y2 + y + (t/x)z
1 + y + t/x

= y
(
y + 1 + tz/xy

)

1 + y + t/x
.

(10)

From the equation, we know that the value of E is related
to x, y, and z. x is similarly related to y and z. As a result,
the value of E is determined by y and z. According to the
relationship between y and z, we will have the following 3
cases.

Firstly, if y = z, then E = y. From (4), we know that
ymin = �

√
k�. At this time, we can calculate that E = �√k�.

Secondly, if y < z, then E > y. For the given value of z,
the range of y is determined by the formula (4), and at the
same time the range of x is determined by the formula (8).
Within the range of x and y, it can be thought that x, y, and
z are independent of each other. For formula (3), the partial
derivative of x is:

∂E

∂x
= n

(
y2 − yz + y − z

)

n + x
= n

(
y − z

)(
y + 1

)

(n + x)2 . (11)

When x is maximal, E will be minimal. From (8), we can
see that xmax = n/ymin and ymin = 2. At this time, z = �k/2�,
then E = 2.

Thirdly, if y > z, then E < y. Similar to the y < z
situation, when x is minimal, E is minimal. From (7), we can
see that x ≥ zn/(1+ yz) = n/(y+1/z). From (4), (5), and (6),
we know that if y = �k/2� and z = 2, x will be minimal and
at this time xmin = 2n/(1 + k), E = (1 + k)2/(6 + 2k).

Compare the value of E at these 3 situations and we can
see that if k = 3, 4, the minimal repair communication
overhead is (1 + k)2/(6 + 2k); if k ≥ 5, the minimal repair
communication overhead is 2.

4.1.2. Evaluation of the Repair Communication Overhead

Theorem 1. If k ≥ 3 and the relationship between n and k is
k + 1 ≤ n ≤ 2k − 1, the repair communication overhead of
exact repair based on the two-layer storage structure is lower
than that of MSR.

Proof. If k ≥ 5, the repair communication overhead of exact
repair based on the two-layer storage structure is 2, while the
MSR is d/(d − k + 1) [7], where d is the number of nodes
that are involved in data repair and k ≤ d ≤ n − 1. Let
f (d) = d/(d − k + 1) and its derivative of d is a monotone
decreasing function. So f (d) will be minimal when d = n−1
and f (d)min = (n − 1)/(n − k) = 1 + (k − 1)/(n − k).
From the condition that k + 1 ≤ n ≤ 2k − 1, we can know
f (d)min = 1 + (k − 1)/(n − k) ≥ 2. Therefore, it turns to be
correct that the repair communication overhead of the exact
repair based on two-layer storage structure is lower than that
of MSR when k ≥ 5. Moreover, when k = 3, 4, the repair
communication overhead of the exact repair based on two-
layer storage structure is lower than 2. That is to say when n
and k satisfy k+1 ≤ n ≤ 2k−1, the conclusion is also correct.
Hence, theorem 1 proves to be correct.

Theorem 2. If k ≥ 3, the repair communication overhead of
exact repair based on two-layer storage structure is lower than
that of repair method based on interference alignment which is
proposed in [9].

Proof. The repair communication overhead of the basic
interference alignment repair algorithm proved by [9] is
(qk−q+1)/q (q is the number of data pieces stored at a single
storage node). Let f (q) = (qk−q+1)/q = k−1+1/q. If k ≥ 3,
then f (q) > 2. The repair communication overhead of exact
repair based on two-layer storage structure is 2 if k ≥ 5. For
k ≥ 5, the conclusion is correct. When k are 3, 4, the repair
communication overhead of exact repair based on two-layer
storage structure is 4/3 and 25/14, respectively. Both of them
are smaller than 2, so the conclusion is also correct when k
are 3, 4.

For the repair algorithm based on group interference
alignment, the repair communication overhead is p + (k −
p)/q and it is higher than p (p is the number of storage nodes
that a data group contains, 2 ≤ p < k). If k ≥ 3, the repair
overhead of group interference alignment is p + (k − p)/q
and it is higher than 2. Therefore, the Theorem 2 is obviously
correct for the repair method based on group interference
alignment.

4.1.3. Numeral Result. In order to compare the repair
overhead of these data repair method above and verify the
correctness of the conclusions, the numeral result is shown in
Figure 2. The histogram in Figure 2 shows, respectively, the
repair overhead of MSR repair, exact repair based on two-
layer storage structure, repair based on basic interference
alignment and group interference alignment, where (n, k)
values are as follows: (5, 3), (6, 4), (9, 5), (12, 6), (15, 7),
and (17, 8). Comparing the conclusions of this paper with
the numeral results displayed in Figure 2, it can be seen
apparently that they are consistent.

4.2. Repair Overhead Evaluation of the Hybrid Repair

4.2.1. Repair Communication Overhead. Similar to the exact
repair, the communication overhead of hybrid repair can also
be represented by its expectation value. Let m be x, let p be y,
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Figure 2: The repair communication overhead evaluation of exact
repair.

and let p′ be z, and assume that in the entire storage system,
the failure probability of each storage node is exactly the
same. When a storage node failed, the expectation of repair
overhead is

E
(
x, y, z

) =
(
x + xy

)
y

n + x
+

(
n− xy

)
z

n + x
, (12)

where x, y, and z are subject to

k ≤ yz ≤
⌈√

k
⌉2

, (13)

xy < n, (14)

z < x, (15)

2 ≤ y ≤
⌈
k

2

⌉
, (16)

2 ≤ z ≤
⌈
k

2

⌉
, (17)

C(x, z) ≥ n− xy, (18)

√
2πn

(
n

e

)n
< n! <

√
2πn

(
n

e

)n
, (19)

n− xy ≤ n1, (20)

n > n1. (21)

We can gain

E
(
x, y, z

) =
(
x + xy

)
y

n + x
+

(
n− xy

)
z

n + x

= xy2 − xyz + nz + xy

n + x
.

(22)

Let t = n−xy. From (19), we can draw n! → √
2πn(n/e)n

[15]. So, C(x, z) is

C(x, z) ≈ xx+1/2e1/12n

√
2πzz+1/2(x − z)x−z+1/2

≈ xx+1/2(1 + 1/12n)√
2πzz+1/2(x − z)x−z+1/2 .

(23)

When t → C(x, z), the storage overhead will be minimal,
and the value of t is Min(n1,C(x, z)).

From (12), we can see that the value of E is related to x, y,
and z. The relationship between x, y, and z can be seen from
(18). Formula (13) gives the condition that y, z should be
satisfied. When any of x, y, and z is determined, the range of
the others will be known. Within the range of them, it can
be thought that x, y, and z are independent of each other.
For the given value ofy, the range of x and z can respectively
be determined and within the range of x and z, the three
variables are independent of each other. For formula (12),
the partial derivative of x is

∂E

∂x
= n

(
y2 − yz + y − z

)

(n + x)2 = n
(
y − z

)(
y + 1

)

(n + x)2 . (24)

And the partial derivative of z is

∂E

∂z
= n− xy

n + x
. (25)

Combine (23) and (18), we can have

f
(
x, y, z

) = xx+1/2(1 + 1/12n)√
2πzz+1/2(x − z)x−z+1/2 −

(
n− xy

)
. (26)

Formula (18) can be rewritten as f (x, y, z) ≥ 0. To
compute convenient, by the Taylor formula, (26) can be
simplified to

f
(
x, y, z

) = A(1 + (1/12n))
B
√

2π
− (n− xy

)
, (27)

A = 1 + 105.9(x − 3) + 126.5(x − 3)2,

B =
[

1 + 11(z − 2) + 11.7(z − 2)2
]

×
[

1 + 1.5(x − z − 1) + 1.375(x − z − 1)2
]
.

(28)

Now, we discuss the value of E. According to the
relationship between y and z, we will have the following 3
situations.

First, if y = z, then E = y. From (13), we will know that
ymin = �

√
k�. At this time, we can calculate that E = �√k�.

Second, if y > z, formulas (24) and (25) show us the value
of E increases with the increasing of x, z and the values of x, z
decrease with the increase of y which are known from (14)
and (20). So for the given y, to make E minimal, x and z
should be minimal within their range. When y = a(�√k� +
1 ≤ a ≤ �k/2�), z = �k/a� and the minimum of x can be
drawn from (27).
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Theorem 3. Under the condition that the relationship between
n and k is n/k ≤ √

e/(
√
e − 1), for the given y and z, when

f (x, y, z) ≥ 0, it makes E minimal.

Proof. x, y are known, so (27) is a function on x and

df

dx
= y +

[
ln

x

x − z
− 0.5z

x(x − z)

]
xx+1/2(x − z)−(x−z+1/2).

(29)

For y = a, z = �k/a�, let g(x) = x/(x − z) − e0.5z/x(x−z),
x/(x−z) decreases with the increase of x. Formula (14) shows
that x ≤ [n/a], so

x

x − z
≥ [n/a]

[n/a]− �k/a� >
�n/a�

�n− k/a� =
n

n− k
≥ √e,

√
e <

x

x − z
≤
⌈
k

a

⌉
+ 1,

0.5z
x(x − z)

< 0.5,

(30)

then

e0.5z/x(x−z) <
√
e. (31)

Therefore, g(x) > 0 and f (x, y, z) is an increasing
function. To make (x, y, z) ≥ 0, the value of x must be not
less than that of making f (x, y, z) = 0. Then, the minimal
value of x can be goten on the condition that f (x, y, z) = 0.

The minimum value of x can be drawn from Theorem 3
when the relationship between n and k is n/k ≤ √e/(√e−1).
For the given y and z, f (x, y, z) is a function of a, so x can
be set as x = h(a). Substitute the value of x into (12) and
then compute the derivative of a. Within the range ofa, if the
derivative is greater than 0, the value of a will be �√k� + 1,
and at this time z = [

√
k], x = h(�√k�+1), then the minimal

E can be computed. When the derivative is less than 0, the
value of a will be �k/2�, and at this time z = 2, x = h(�k/2�).
Therefore, the minimum of E can be gained. If it cannot
make sure whether the derivative is greater than 0 or not, we
can firstly compute the value of a which makes the derivative
equal to 0. Substitute the value of a into (12), then we can get
the minimum E.

If y < z, formulas (24) and (25) show us that the value
of E increases with the increase of z and decreases with the
increase of x. At the same time, the values of x and z are both
decreased with the increase of y. That can be seen from (14)
and (20). As a result, for the given y, to make E minimal,
x should be maximal within its range, while z should be
minimal within its range. When y = a (2 ≤ a ≤ [

√
k]),

z = �k/a�. And when the relationship between n and k is
n/k ≤ √e/(√e − 1), f will be an increasing function and the
maximum of x will be [n/a].

Then, formula (12) turns into

E(a) = [n/a]a2 + [n/a]a + n�k/a� − [n/a]�k/a�a
n + [n/a]

. (32)

We can compute the derivative of a by the equality (32).
If the derivative is greater than 0, set a = 2, and substitute

the value of a into (32) afterwards, then the minimum of E
can be gained. If the derivative is less than 0, set a = [

√
k].

Then substitute the value of a into (32). The minimum of E
can be gained. If it cannot make sure whether the derivative
is greater than 0 or not, we can compute the value of a firstly,
which makes the derivative equal to 0. Then put the value of
a into (32), we can get the minimum E.

The repair communication overhead of hybrid repair
based on two-layer storage structure is �√k� when y = z.
If the repair communication overhead is greater than �√k�
in both cases, y > z and y < z, the minimal repair
communication overhead of hybrid repair is �√k�. If the
repair communication overhead is smaller than �√k� in any
of the two cases: y > z and y < z, the minimal repair
communication overhead of hybrid repair is at most �√k�.
In one word, the repair communication overhead of hybrid
repair is at most �√k�.

Theorem 4. The hybrid repair based on two-layer storage
structure can reduce the repair communication overhead to
o(1/

√
k) times of the traditional data recovery algorithm.

Proof. From the analysis mentioned above, it can be con-
cluded that the repair communication overhead of hybrid
repair based on two-layer storage structure is at most
�√k�. Compared with the traditional method whose repair
communication is k, the hybrid repair reduces the repair
communication overhead to �√k�/k ≈ 1/

√
k times of the

traditional method.

4.2.2. Evaluation of the Repair Communication Overhead

Theorem 5. If the relationship between n and k is k + 1 ≤
n ≤ k +

√
k, it can make sure that the repair communication

overhead of hybrid repair based on two-layer storage structure
is lower than that of MSR.

Proof. The repair communication overhead of hybrid repair
is at most �√k�. While the repair over head of MSR is d/(d−
k + 1), where d is the number of storage nodes that involved
in data repair and k ≤ d ≤ n − 1. Let f (d) = d/(d − k + 1),
and from its derivative, we can know that f (d) is a decreasing
function, and the minimum of f (d) can be gotten at d = n−1
and at this time f (d)min = (n−1)/(n−k) = 1+(k−1)/(n−k).
With the condition k+1 ≤ n ≤ k+

√
k, we can gain f (d)min =

1 + (k − 1)/[
√
k] ≥ �√k�, so if k + 1 ≤ n ≤ k + [

√
k], the

repair communication overhead of hybrid repair based on
two-layer storage structure is lower than that of MSR.

Theorem 6. For the repair method based on group interfer-
ence, if p ≥ �√k� (p is the number of storage nodes that a data
group contains), its repair communication overhead is higher
than that of hybrid repair based on two-layer storage structure.

Proof. For the repair method based on group interference,
its repair communication overhead is p + (k − p)/q which
is higher than p (q is the number of data pieces stored
at a single storage node). That has been proved by [9]. If
p ≥ �√k�, the repair communication overhead of it is higher
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Figure 3: The repair communication overhead evaluation of the
hybrid repair.

than �√k�. However, the repair communication overhead of
hybrid repair based on two-layer storage structure is at most
�√k� which is known from the analysis above. Therefore, the
theorem is proved.

For the repair method based on basic interference align-
ment, since its repair communication overhead is (qk − q +
1)/q = k−1+1/q > k−1, the repair communication overhead
of hybrid repair based on two-layer storage structure is lower.

4.2.3. Numeral Result. To verify the correctness of the
conclusions, the numeral result is shown in Figure 3. The
histogram in Figure 3 shows, respectively, the repair commu-
nication overhead of MSR repair, exact repair based on two-
layer storage structure, repair based on basic interference
alignment and group interference alignment, where (n, k)
values are as follows: (5, 3), (6, 4), (7, 5), (8, 6), (10, 7), and
(12, 8).

Comparing the conclusions of this paper with the
numeral results displayed in Figure 3, it can be seen
apparently that they are consistent.

5. Conclusion

This paper analyzes the tradeoff between storage overhead
and repair communication overhead in the distributed data
storage. We turn the flat storage structure into hierarchical
storage structure and present a two-layer distributed data
storage scheme to improve the repair communication over-
head. Based on the two-layer data storage scheme, a data
recovery method is proposed to decrease the repair commu-
nication overhead with sacrificing lower storage overhead.
The proposed method has lower repair communication
overhead than that of MSR, basic interference alignment

and group interference alignment schemes. We prove this
method reduces the repair communication overhead to
o(1/

√
k) times. The proposed scheme is suitable for resource-

constrained and node frequent failure distributed wireless
sensor networks.
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