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Abstract Intermittently connected mobile networks

(ICMNs) serve as an important network model for many cri-

tical applications. This paper focuses on a continuous ICMN

model where the pair-wise contact process between network

nodes follows a homogeneous and independent Poisson pro-

cess. This ICMN model is known to serve as a good ap-

proximation to a class of important ICMNs with mobility

models like random waypoint and random direction, so it is

widely adopted in the performance study of ICMNs. This pa-

per studies the throughput capacity and delay-throughput

tradeoff in the considered ICMNs with Poisson contact pro-

cess. For the concerned ICMN, we first derive an exact ex-

pression of its throughput capacity based on the pairwise

contact rate therein and analyze the expected end-to-end

packet delay under a routing algorithm that can achieve the

throughput capacity. We then explore the inherent tradeoff

between delay and throughput and establish a necessary con-

dition for such tradeoff that holds under any routing algorithm

in the ICMN. To illustrate the applicability of the theoretical

results, case studies are further conducted for the random

waypoint and random direction mobility models. Finally,

simulation and numerical results are provided to verify our

theoretical capacity/delay results and to illustrate our findings.

Keywords Intermittently connected mobile network

(ICMN) � Delay tolerant networks (DTN) � Throughput
capacity � Delay-throughput tradeoff � Poisson process

1 Introduction

A mobile ad hoc network (MANET) consists of a collection

of self-autonomous mobile nodes that communicate with

each other via peer-to-peer wireless links without any sup-

port from preexisting infrastructures. Intermittently con-

nected mobile networks (ICMNs) or delay tolerant networks

(DTNs) represent a class of sparse MANETs where com-

plete end-to-end path(s) between a node-pair may never

exist so that nodes mainly rely on mobility as well as basic

packet storing, carrying, and forwarding operations to im-

plement end-to-end communication (see e.g., [1] for a sur-

vey). ICMNs are highly flexible, robust and rapidly

deployable and reconfigurable, so they serve as an important

model for many critical applications such as wildlife track-

ing and monitoring, battlefield communication, vehicular

networks, low-cost Internet service for remote communities.

By now, much academic activity has been devoted to the

performance study on ICMNs. In the seminal work of

[2, 3], Groenevelt et al. demonstrated that the ICMN model
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with Poisson contact process can approximately fit an im-

portant class of mobility models such as random waypoint,

random direction and random walk. Based on this ICMN

model, the authors of [3] conducted Markov chain-based

analysis to evaluate the performance under two-hop routing

and epidemic routing algorithms in terms of the packet

delivery delay, i.e., the time it takes for a packet to reach its

destination node after it departures from its source node.

Following this work, the packet delivery delay perfor-

mance was extensively studied in literature [4–7]. Notice

that while the Markov chain-based analysis enables the

distribution of delivery delay to be calculated, the analysis

quickly becomes cumbersome and computationally im-

practical as the network size (i.e., the number of network

nodes) increases. Motivated by this observation, Zhang

et al. [4] developed a theoretical framework based on or-

dinary differential equations which significantly reduces

the complexity involved in the delivery delay analysis for

large scale ICMNs. For ICMNs with two-hop routing and

packet life time constraint and ICMNs with spray and wait

routing, the corresponding delivery delay performance was

reported in [5] and [6, 7], respectively. Another important

performance metric extensively investigated in ICMNs is

the delivery ratio [8], i.e., the ratio of number of packets

successfully delivered to the number of messages created.

For the throughput performance, Subramanian et al. ex-

plored the achievable throughput of ICMNs under two-hop

routing [9, 10] as well as under multi-hop routing [11].

While the above research are helpful for us to have a

preliminary understanding on the performance of ICMNs,

further deliberate studies are needed to reveal the funda-

mental performance limits of such networks. First, the

available throughput studies discussed above [9–11] only

focus on the throughput in ICMNs under a specified routing

algorithm. The throughput capacity, i.e., the maximum

throughput over any routing algorithm, is still unknown for

the ICMN model with Poisson contact process. Second, the

delivery ratio study focuses on the light-traffic scenario

where the effect of queuing process on throughput per-

formance is largely neglected. Third, the studies on deliv-

ery delay, which constitutes only a part of the fundamental

end-to-end packet delay, can not be directly applied to

investigate the inherent tradeoff between the end-to-end

delay and throughput in ICMNs. Since the throughput ca-

pacity and delay-throughput tradeoff in ICMNs indicate the

‘‘best’’ performance (i.e., theoretical limits) that the net-

work can stably support, it is expected that understanding

these fundamental performance limits will provide pro-

found insight to facilitate the design and optimization for

these networks [12].

In this paper, we focus on the ICMNs with homogeneous

Poisson contact process and study the throughput capacity

and inherent delay-throughput tradeoff in such networks,

where the proof techniques are inspired by the prior work of

Neely and Modiano in [13]. The main difference be-

tween [13] and this work is the network models under study.

The work of [13] focused on a time-slotted and cell-parti-

tioned network model where the network nodes there move

following an i.i.d. mobility model. We study in this paper a

time continuous ICMN model with homogenous Poisson

contact process, which is known to serve as a good ap-

proximation to a more general and important class of mo-

bility models [2, 3] and hence has been widely adopted in

the performance study for ICMNs [4–7]. To the best of our

knowledge, this paper is the first work that studies and

derives exact expressions for the throughput capacity and

related throughput-delay tradeoff in ICMNs. The main

contributions of the paper are summarized as follows.

• For the concerned ICMN model with Poisson contact

process, we first derive an exact expression on its

throughput capacity based on the pairwise contact rate

between network nodes there. The analysis on the

expected end-to-end packet delay under one capacity

achieving routing algorithm is also provided.

• We then explore the inherent tradeoff between the

expected end-to-end packet delay and throughput and

establish a necessary condition for such tradeoff that

holds under any routing algorithm in the concerned

ICMNs.

• Case studies for typical random waypoint and random

direction mobility model are further conducted to

illustrate the applicability of our theoretical results on

the throughput capacity and delay-throughput tradeoff

developed in this paper.

• Finally, we provide simulation/numerical results to

verify our theoretical capacity/delay results and to

illustrate our findings.

The rest of the paper is outlined as follows. The related

work is introduced in Sect. 2. Section 3 presents system

models and some basic definitions. The main theoretical

results on throughput capacity and delay-throughput

tradeoff are derived in Sect. 4. Section 5 provides

simulation/numerical results and corresponding discussion.

Finally, we conclude this paper in Sect. 6.

2 Related works

Since the seminal work of Grossglauser and Tse [14], the

throughput capacity and delay-throughput tradeoff have

been extensively studied for MANETs under various mo-

bilitymodels,most ofwhich focused on deriving order-sense

results and scaling laws, i.e., to find asymptotic bounds

Hðf ðnÞÞ for throughput capacity, where the function

f(n) represents the order ofmagnitude of throughput capacity
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as the number of network nodes n increases.1 The result

of [14] indicates that the long-term per flow throughput can

be bounded by constant functions even as n tends to infinity.

Gamal et al. [15, 16] studied a cell-partitioned MANET di-

vided evenly into n� n cells, on which the nodes move in-

dependently according to a symmetric random walk. For the

considered MANET, the authors of [15, 16] investigated its

optimal scaling behavior of the delay-throughput tradeoff

and discovered that the Hð1Þ per flow throughput is

achievable at the cost of an average delay of order

Hðn log nÞ. A similar delay-throughput tradeoff was shown

to also exist in MANETs under restricted mobility mod-

el [17]. In the work of [18], Li et al. proposed a controllable

mobility model for cell-partitioned MANETs and derived

upper and lower bounds on the achievable throughput and

expected delay for the considered networks. Besides, the

scaling laws of the throughput capacity and related delay-

throughput tradeoff have also been explored under other

mobility models, such as Brownian mobility model [19, 20],

hybrid mobility model [21], correlated mobility model [22]

and ballistic mobilitymodel [23]. For a survey on the scaling

law results of throughput capacity and delay in wireless

networks, please refer to [24].

It is notable that although the study on order sense results

and scaling laws can help us to understand the asymptotic

behavior of the throughput capacity and delay-throughput

tradeoff as the number of network nodes increases, they

provide little information on the actually achievable

throughput/delay performance of these networks, which is of

more interest from the view of network designers. Noting the

limitation of scaling law results, some preliminary research

have been conducted for the exact expressions of throughput

capacity [13, 25–27]. In particular, Neely andModiano [13]

computed the exact throughput capacity and delay-

throughput tradeoff in a cell-partitioned MANET under an

i.i.d. mobility model where the locations of each network

node in steady-state are independently and uniformly dis-

tributed over all cells. Following the model of [13], Ur-

gaonkar and Neely further investigated the relation between

throughput capacity and energy consumption in [25]. Re-

cently, Chen et al [27] studied the exact throughput capacity

for a continuous MANET with the i.i.d. mobility model and

an ALOHA protocol for medium access control.

Despite the insight provided by existing exact results on

the throughput capacity, the results developed there largely

rely on an independent and uniform distribution of the

locations of network nodes in steady-state and hence are

only applicable to networks under the i.i.d. mobility model.

This paper studies the exact throughput capacity and re-

lated delay-throughput tradeoff under a more widely ac-

cepted ICMN model and the result developed in this

analysis can be applied to ICMNs under a general class of

mobility models that can approximately fit the Poisson

contact process, irrespective of the stationary distribution

of the locations of network nodes.

3 System models and definitions

In this section, we first introduce the network model, mo-

bility model and traffic model, and then define the per-

formance metrics involved in this study.

3.1 Network model

We consider a sparse network that consists of n identical

mobile nodes randomly moving within a continuous square

of side-length L. Each node has a maximum transmission

distance d. We call that two nodes have a contact when

their distance is less than d and thus they can conduct

communication. At the beginning of each contact, either of

the two nodes is randomly selected as the transmitter of this

contact with equal probability. Since the network is very

sparse, we assume that the effect of co-channel interference

from other simultaneous transmitting nodes is negligible.

The total number of bits transmitted during a contact is

fixed and normalized to one packet (Table 1).

Remark 1 We consider only uni-directional data trans-

mission here to simplify analysis. Please notice that allowing

bi-directional data transmission will not improve the

throughput capacity performance since it does not introduce

more communication resources into the network but only

allows the two communicating nodes to share the total

amount of data that can be transmitted during a contact event.

3.2 Mobility model

We consider the Poisson contact model introduced in [2]

for node mobility. Under this mobility model, the contact

processes between each pair of nodes follow mutually in-

dependent and homogeneous Poisson processes with pair-

wise contact rate b[ 0, which is also the expected number

of contacts that occur per unit time. Equivalently stated, the

pairwise inter-contact times, i.e., the time that elapses be-

tween two consecutive contacts of a given pair of nodes,

are mutually independent and exponentially distributed

with mean 1=b. It has been demonstrated in previous

studies that this mobility model serves as a good ap-

proximation to a lot of typical mobility models like random

waypoint, random direction and random walk models [2, 4,

1 In this paper, for two functions f ðnÞ and gðnÞ, we denote f ðnÞ ¼
OðgðnÞÞ iff there exist positive constants c and n0, such that for all

n� n0, the inequality 0� f ðnÞ� cgðnÞ is satisfied; f ðnÞ ¼ XðgðnÞÞ iff
gðnÞ ¼ Oðf ðnÞÞ; f ðnÞ ¼ HðgðnÞÞ iff both f ðnÞ ¼ OðgðnÞÞ and f ðnÞ ¼
XðgðnÞÞ are satisfied.
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5]. In particular, let bRW denote the pairwise contact rate

under the random waypoint (RW) model and bRD denote

that under the random direction (RD) model. The result

of [2] has shown that bRW and bRD can be approximated as

bRW � 2c1 dEfV�g
L2

; and bRD � 2dEfV�g
L2

; ð1Þ

respectively, where c1 ¼ 1:3683 is a constant and EfV�g is

the average relative speed between two nodes (see [3] for

the numerical calculation of EfV�g). In the special case

that each node travels at a constant speed v, we have

bRW � 8c1dv
pL2 and bRD � 8dv

L2
.

3.3 Traffic model

Regarding traffic pattern, we consider the traffic mod-

el [22]. Under this model, there are n unicast traffic flows in

the network and each node is the source of one traffic flow

and also the destination of another traffic flow. Denoting

uðiÞ the destination node of the traffic flow originated from

node i, the source-destination pairs are matched in a way

that the sequence ðuð1Þ;uð2Þ; . . .;uðnÞÞ is just a derange-

ment of the set of nodes f1; 2; . . .ng.2 The packet arrival

process at each node is assumed to be a Poisson arrival

process with rate k[ 0. For throughput capacity analysis,

we consider that there is no constraint on packet life time

and the buffer size in each node is sufficiently large such

that packet loss due to buffer overflow will never happen.

3.4 Performance metrics

The performance metrics involved in this study are defined

as follows.

Throughput The throughput of a traffic flow is defined as

the time average of number of packets that can be delivered

from its source to destination.

End-to-end packet delay The end-to-end delay of a

packet is the time it takes for the packet to reach its des-

tination after it arrives at its source.

Network stability For an ICMN under a routing algo-

rithm, if the packet arrival rate to each node is k, the net-

work is called stable under this rate if the average number

of packets waiting at each node, i.e., the average queue

length, does not grow to infinity with time and thus the

average end-to-end packet delay is bounded.

Throughput capacity The throughput capacity l of the

concerned ICMN is defined as the maximum value of

packet arrival rate k that the network can stably support

where the optimization is over any possible routing

algorithm [13].

4 Throughput capacity and delay-throughput tradeoff

In this section, we first establish a theorem regarding the

throughput capacity in the considered ICMN based on the

pairwise contact rate therein, and provide necessity and

sufficiency proofs for this theorem. Then, we proceed to

explore the tradeoff between the end-to-end delay and

throughput. Finally, specific case studies are further con-

ducted for ICMNs under the random waypoint and random

direction mobility models.

4.1 Throughput capacity

Theorem 1 For the concerned ICMN with n mobile

nodes and pairwise contact rate b, its throughput capacity
can be determined as

l ¼ n

4
b: ð2Þ

The proof of Theorem 1 involves proving that k� l is

necessary and k\l is sufficient to ensure network stability.

We will establish the necessity in Sect. 4.1.1 by showing

that l is an upper bound on the throughput under any

possible routing algorithm in the considered ICMN. Our

proof relies on the fact that the transmission opportunities

result from nodes’ contacts in the concerned network, so

the sum of packet transmission rates is upper bounded by

the sum of contact rates between network nodes. This fact

implies that when the sum of packet arrival rates is greater

than that of contact rates, the network traffic becomes

saturated unavoidably. Then, we will prove the sufficiency

in Sect. 4.1.2, where a routing algorithm is presented and it

is shown that the network is stable under this routing al-

gorithm for any rate k\l. The basic idea of the sufficiency
proof is that under the considered routing algorithm, the

queuing process of each traffic is statistically identical, so

2 A derangement is a permutation that has no fixed point, i.e.,

uðiÞ 6¼ i; i ¼ 1; 2; . . .; n.

Table 1 Summary of

differences in system models

and results

Network model Mobility model Result

Grossglauser and Tse [14] Continuous I.i.d. model Order sense

Neely and Modiano [13, 25] Cell-partitioned I.i.d. model Exact expression

Chen et al. [27] Continuous I.i.d. model Exact expression

This work Continuous Poisson contact process Exact expression
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if we focus on one arbitrary traffic flow and show it is

stable under k\l, then it follows that all the other traffic

and thus the whole network are stable as well. The proof of

Theorem 1 follows the techniques developed in [13].

4.1.1 Proof of necessity

Lemma 1 For the concerned ICMN with n mobile nodes

and pairwise contact rate b, its throughput under any

possible routing algorithm is upper bounded by

l ¼ n

4
b: ð3Þ

Proof Consider an arbitrary routing algorithm. Let XhðTÞ
denote the total number of packets transferred through h hops

from their sources to destinations in time interval ½0; T�.
Notice that to ensure network stability, the sum of arrival

rates of all traffic flows should be not greater than the sum of

throughputs, since otherwise the amount of packets waiting in

the network will grow to infinity as time evolves. Formally, it

is necessary that for any given �[ 0, there must exist an

arbitrarily large T such that the following inequality holds

kn	 �� 1

T

X1

h¼1

XhðTÞ; ð4Þ

where k denotes the packet arrival rate at each node.

Notice the fact that during the time interval ½0; T �, the total
number of packet transmissions is lower bounded byP1

h¼1 hXhðTÞ and upper bounded by the total number of

contacts between all node pairs during this time interval,

denoted by YðTÞ in the following. Thus, we have from the

transitivity that

X1

h¼1

hXhðTÞ� YðTÞ: ð5Þ

From (4) and (5), we have

1

T
YðTÞ� 1

T
X1ðTÞ þ

2

T

X1

h¼2

XhðTÞ

� 1

T
X1ðTÞ þ 2 ðkn	 �Þ 	 1

T
X1ðTÞ

� �
;

ð6Þ

and thus

k� 1

2n

1

T
YðTÞ þ 1

T
X1ðTÞ þ 2�

� �
: ð7Þ

Since a packet can be transferred from its source to desti-

nation through single hop only when the source conducts a

transmission directly to the destination, the term X1ðTÞ
in (7), i.e., the number of packets transferred from source

to destination within one hop during ½0; T �, is upper

bounded by YsdðTÞ, i.e., the number of direct transmissions

from each source node to its destination during the time

interval ½0; T �. Notice that in the network there are
n

2

� �
¼

ðn	1Þn
2

node-pairs and based on the property of the Poisson

contact process, the contact rate of each pair of nodes is b.
It follows that the expectation of the number of transmis-

sions occurring in the network is just equal to
ðn	1Þn

2
b.

Applying the law of large numbers, we have as T ! 1
1

T
YðTÞ!a:s: ðn	 1Þn

2
b: ð8Þ

Similarly, the expectation of the number of transmissions

conducted from source nodes to their destination directly is

equal to n
2
b, so as T ! 1

1

T
YsdðTÞ!

a:s: n

2
b: ð9Þ

Using (8) and (9) into (7), it follows that

Algorithm 1 Routing Algorithm.
1: Suppose that there is a contact between two nodes,

transmitter Tx and receiver Rx, respectively.
2: if Rx is the destination of the traffic generated from

Tx then
3: Tx conducts a source-to-destination transmis-

sion:
4: if Tx has packet(s) in its local queue then
5: Tx transmits the head-of-line packet of the

queue to Rx.
6: else
7: Tx remains idle.
8: end if
9: else

10: Tx flips an unbiased coin;
11: if it is the head then
12: Tx conducts a source-to-relay transmission:
13: if Tx has packet(s) in its local queue then
14: Tx transmits the head-of-line packet of the

queue to Rx.
15: else
16: Tx remains idle.
17: end if
18: else
19: Tx conducts a relay-to-destination transmis-

sion:
20: if Tx has packet(s) in the relay queue destined

for Rx then
21: Tx the head-of-line packet of the queue to

Rx.
22: else
23: Tx remains idle.
24: end if
25: end if
26: end if
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k� n

4
bþ �

n
; as T ! 1: ð10Þ

Since � can be arbitrarily small, the result then follows.

4.1.2 Proof of sufficiency

For the proof of sufficiency, we present a routing algorithm

in Algorithm 1 and will derive the expected end-to-end

packet delay in the considered ICMN under this routing

algorithm in Lemma 2. To support the operation of Algo-

rithm 1, we assume that each node maintains one source

queue to store packets locally generated and n	 2 relay

queues to store packets of other flows (one queue per flow).

All these queues follow the FIFO (first-in-first-out) disci-

pline. The proof of Lemma 2 uses the reversibility of

continuous time M=M=1 queues.

Lemma 2 For the concerned ICMN with n mobile nodes

and pairwise contact rate b, if the packet arrival process at
each node is an i.i.d. Poisson process with rate k and Al-

gorithm 1 is adopted for packet routing, the corresponding

expected end-to-end delay EfDg is determined as

EfDg ¼ n	 1

l	 k
; ð11Þ

where l is the upper bound determined in Lemma 1.

Proof Notice that under Algorithm 1, there are three types

of transmissions, i.e., source-to-destination transmission,

source-to-relay transmission and relay-to-destination trans-

mission. It takes a packet at most two hops to reach its desti-

nation and the packet delivery processes of the n traffic flows

are independent from each other. Based on the properties of

the mobility model and Algorithm 1, we can see that the

packet delivery process in the considered ICMN under Al-

gorithm 1 consists of n identical queuing processes (one

queuing process per flow). Without loss of generality, we

focus on in the analysis the queuing process of an arbitrary

traffic flow illustrated in Fig. 1. It can be seen from Fig. 1 that

packets of this flow experience a two-stage queuing process if

the packet is not directly transmitted to the destination, i.e., the

queuing process at the source node (first stage) and the

queuingprocess at one of then	 2 relay nodes (second stage).

Consider first the source queue. The input to this queue

is a Poisson arrival process with rate k. According to

Algorithm 1, a ‘‘service’’ comes when the source node

conducts either a source-to-destination transmission or a

source-to-relay transmission. Based on the property of

Poisson contact process and Algorithm 1, the service

process is a Poisson process with service rate equal to

l ¼ b=2þ bðn	 2Þ=4 ð12Þ

¼ n

4
b; ð13Þ

where the first term in (12) is the rate associated with the

particular source having a contact with its destination and

multiplied by 1/2 for the probability that the source is

chosen to transmit, and the second term is the rate of this

source having a contact with any one of the n	 2 relay

nodes and multiplied by the 1/4 for the probability that the

source is chosen to transmit and the source-to-relay trans-

mission is selected. Then, it follows that the source queue

is an M=M=1 queue with input rate k and service rate l.
Based on the result from queuing theory, the mean queuing

delay of the source queue EfDsg is given by

EfDsg ¼ 1

l	 k
: ð14Þ

Moreover, since M=M=1 queues are reversible, so the de-

parture process from the source queue is also a Poisson

process with rate k [28].

Consider now the queuing process at one of the n	 2

relay nodes. Notice that with probability 1
n

a packet

departure from the source node will enter this relay node,

so the input to this relay queue is a Poisson process with

rate k
n
. In this relay queue, a ‘‘service’’ arises when this

relay node conducts a relay-to-destination transmission to

the destination node of the concerned traffic flow, so the

service process of the relay nodes is a Poisson process with

rate l0 ¼ b
4
. We can see that the relay queue is again an

M=M=1 queue. The mean queuing delay EfDrg at a relay

node is given by

Fig. 1 Two-stage queuing process under Algorithm 1. In the figure,

the inter-service times in the source node and relay nodes are

exponentially distributed with rate l ¼ n
4
b and rate l0 ¼ b

4
,

respectively
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EfDrg ¼ 1

l0 	 k=n
: ð15Þ

Summing up the above results, we have that the expected

end-to-end packet delay is

EfDg ¼ EfDsg þ
n	 2

n
EfDrg ¼ n	 1

l	 k
; ð16Þ

which proves the lemma.

4.2 Delay-throughput tradeoff

In the following theorem, we establish a necessary condition

on the tradeoff between the end-to-end packet delay and

throughput under any routing algorithm that stabilizes the

network. This result is independent of the routing protocol

used. The proof follows the technique developed in [13].

Theorem 2 Consider an ICMN with n mobile nodes and

pairwise contact rate b and the packet arrival rate at each

node is k. A necessary condition for any routing algorithm

that can stabilize the network with rate k while maintaining
a bounded expected end-to-end delay EfDg is given by

EfDg
k

� 1	 logð2Þ
2ðn	 1Þb2

: ð17Þ

Proof Consider that the packet arrival rate to each of the

n traffic flows is k and that there is a general routing al-

gorithm that stabilizes the network under this rate and re-

sults in an expected end-to-end delay of EfDg.
Let random variable Di denote the end-to-end delay of a

packet in flow i under the routing algorithm and EfDig
represent its expectation. The expected end-to-end packet

delay of the network EfDg can be calculated by

EfDg ¼ 1

n

Xn

i¼1

EfDig: ð18Þ

Let random variable Ri denote the redundancy of a packet

in flow i, i.e., this packet is distributed into Ri different

nodes (including the destination) in the network, and EfRig
be its expectation. Notice that the sum of the generating

rates of packet redundancy in the network is

kn � 1
n

Xn

i¼1

EfRig ¼ k
Xn

i

EfRig: ð19Þ

This quantity is upper bounded by the sum of pairwise

contact rates in the network, due to the fact that during each

contact at most one copy of a packet is transmitted from

one node to another. Formally, it is expressed as

k
Xn

i¼1

EfRig�
n

2

� �
b ¼ ðn	 1Þn

2
b: ð20Þ

For traffic flow i, its expected end-to-end delay EfDig
satisfies the following inequality

EfDig ¼ E DijRi � 2E Rif gf g Pr Ri � 2EfRigf g
� � � þEfDijRi [EfRigg PrfRi [EfRigg
�EfDijRi � 2EfRigg PrfRi � 2EfRigg

� 1

2
EfDijRi � 2EfRigg;

ð21Þ

where (21) is due to that PrfRi � 2EfRigg� 1
2
holds for

any non-negative random variable. Now, we consider a

virtual network where there are n nodes and 2EfRig of

them initially possess a copy of a packet destined for some

other node. Let D�
i denote the time elapsed from the initial

moment until the moment that one of the 2EfRig nodes has

a contact with the destination node of the packet. D�
i is

exponentially distributed with parameter 2EfRigb, so that

EfD�
i g ¼ 1

2EfRigb.

Notice that EfDijRi � 2EfRigg is not necessarily lower

bounded by EfD�
i g, because the redundancy Ri may be

correlated with certain events in the mobility process, so

conditioning on the event fRi � 2EfRigg may skew the

memoryless property of the Poisson contact process. Howev-

er, since PrfRi � 2EfRigg� 1
2
, we have the following bound:

EfDijRi � 2EfRigg� inf
H
EfD�

i jHg; ð22Þ

where the left-side conditional expectation is minimized over

all possible eventsH that occurs with probability greater than

or equal to 1=2. The inequality holds because the event

yielding the mobility patterns of the type encountered when

fRi � 2EfRigg is also included in the events set, over which

the conditional expectation is minimized.

SinceD�
i is a continuous variable, so the eventminimizing

the conditional expectation in (22) is just fD�
i �xg such that

x is the smallest value satisfying PrfD�
i �xg ¼ 1

2
. Since D�

i

is exponentially distributed with rate 2EfRigb, so x ¼
logð2Þ

2EfRigb and inf
H

EfD�
i jHg is determined as

inf
H

EfD�
i jHg ¼ EfD�

i jD�
i �xg

¼ EfD�
i g 	 EfD�

i jD�
i [xg PrfD�

i [xg
PrfD�

i �xg

¼
1

2EfRigb 	
1
2
ðxþ 1

2EfRigbÞ
1=2

¼ 1	 logð2Þ
2EfRigb

:

ð23Þ

Substituting (23), (22) and (21) into (18) leads to
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EfDg� 1	 logð2Þ
4b

� 1
n

Xn

i¼1

1

EfRig
ð24Þ

� 1	 logð2Þ
4b

� 1
1
n

Pn
i¼1 EfRig

; ð25Þ

where (25) results from Jensen’s inequality, since the

function f ðxÞ ¼ 1=x is convex for x[ 0. Combining (20)

and (25), EfRig is eliminated and we have

EfDg� 1	 logð2Þ
4b

� 2k
ðn	 1Þb ¼ 1	 logð2Þ

2ðn	 1Þb2
� k: ð26Þ

Multiplying 1=k on both sides of (26) proves the theorem.

4.3 Case studies under random waypoint and random

direction models

So far, we have derived the throughput capacity and delay-

throughput tradeoff for the concerned ICMNs with Poisson

contact process. To illustrate the applicability of these

theoretical results, we also do case studies for the random

waypoint and random direction mobility models, where

parameter-matching is conducted on these model to fit the

studied Poisson contact process. It will be demonstrated in

Sect. 5 via simulation that the results derived here can

serve as good approximations for networks under these

mobility models.

Throughput capacity For an ICMN with n mobile nodes,

side-length L and maximum transmission distance d, when

d 
 L, the throughput capacities lRW under the random

waypoint model and lRD under the random direction model

can be approximated as

lRW � c1ndEfV�g
2L2

and; lRD � ndEfV�g
2L2

; ð27Þ

respectively, where c1 ¼ 1:3683 is a constant and EfV�g is

the average relative speed between a pair of nodes. In the

special case of constant traveling speed v, we have lRW �
2c1ndv
pL2 and lRD � 2ndv

L2
, respectively.

Delay-throughput tradeoff: For an ICMN with n mobile

nodes, side-length L and maximum transmission distance

d, when d 
 L, a necessary condition for any routing al-

gorithm that can stabilize the network with packet arrival

rate k while maintaining a bounded expected end-to-end

delay EfDg is given by

1. for the random waypoint mobility model:

EfDg
k

� ð1	 logð2ÞÞL4

8ðn	 1Þðc1dEfV�gÞ2
; ð28Þ

2. for the random direction mobility model:

EfDg
k

� ð1	 logð2ÞÞL4

8ðn	 1ÞðdEfV�gÞ2
; ð29Þ

where c1 ¼ 1:3683 is a constant and EfV�g is the average

relative speed between a pair of nodes. In the special case

of constant traveling speed v, the necessary condition is

given by

1. for the random waypoint mobility model:

EfDg
k

� ð1	 logð2ÞÞp2L4

128ðn	 1Þðc1dvÞ2
; ð30Þ

2. for the random direction mobility model:

EfDg
k

� ð1	 logð2ÞÞL4

128ðn	 1ÞðdvÞ2
: ð31Þ

Remark 2 Notice that for both the random waypoint and

random direction mobility models, if we consider that the L

and n increase while the node density s ¼ n=L2 remains

constant, then we have the following observations:

• The results of (27) reduce to lRW � c1sdEfV�g and

lRW � sdEfV�g, indicating that a constant throughput

capacity is still achievable in a large scale ICMN.

Meanwhile, the result in (11) indicates that the average

end-to-end delay under Algorithm 1 will increase

linearly with the number of nodes n.

• The results in (30) and (31) indicate that the delay-

throughput scales as EfDg=k[OðnÞ.

5 Simulation and numerical results

In this section, we first provide simulation measurements to

verify the accuracy of the theoretical results developed in

Sect. 4, and then apply these results to illustrate the per-

formance of the concerned ICMNs under different settings

of system parameters.

5.1 Simulation validation

To validate the accuracy of the theoretical results, we

will compare the theoretical throughput capacity and

delay results with those obtained from simulation. The

simulation results were obtained from a self-developed

discrete event simulator that implements the packet de-

livery process under Algorithm 1. The simulator accepts

pairwise nodes’ contact traces as input, which is obtained

from the NS-2 formatted mobility traces and the calcdest

tool.

2460 Wireless Netw (2015) 21:2453–2466

123



5.1.1 Mobility models

The mobility models considered in the simulation are

summarized as follows.

Random waypoint mobility model [2]: Under this model,

initially network nodes are uniformly distributed in the

network area and each node travels at a travel speed ran-

domly and uniformly selected in ðvmin; vmaxÞ with vmin [ 0

towards a destination randomly and uniformly selected in

the network area. After arriving at the destination, the node

may pause for a random amount of time and then chooses a

new destination and a new travel speed, independently of

previous ones. It is notable that the locations of the nodes

in steady-state under the random waypoint model are not

uniformly distributed. Particularly, it was reported in [29]

that the stationary distribution of the location of a node is

more concentrated near the center of the network region.

Random direction mobility model [2] Under this mo-

bility model, initially network nodes are uniformly dis-

tributed in the network area and each node randomly

selects a direction, a speed and a finite traveling time. The

node travels towards the direction at the given speed for the

given duration of time. When the travel time duration has

expired, the node could pause for a random time, after

which it selects a new set of direction, speed and time

duration, independently of all previous ones. When the

node reaches a boundary, it is either reflected (i.e., it is

bounced back to the network area with the angle of h or

p	 h) or the area wraps around so that it appears on the

other side. It was shown in [30] that the stationary distri-

bution of nodes’ locations is uniform for arbitrary distri-

butions of direction, speed and travel time duration,

irrespective of the boundaries being reflecting or wrapped

around.

Truncated Levy walk mobility model [31] Under this

model, the mobility process of each node consists of an

independent sequence of random travel steps that the node

makes. A travel step is a tuple ðl; h;Dtf ;DtpÞ, where l is the
travel length, h is the travel direction, Dtf is the travel time

duration and Dtp is the time duration of a pause during

which the node stays after arriving at the destination of this

travel. The l and Dtp follow Levy distributions with scale

factors cl and ctp and exponents al and atp, respectively. A
Levy distribution can be expressed in terms of a Fourier

transformation:

fXðxÞ ¼
1

2p

Z 1

	1
e	itx	jctja ð32Þ

where parameters c and 0\a\2 are the scale factor and

exponent, respectively. The direction h is uniformly dis-

tributed in ð0; 2p�. Under this model, initially network

nodes are uniformly distributed in the network area and

then for each node, a tuple ðl; h;Dtf ;DtpÞ is randomly

generated following their distributions. If l and Dtp are

negative or greater than predefined truncation factors sl and
sp, the tuple is discarded and a new one is generated. When

a node completes its travel and pause, a new travel step is

generated. When a node reaches a boundary, it is reflected.

This mobility model has been validated against real mo-

bility trace in [31]. Noticing that due to lack of knowledge

on the inter-contact times distribution, we will use

simulation measurement for its pairwise contact rate bTLW.

5.1.2 Simulation setting

In our simulation, we consider a square network of side-

length L ¼ 2000 m and number of nodes n ¼ 20. The

travel speed is constant and equals to v ¼ 40 m/s. For the

truncated Levy walk mobility model, we consider a pa-

rameter setting of al ¼ 0:66; atp ¼ 0:49; cl ¼ 10; ctp ¼
1; sl ¼ 1293:6 m and ctp ¼ 1:0 s. There is no pause time for

the random waypoint and random direction mobility

model.3 We consider transmission distances of

d ¼ f20; 50; 100g, where the corresponding pairwise con-

tact rates are calculated as bRW ¼ f6:96� 10	4; 1:74�
10	3; 3:48� 10	3g for the random waypoint mobility

model and bRD ¼ f5:09� 10	4; 1:27� 10	3; 2:55�
10	3g for the random direction mobility model according

to (1) and measured as bTLW ¼ f4:69� 10	4; 1:15�
10	3; 2:22� 10	3g for the truncated Levy walk mobility

model through simulation. For the simulation measure-

ments of the throughput and average end-to-end delay

under Algorithm 1, we focus on a specific traffic flow and

measure its throughput and average packet delay over a

time duration of 1:0� 107 seconds for each system load

q ¼ k=l.

5.1.3 Simulation results

To demonstrate the efficiency of the developed

throughput capacity result, we summarize in Fig. 2 the

simulation results of throughput for different values of

system load. In Fig. 2, the dots represent the simulation

results and the dashed lines are the corresponding theore-

tical throughput capacities calculated by (27). We can

observe from Fig. 2 that for all the mobility models here,

its throughput increases linearly as q increases from 0 to 1

and approaches l when q grows further beyond 1. This is

expected since the queuing system in the network is un-

derloaded when q\1, and it saturates as q approaches 1

and beyond. The results in Fig. 2 indicate clearly that our

3 Notice that according to (27), the pause time mainly indirectly

affects the performance via its impact on the average speed EfV�g in

this study.
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theoretical throughput capacity result developed based on

the Poisson contact process provides a good estimation of

the throughput capacity of the concerned ICMNs with the

mobility models considered here. Moreover, it also indi-

cates that this throughput capacity can be achieved by

adopting Algorithm 1 as routing algorithm in the network.

We then proceed to validate the efficiency of our end-to-

end delay model. Particularly, we compare in Fig. 3 the

simulation results of the average end-to-end packet delay to

those of theoretical ones calculated by substituting the re-

sults in (27) into (11). We can see from Fig. 3 that for the

considered mobility models, the theoretical results nicely

agree with the simulation ones. This observation indicates

that our delay model of (11) is accurate and can efficiently

capture the delay behavior under Algorithm 1 in the con-

sidered network.

5.2 Numerical results and discussions

Based on our theoretical models, we first explore the

impacts of nodes’ traveling speed on the throughput ca-

pacity and end-to-end delay. We summarize in Fig. 4 how

the l varies with average pairwise relative speed EfV�g in

a network of n ¼ 20; d ¼ 20 m and L ¼ 2000 m. Figure 4

shows that as the EfV�g increases, the throughput ca-

pacities under both the random waypoint and random di-

rection models increase linearly. This is mainly due to that

a higher average travel speed will lead to an increase on the

pairwise contact rate as shown in (1), and hence to a higher

throughput capacity. For the same network setting, we then

present in Fig. 5 how the average delay EfDg under Al-

gorithm 1 varies with EfV�g under system load q ¼ 0:8. It

can be observed in Fig. 5 that increasing EfV�g will cause

a lower average delay, which is because the EfDg is in-

versely proportional to the throughput capacity l as indi-

cated in (11).

We then present in Figs. 6 and 7 how the throughput

capacity l and average end-to-end packet delay vary with

transmission distance d for a network of n ¼ 20;EfV�g ¼
40 m/s, L ¼ 2000 m and q ¼ 0:8 (for delay). It can be seen

from in Figs. 6 and 7 that the impacts of the transmission

distance d on the behavior of capacity and delay are similar

to those of the EfV�g, for the reason that d is also a factor

in the evaluation of b as shown in (1). Notice that we do

not provide any figure regarding how the performance

varies with different node densities. This is because this

research is focused on a very sparse network so that the

interference from other simultaneous transmissions is

negligible. It is notable that as the node density increases,

the above assumption may not be satisfied, so the figures of

performance versus node density obtained from the equa-

tions of this paper will provide misleading results. For the

throughput capacity study in interference-limited scenario,

we refer to the work of [27].

It is also interesting to see that from Figs. 4, 5, 6 and 7

that the random waypoint mobility model provides a

(a)

(b)

(c)

Fig. 2 Throughput versus system load q. a Random waypoint model.

b Random direction model. c Truncated Levy walk model
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(a)

(b)

(c)

Fig. 3 Average end-to-end delay versus system load q. a Random

waypoint model. b Random direction model. c Truncated Levy walk

model

Fig. 4 Capacity l versus average speed EfV�g

Fig. 5 Average end-to-end delay EfDg versus average speed EfV�g

Fig. 6 Capacity l versus transmission distance d
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performance better than that of the random direction mo-

bility model for the network settings here. Recall that

compared with the random direction model that has a

uniform stationary distribution of nodes location, the sta-

tionary distribution of the location of a node under the

random waypoint mobility model is more concentrated

near the center of the network region (see Sect. 5.1.1).

Therefore, the random waypoint mobility model leads to a

higher nodes’ pairwise contact rate [see (1)] and hence a

higher throughput capacity, for the same network setting of

L;EfV�g and d.

6 Conclusions

This paper studied the throughput capacity and delay-

throughput tradeoff in an ICMN with Poisson contact

process. Based on the pairwise contact rate in the con-

cerned ICMN, an exact expression of the throughput ca-

pacity is derived, which indicates the maximum throughput

that the network can stably support. To reveal the inherent

relationship between the end-to-end packet delay and

achievable throughput, a necessary condition on the delay-

throughput tradeoff is also established. To illustrate the

applicability of these theoretical results developed based on

the Poisson contact process, we conducted parameter-

matching to fit the random waypoint and random direction

models to the Poisson contact process and obtained ap-

proximations to the throughput capacity and delay-

throughput tradeoff with these mobility models. Besides

random waypoint and random direction models, we also

conducted simulation for the truncated Levy walk mobility

model. Simulation results demonstrate that our theoretical

throughput capacity result serves as a good estimation for

the throughput capacity in those mobility models.

Remark 2 indicates that under the random waypoint or

random direction mobility, a constant throughput capacity

is achievable even in a large scale ICMN as far as the node

density can be kept constant, but at the cost of a linearly

increasing expected end-to-end delay. Since the throughput

capacity is optimized over any routing algorithm in such

networks, so if a network designer wants to achieve a

throughput performance higher than the throughput ca-

pacity, improving only the routing algorithm is inadequate.

He/she has to enhance the architecture of the network, e.g.,

introducing fixed basestations or ferry nodes [32]. Our re-

sults also reveal that by increasing the average node trav-

eling speed or transmission range in an ICMN, an

improvement on both its throughput and end-to-end delay

performance might be expected.

This study indicates that the throughput capacity and

throughput-delay trade-off in ICMNs are largely determined

by the nodes contact process therein, so effective modeling

of nodes’ contact process would serve as a key role in con-

quering the complicated throughput capacity problem in

these networks. It is expected that the theoretical analysis

developed in this paper will be helpful for exploring the

throughput capacity and delay-throughput tradeoff in other

ICMN scenarios. In particular, we would like to highlight

the following future directions. In this paper, only ICMNs

with homogeneous Poisson contact process was studied

where the inter-contact times between each pair of nodes are

identically and exponentially distributed. It is notable,

however, both basic intuition and the study of realistic sce-

narios indicate that mobility with heterogeneous contact

rates is more frequently encountered in practice [33].

Moreover, previous research have shown that the realistic

mobility often incurs heavy-tail inter-contact time distribu-

tions [34]. As a result, one of our future directions is to

extend the study of this paper to conduct throughput capacity

analysis for ICMNs with heterogeneous contact rates [35]

and more realistic nodes contact process. It is envisioned,

however, that the queuing analysis in this paper cannot be

extended in a straightforward way to characterize the packet

routing process (and thus throughout capacity) under these

scenarios, so a new and deliberate study is deserved. Another

possible future direction is to study the gap between the

throughput capacity determined in this paper and the optimal

throughput performance of specific routing protocols and

how to improve these routing protocols, accordingly.
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