
POSTER: RIA – an Audition-based Method to Protect the
Runtime Integrity of MapReduce Applications

Yongzhi Wang
School of Computer Science and Technology,

Xidian University, P.R. China
Key Laboratory of Grain Information Processing
and Control (Henan University of Technology),

Ministry of Education, P.R. China
yzwang@xidian.edu.cn

Yulong Shen
School of Computer Science and Technology

Xidian University, P.R. China
ylshen@mail.xidian.edu.cn

ABSTRACT
Public cloud vendors have been offering varies big data com-
puting services. However, runtime integrity is one of the ma-
jor concerns that hinders the adoption of those services. In
this paper, we focus on MapReduce, a popular big data com-
puting framework, propose the runtime integrity audition
(RIA), a solution to verify the runtime integrity of MapRe-
duce applications. Based on the idea of RIA, we developed
a prototype system, called MR Auditor, and tested its ap-
plicability and the performance with multiple Hadoop appli-
cations. Our experimental results showed that MR Auditor
is an efficient tool to detect runtime integrity violation and
incurs a moderate performance overhead.

Keywords
Computation Integrity, Remote Verification, MapReduce

1. INTRODUCTION
MapReduce, the fundamental framework supporting vari-

ous big data applications, has been delivered as a computa-
tion service by public cloud vendors. However, in this model,
since computations are performed remotely, security is be-
yond the control of customers. Security breach incidents
reported by mass media [1] and vulnerabilities discovered
by researchers [3] have obstructed the wide adoption of such
a service. Among varies security issues, runtime integrity
is one of the most critical ones that is closely related to the
MapReduce service. Existing works relying on specific hard-
ware environment [4], task redundancy [5], or cryptographic
construction [2], either lose flexibility or suffer from high per-
formance overhead. Therefore, a generalized method that
incurs moderate performance overhead is needed.

In the paper, we propose runtime integrity audition, (or
RIA for short), a hybrid cloud-based method, to protect the
runtime integrity of MapReduce applications executed on
the untrusted public cloud. By inserting logging statements

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CCS’16 October 24-28, 2016, Vienna, Austria
c© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4139-4/16/10.

DOI: http://dx.doi.org/10.1145/2976749.2989042

to MapReduce programs, RIA records the execution traces
of the MapReduce applications executed on the public cloud.
Using the application’s program and the application input
data as the baseline, RIA audits the execution traces against
those baseline on the private cloud. Intuitively, by auditing
the integrity of the input data, the control flow, the data flow
and the output data of each MapReduce phase, we ensure
the integrity of that phase. By ensuring the integrity of
all phases, we ensure the integrity of the final result of the
MapReduce application.

The audition on each phase consists of two parts, i.e., the
input audition and the execution audition. The input au-
dition uses the output of the last phase as a baseline and
checks the input of the current phase against the baseline.
The execution audition is performed on each execution of
a function. While auditing a function execution, RIA de-
rives mathematical constraints among variables and checks
the consistency between the execution traces and the math-
ematical constraints to determine the runtime integrity.

The novelty of RIA is that it extracts mathematical con-
straints from the programs and uses them to audit the run-
time integrity. The design of execution auditions can be
performed independently on each function execution, thus
can be applied in a sampling-based manner, which provides
users a flexibility to make a trade-off between the audition
accuracy and the audition time.

Based on RIA, we implemented MR Auditor, a prototype
system, that can perform the runtime integrity audition on
Hadoop applications. Our experimental results showed that
MR Auditor can efficiently audit the runtime integrity of
Hadoop applications and incurs a moderate performance
overhead (with a 0.18% to 34% of extra execution time with
an unoptimized implementation).

2. SYSTEM DESIGN

2.1 System Model and Security Assumptions
We define that an ordinary MapReduce application con-

sists of n phases, marked as p1, p2, ..., pn, where n/2 phases
are map phases and the other n/2 are reduce phases, exe-
cuted in an interleaved sequence. Each phase pi consists of
qi tasks, marked as ti1, ti2, ..., tiqi . The application input I
is originally stored in the private cloud and then transmitted
to the public cloud. The output of the last job, O, is the
output of the entire application, which will be sent back to
the private cloud after the entire application completes.

1799

Figure 1: The architecture of RIA

In the hybrid cloud architecture, we assume that the pub-
lic cloud is untrusted and the private cloud is trusted. In
the audition procedure performed on the private cloud, we
assume the application program and the application input I
are trusted. The execution traces and the application output
O are untrusted, and thus needs to be audited.

2.2 System Overview
The runtime integrity audition (RIA) is performed on a

hybrid cloud environment, shown in Fig. 1. On the pri-
vate cloud, RIA inserts logging statements to the original
program, generating PWL (in step 1). PWLs are then sent
to the public cloud to execute (in step 2). During the ex-
ecution, PWLs generate execution trace logs, which reflect
the statements execution sequence and the runtime variable
values. When the application execution completes, the exe-
cution trace logs will be transferred back to the private cloud
to be audited. (in step 3). The audition mainly checks the
data integrity of the input, the runtime integrity of each
task, and the data integrity of the output on each phase.

The audition is shown in Algorithm 1. The numberings
of phases and tasks in the algorithm are defined in Section
2.1. The algorithm uses the application input I and the
application program as the trusted anchor and audits the
integrity of each phase one by one. In each phase, it first
audits the input data of the current phase by comparing it
against the output of the previous phase (or against I if the
current phase is the first phase) (line 6-7). Then, it audits
the executions of each task of the current phase (line 8-10).
The above two steps ensure the integrity of the output data
in the current phase. The output data of the current phase is
collected (line 11) and will be used as a baseline for auditing
the input of the next phase. If the output of the last phase
passes the audition, it will be used as a baseline to audit the
application output O (line 13). During the audition, any
inconsistency indicates a violation of the runtime integrity.

We elaborate the technical details in the succeeding sec-
tions, including the PWL generation (step 1 in Fig. 1), the
input audition (line 6-7 of Algorithm 1) and the execution
audition (line 9 of Algorithm 1).

2.3 The Execution Trace Logs Generation
We insert logging statements to the original program, so

that the execution trace logs will be generated while the
program is executed on the public cloud. The execution
trace logs are in the format of <variable name, variable

value> (see example in Table 1), recording the runtime vari-
able values.

Algorithm 1 Runtime Integrity Audition

1: inputBaseLine← I
2: for i = 1 to n do
3: for j = 1 to qi do
4: ETLij ← retrieveExecutionTraceLog(tij)
5: end for
6: phaseInput← extractInput({ETLi1, · · · , ETLiqi})
7: inputAudition(phaseInput, inputBaseLine)
8: for j = 1 to qi do
9: executionAudition(ETLij)

10: end for
11: inputBaseline← extractOutput({ETLi1, · · · , ETLiqi})
12: end for
13: inputAudition(O, inputBaseline)

1 void func (int x , int y) { // invoke func (6 ,0)
2 while (x>5){
3 y+=x ;
4 x−−;
5 }
6 p r in t (y) ;
7 }

Figure 2: A sample function

We insert four types of logs: the input log, the output log,
the branch log and the invoke log. The input log records the
input data read in by the task. In the MapReduce case, the
logging statements are inserted to record parameter values of
the map or reduce function. The output log records the data
written out by the task. In the MapReduce case, the log-
ging statements are inserted to record the parameters in the
invocation of function context.write(outKey, outValue).
The branch log records the variable values involved in the
predicate of the branch statement. Therefore logging state-
ments are inserted before the branch statement to record
variable values involved in each branch condition. Each in-
voke log consists of two parts, inserted before and after each
function invocation. The former is called the pre-invoke log,
recording the values of parameters before the function was
invoked. The latter is called the post-invoke log, recording
the values of the parameters after the function was invoked,
as well as its return value.

2.4 The Input Audition
The input audition is performed on a MapReduce phase

basis. For each phase, the input audition is performed based
on the input logs of the current phase and the output logs
of the previous phase. Since the output records of a task
in the previous phase can be distributed to multiple tasks
in the current phase, we collect the output logs of all tasks
in the previous phase into the output data set, collect the
input logs of all tasks in the current phase into the input
data set, and perform the equality test for the two sets. The
efficiency of the equality test can be improved by employing
the Counting Bloom Filter.

2.5 The Execution Audition
The execution audition can be performed on each execu-

tions of the functions implemented by the customer, includ-
ing the MapReduce interface functions (e.g., map, reduce

1800

Table 1: The execution audition details of invoking func(6, 0)

Line # Input Action Constraints (C)
1 pre:{x = 6, y = 0} update(C,pre) x = 6 ∧ y = 0
2 bra:{x = 6}; stmt:{x > 5} check(C,bra); update(C,stmt) x = 6 ∧ y = 0 ∧ x > 5
3 stmt:{y = y + x} update(C,stmt) x = 6 ∧ y − x = 0 ∧ x > 5
4 stmt:{x = x− 1} update(C,stmt) x + 1 = 6 ∧ y − (x + 1) = 0 ∧ x + 1 > 5
2 bra:{x = 5}; stmt:{x <= 5} check(C,bra); update(C,stmt) x + 1 = 6 ∧ y − (x + 1) = 0 ∧ x + 1 > 5 ∧ x ≤ 5
6 pre:{y = 6}; post:{y = 6} check(C,pre); update(C,post) x+1 = 6∧y−(x+1) = 0∧x+1 > 5∧x ≤ 5∧y = 6

, and partition) and other functions recursively invoked
by those interface functions. When performing the execu-
tion audition on one function, we skip the audition of the
functions invoked by the current function and postpone its
audition after the current audition completes. Such a de-
sign removes the cohesion between the caller and the callee,
making the audition of each execution independently. As a
result, execution auditions can be performed in a sampling-
based manner, thus improving the audition efficiency.

To audit the execution of a function, we generate the con-
trol flow graph (CFG) of that function based on the appli-
cation’s program and simulate the execution based on the
CFG and its trace logs. With the branch log, the simula-
tion can derive which branch was taken while executed on
the public cloud, and thus to reproduce the runtime control
flow. During the simulation, we also derive the mathemati-
cal constraints among runtime variable values based on the
semantics of each simulated statement and the runtime vari-
able values recorded in certain types of trace logs, including
the input logs and the post-invoke logs. The runtime vari-
able values recorded in other trace logs, including the output
logs, the branch logs and the pre-invoke logs, will be checked
against the derived mathematical constraints. During the
simulation, any check inconsistency indicates a runtime in-
tegrity violation on the public cloud.

As a concrete example, Table 1 shows the execution au-
dition details on the invocation of func(6, 0). The imple-
mentation of function func is shown in Fig. 2. The first
column in the table tracks the statements been executed
during the simulation. The second column records the in-
put information used for deriving mathematical constraints,
including the pre-invoke logs (pre), the branch logs (bra), the
post-invoke logs (post) and the executed statement (stmt).
Based on the input, the audition performs the correspond-
ing actions, shown in the third column. The last column
indicates the resulting constraints after the action. For ex-
ample, when an if 1 statement is executed, (i.e., line 2), we
first check the branch logs against the constraints. If the
check is passed, we update the constraints by adding the
predicate of the if statement.

3. IMPLEMENTATION AND EXPERIMENTS
We developed a prototype system called MR Auditor to

perform runtime integrity audition on Apache Hadoop (a
mainstream MapReduce implementation) applications. Specif-
ically, we use Soot, an open source Java-based compiler tool,
to perform program analysis and transformation. We use
Symja, a computer algebra system, to perform constraints
generation and the integrity verification.

1The while statement is usually implemented as a combina-
tion of if and goto statements

We set up a hybrid cloud environment and performed a set
of experiments to evaluate MR Auditor. Our results showed
that MR Auditor can be applied to Hadoop applications
directly and incurs a moderate performance overhead. We
selected four Hadoop applications, including Word Count,
Pi, Terasort and Pegasus PageRank, to evaluate MR Audi-
tor on Hadoop 1.0.4. The experimental results showed that
MR Auditor can be applied to all the four applications suc-
cessfully. The application execution overhead on the public
cloud is 9.89% on average. The average efficiency for input
audition is 584,100 records/second. The average efficiency
for the function audition is 53.8 functions/second.

4. CONCLUDING REMARKS
If the malicious cloud executes a tampered function, it will

generate incorrect trace logs that are inconsistent with the
application’s input and the original program. If the attacker
returns correct trace logs with incorrect application output,
the output will be inconsistent to the trace logs, the appli-
cation’s input and the original program. Therefore, RIA is
a secure method to protect the runtime integrity of MapRe-
duce applications. Our experiments indicate that RIA incurs
a modest performance overhead on the application execution
and therefore a promising method.

Acknowledgments
This paper is supported in part by the Open Fund of the
Chinese Key Laboratory of the Grain Information Process-
ing and Control (No. KFJJ-2015-202), the Fundamental Re-
search Funds for the Central Universities (No. XJS16042,
JB160312 and BDY131419), and the NSFC (No. U1536202,
61571352, 61373173, 61602364 and 61602365).

5. REFERENCES
[1] Top 10 cloud fiascos. http://www.networkcomputing.

com/cloud/top-10-cloud-fiascos/96279858. Accessed:
2016-05-21.

[2] B. Braun, A. J. Feldman, Z. Ren, S. Setty, A. J.
Blumberg, and M. Walfish. Verifying computations
with state. In SOSP. ACM, 2013.

[3] S. Bugiel, S. Nürnberger, T. Pöppelmann, A.-R.
Sadeghi, and T. Schneider. Amazonia: when elasticity
snaps back. In CCS. ACM, 2011.

[4] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis,
M. Peinado, G. Mainar-Ruiz, and M. Russinovich. Vc3:
Trustworthy data analytics in the cloud using sgx. In
S&P ’15. IEEE, 2015.

[5] W. Wei, J. Du, T. Yu, and X. Gu. Securemr: A service
integrity assurance framework for mapreduce. In
ACSAC, 2009.

1801

