
1646 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 64, NO. 4, APRIL 2016

On the Throughput Capacity Study for Aloha Mobile
Ad Hoc Networks

Yin Chen, Member, IEEE, Yulong Shen, Member, IEEE, Jinxiao Zhu, Xiaohong Jiang, Senior Member, IEEE,
and Hideyuki Tokuda, Member, IEEE

Abstract—Despite extensive efforts on exploring the asymptotic
capacity bounds for mobile ad hoc networks (MANETs), the gen-
eral exact capacity study of such networks remains a challenge.
As one step to go further in this direction, this paper consid-
ers two classes of Aloha MANETs (A-MANETs) NA and NC
that adopt an aggressive traffic-independent Aloha and the con-
ventional traffic-dependent Aloha, respectively. We first define a
notation of successful transmission probability (STP) in NA, and
apply queuing theory analysis to derive a general formula for
the capacity evaluation of NA. We also prove that NC actually
leads to the same throughput capacity as NA, indicating that the
throughput capacity of NC can be evaluated based on the STP of
NA as well. With the help of the capacity formula and stochastic
geometry analysis on STP, we then derive closed-form expressions
for the throughput capacity of an infinite A-MANET under the
nearest neighbor/receiver transmission policies. Our further anal-
ysis reveals that although it is highly cumbersome to determine
the exact throughput capacity expression for a finite A-MANET,
it is possible to have an efficient and closed-form approxima-
tion to its throughput capacity. Finally, we explore the capacity
maximization and provide extensive simulation/numerical results.

Index Terms—Throughput Capacity, Mobile Ad Hoc Networks,
Aloha, Queuing Theory, Stochastic Geometry.

I. INTRODUCTION

S INCE the seminal work of Grossglauser and Tse [2],
extensive research efforts have been devoted to the study

of throughput capacity scaling laws in mobile ad hoc networks
(MANETs) [3], which mainly focus on determining the asymp-
totic bounds for throughput capacity as a function of the number
of network nodes n. It was demonstrated in [2] that a �(1) per-
node throughput is achievable in a MANET with i.i.d. mobility
model, indicating that a constant per-node throughput can be
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ensured even as n grows to infinity. Gamal et al. [4] demon-
strated that the �(1) per-node throughput is also achievable
when each node moves independently following a symmetric
random walk on a

√
n × √

n grid, where a �(n log n) average
package delay is incurred. Mammen and Shah proved in [5]
that a similar capacity-delay tradeoff exists in a MANET on a
unit sphere with a restricted mobility model, where each node
moves along a randomly chosen orthodrome on the sphere.
Wang et al. explored the scaling laws of capacity and delay of a
MANET with multicast traffic in [6], [7] and further conducted
a theoretical comparison between the unicast and multicast
MANETs in [8], which shows that mobility weakens the dis-
tinction of capacity scaling laws between unicast and multicast.
For a survey on the capacity scaling laws of MANETs, readers
are referred to [9] and references therein.

While the scaling law results of a MANET help us to under-
stand the general asymptotic trend of its throughput capacity
as network size increases, the exact result for the throughput
capacity of such a network is of more interest for network
design and performance optimization. Recently, some prelimi-
nary results on the exact throughput capacity study of MANETs
have been reported in the literature [10]–[13] (See Section II-A
for a brief review). Although these works represent a significant
step towards the exact throughput capacity study of MANETs,
many important network scenarios have not been explored yet,
so the general exact throughput capacity study for MANETs
still remains a challenge. As one step to go further on the exact
throughput capacity study for MANETs, this paper focuses on
MANETs with Aloha MAC protocol (A-MANETs) [14]. Since
Aloha protocol is simple yet efficient and can be easily imple-
mented in a distributed way, A-MANETs represent a class of
important and practical networks. Triggered by the work of
Baccelli et al, the performance of A-MANETs has been exten-
sively studied in the last decade [14]–[24] (See Section II-B for
a brief review). Despite of these extensive research efforts, the
throughput capacity of A-MANETs remains largely unknown.
This is mainly due to the following challenges. The first one is
the correlation between the transmission scheduling and traf-
fic in A-MANETs. Such correlation leads to an interacting
queueing system in A-MANETs, which is in general not analyt-
ically tractable [25]. The second one is the complex geometric
calculation involved in the derivation for the probability of suc-
cessful transmissions which are typically interfered by other
(randomly distributed) concurrent transmissions. To address the
above challenges, this paper proposes a novel theoretical frame-
work for the exact throughput capacity study of A-MANETs.
The main contributions are summarized as follows.
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1) For the capacity study of A-MANETs, we considered
in Section III two classes of A-MANETs NA and NC ,
where NA adopts a traffic-independent aggressive Aloha
protocol (A-Aloha) and NC adopts the traffic-dependent
conventional Aloha protocol (C-Aloha). In Section IV, we
applied queuing theory to derive a general formula for the
capacity evaluation of NA based on a notation of success-
ful transmission probability (STP) in NA. We then proved
that the NC leads to the same throughput capacity as NA.
This indicates that the throughput capacity of NC can also
be evaluated based on the STP of NA, so the challenging
correlation issue between the transmission scheduling and
traffic in the NC capacity study is circumvented.

2) We then conducted stochastic geometry analysis in
Section V on the STP of NA under the typical nearest
neighbor/receiver transmission policy and protocol inter-
ference model [26], and determined the limit of the STP
as the number of network node tends to infinity. With
the help of the capacity formula and the STP limit, we
then succeeded in deriving the exact expression for the
throughput capacity of the infinite A-MANETs.

3) Our capacity analysis of finite A-MANETs in Section VI
revealed that although it is highly cumbersome (if not pos-
sible) to determine the exact expression for the throughput
capacity of such a network, it is possible to have a very
efficient and closed-form approximation to its throughput
capacity, which is accurate up to an additive error van-
ishing to zero exponentially with the number of nodes.
Optimization was also conducted to determine the opti-
mal value of the Aloha transmission probability for capac-
ity maximization. We conducted simulation/numerical
study in Section VII to verify the developed capac-
ity/delay results and to illustrate the impact of network
parameters on network performance.

II. RELATED WORK

A. Exact Throughput Capacity Study of MANETs

Some preliminary results on the exact throughput capacity
study of MANETs have been reported in the literature. Neely
and Modiano [10] explored the exact throughput capacity of
a cell-partitioned MANET, where the network area is evenly
divided into discrete cells and the node mobility, transmis-
sion scheduling and interference are all defined based on these
cells. Also, it is assumed in [10] that each cell accommodates
at most one transmitter per time slot and adjacent cells adopt
orthogonal channels for interference mitigation. Following the
model of [10], Urgaonkar and Neely further investigated the
inherent relation between capacity and energy consumption
in [11]. Inspired by the work of [10], Chen et al. [12] stud-
ied the intermittently connected sparse MANET with Poisson
contact process and derived its throughput capacity based on
the pair-wise contact rate therein. For the special Manhattan
and ring networks, their exact throughput capacity results have
been reported in [13]. It is notable that different from the
above studies [10]–[13], this paper considers a more sophisti-
cated MANET model with continuous network area and Aloha

MAC protocol, where interference and related transmission col-
lisions are carefully taken into account. Notice also that for
the throughput capacity evaluation of the concerned MANET,
we need to address the cumbersome interacting queues prob-
lem which is not involved in the studies [10]–[13]. Thus, the
capacity evaluation methods developed in [10]–[13] cannot be
directly applied to the throughput capacity study of the con-
cerned MANET. This paper addresses the interacting queues
problem by first introducing a traffic-independent aggressive
Aloha (A-Aloha) and then proving that the A-Aloha actually
leads to the same throughput capacity as the traffic-dependent
conventional Aloha (C-Aloha), so the throughput capacity of
C-Aloha MANET can be evaluated based on its counterpart
A-Aloha MANET.

B. Performance Studies for A-MANETs

By now, lot of work has been devoted to the study of the
spatial performance statistics in A-MANETs, where the loca-
tions of nodes are often modeled by a Poisson point process.
The asymptotic packet propagation behavior of A-MANETs
was investigated in [14]–[16], while their interference issue
and related outage performance were explored in [17]–[19].
The authors of [20] took a game-theoretical approach to study
the power control in A-MANETs, and [21], [22] conducted
analysis on the local delay in A-MANETs, i.e., the time it
takes a node to successfully transmit a packet in such net-
works. Recently, the security issue in A-MANETs was explored
in [23], [24]. Distinguished from these studies on the spatial
performance statistics in A-MANETs, this paper studies the
throughput capacity, an end-to-end performance metric of A-
MANETs. In particular, we consider an A-MANET where the
nodes locations under the concerned mobility model actually
follows a Binomial point process in each time slot, and develop
a novel approximation approach for the efficient capacity eval-
uation of the network.

III. SYSTEM MODELS AND DEFINITIONS

A. Network Model

We consider a time-slotted network with a continuous square
area. Without loss of generality, the network area is normal-
ized to 1 for the convenience of discussion [2], [10]. Similar
to the previous studies [26]–[28], the network is assumed to
have torus boundaries. There are n ≥ 3 mobile nodes in the net-
work, and they randomly move according to a two dimensional
i.i.d. mobility model [10], [29]. Under this mobility model, each
node independently and uniformly selects a point from the net-
work area at the beginning of each time slot and then stays
at it during the time slot, so in each time slot the location of
each node is i.i.d. and uniformly distributed over the network
area, and between time slots the distributions of nodes loca-
tions are independent. We adopt the models of torus network
and i.i.d. mobility here mainly due to the following reasons.
First, the mathematical tractability of these models allows us to
gain important insights into the structure of throughput capacity
analysis. Second, the analysis under the i.i.d. model provides a
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meaningful theoretical performance result in the limit of infi-
nite mobility. Third, it follows from Corollary 5 of [30] that
the results obtained with the i.i.d. model also provide a good
estimation of those obtained with more realistic mobility mod-
els (like the random walk and random direction), as it will be
further validated in Section VII.

B. Communication Model

A half-duplex medium is shared by all the nodes for data
communication. The communication model consists of trans-
mitter selection, receiver selection and criteria of correct recep-
tion. The following two slotted Aloha protocols are considered
in this paper for transmitter selection:

Aggressive Aloha Protocol (A-Aloha) [25]: Under the
A-Aloha protocol, in each time slot a node will become a
transmitter with probability p or keep silent as a potential
receiver with probability 1 − p regardless of whether it gets
packet(s) to transmit from routing layer. If a node does not
get any packet to transmit from routing layer, it still conducts a
“dummy-transmission” that causes nothing but interference to
other concurrent transmissions.

Conventional Aloha Protocol (C-Aloha): Under the
C-Aloha protocol, in each time slot a node will become a trans-
mitter with probability p or keep silent as a potential receiver
with probability 1 − p given that it gets packet(s) to transmit
from routing layer. If a node does not get any packet to trans-
mit from routing layer, it will also keep silent as a potential
receiver. For the convenience of discussion, we will use NA

and NC hereafter to denote the A-MANET with the A-Aloha
and that with the C-Aloha, respectively. It is considered that the
NA and NC are only different in the underlying Aloha protocols
and the remaining system models are identical.

Previous studies indicate that local transmission provides a
better throughput performance than long-distance transmission
schemes [2], [31], so we consider the following two local trans-
mission schemes for receiver selection [22]: Nearest Neighbor
Transmission (NNT): Under NNT, the intended receiver of a
transmitter is the node closest to the transmitter among all other
nodes. Nearest Receiver Transmission (NRT): Under NRT,
the intended receiver of a transmitter is the silent node closest
to the transmitter among all other nodes. We adopt the protocol
model introduced in [26] to decide if a transmission between
a transmitter and its intended receiver is correctly received.
Under the protocol model, the transmission from transmitter i
to receiver j is correctly received iff (if and only if) the follow-
ing inequality holds for all simultaneously transmitting node l
other than i ,

dl j ≥ (1 + �)di j , (1)

where dl j denotes the Euclidean distance between nodes l and
j , and � > 0 is a guard interval. The disc area centered at
receiver j with radius (1 + �)di j models a guard zone to pre-
vent the transmission from being corrupted by interference.
During a transmission, the total amount of data that can be
transmitted is fixed and normalized to one packet.

C. Traffic Model

For traffic model, we consider that there are n unicast traf-
fic flows in the network, and each node is the source of one
traffic flow and also the destination of another traffic flow.
Denoting ϕ(i) the destination node of the traffic flow origi-
nated from node i , the source-destination pairs are matched
in a way that the sequence (ϕ(1), ϕ(2), . . . , ϕ(n)) is just a
derangement of the set of nodes {1, 2, . . . n}.1 Two typical
examples of this traffic model are ϕ(1) = 2, ϕ(2) = 3, . . . ,

ϕ(n) = 1 and ϕ(1) = 2, ϕ(2) = 1, . . . , ϕ(n − 1) = n, ϕ(n) =
n − 1 [10]. We assume that the packet arrival process at each
node is an i.i.d. Bernoulli process with rate λ packets/slot, so
that with probability λ, a single packet arrives at the node at the
beginning of each time slot. To simplify analysis, we assume
that there is no constraint on packet lifetime and the node
buffer size is sufficiently large so that packet loss due to buffer
overflow will never occur.

D. Performance Metrics

End-to-end delay: For a tagged packet, its end-to-end delay
is a random variable defined as the time elapsed between the
time slot when the packet arrives at its source node and the
time slot when it reaches its destination node. We use E{D} and
E{Di } to denote the expected end-to-end delay of the network
and that of flow i , respectively. Based on temporal ergodicity,
E{Di } is given as E{Di } = lim

k→∞
1
k

∑k
m=1 Di,m , where Di,m is

the end-to-end delay of packet m of flow i . Since the traffic is
symmetric, we have E{D} = E{D1} = . . . = E{Dn}.

Throughput: The throughput of a traffic flow is defined as
the time average of number of packets that can be delivered
from its source to destination.

Throughput capacity and Maximum capacity: For an
A-MANET with Aloha parameter p, the network is called sta-
ble under packet arrival rate λ (packets/slot) to each node if
there exists a corresponding packet routing algorithm to ensure
that as time evolves the queue length of each node does not
grow to infinity (and thus the expected end-to-end delay is
bounded). The throughput capacity μ of the A-MANET is then
defined as the maximum value of λ that the network can sta-
bly support where the optimization is over all possible routing
algorithms [10], [30] and the maximum capacity μ∗ of the net-
work is defined as the maximum value of throughput capacity
μ optimized over parameter p, i.e., μ∗ = max

p∈(0,1)
μ.

IV. GENERAL THROUGHPUT CAPACITY ANALYSIS

In this section, we firstly study the A-MANET NA. In partic-
ular, we define a notion of successful transmission probability
in NA and present first a theorem to show how the through-
put capacity of NA can be evaluated based on this notion and
then the necessary and sufficient stability conditions to prove
the theorem. Secondly, we study the A-MANET NC . We prove
that the same necessary and sufficient conditions of the network

1A derangement is a permutation that has no fixed point, i.e., ϕ(i) �= i ,
i = 1, 2, . . . , n.
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stability of NA actually also hold for the corresponding NC and
thus NC has the same throughput capacity as NA.

A. Throughput Capacity Evaluation for NA

Successful transmission probability in NA (STP): In the
concerned A-MANETs, a node is called to conduct a successful
transmission in a time slot iff (if and only if): In this time slot,
1) the node becomes a transmitter; 2) the intended receiver
of the node is silent; 3) the transmission from the transmit-
ter can be correctly received by the receiver. Notice that in the
A-MANET NA, the probability that a node conducts a suc-
cessful transmission is identical for each node and each time
slot due to the i.i.d. mobility model and the communication
model. Therefore, the successful transmission probability in
NA , denoted by PS, is defined as the probability that a node
can conduct a successful transmission in a time slot. Notice
that in the A-MANET NA, the probability that a node con-
ducts a transmission is independent of the traffic. Notice also
that the PS is not conditioned on a transmission attempt occur-
ring. In the analysis hereafter we will call PS the STP for the
convenience of discussion. In this section, the STP is taken
as a given parameter, but its value and relation with system
parameters (transmission probability p, guard interval �) will
be investigated in Section V.

Theorem 1: Consider an A-MANET NA where there are n
mobile nodes and the A-Aloha is adopted. If we use PS to
denote its STP, then the throughput capacity of NA is given by

μ = n

2(n − 1)
PS. (2)

The proof of Theorem 1 involves proving that λ ≤ μ is nec-
essary and λ < μ is sufficient for ensuring network stability in
NA. Following the technique of [10], we prove the necessity
and sufficiency in Sections IV-A1 and IV-A2, respectively, by
showing that μ is an upper-bound on the throughput of any rout-
ing algorithm and Algorithm 1 stabilizes the network for any
λ < μ.

1) Proof of Necessity:
Lemma 1: (Necessity) In a stable A-MANET NA with n

mobile nodes and STP PS, its throughput under any routing
algorithm is upper-bounded by

μ = n

2(n − 1)
PS. (3)

Proof: At first, we note that if NA is stable, the sum
of arrival rates must be less than or equal to the sum of
throughputs of all n traffic flows. Consider an arbitrary rout-
ing algorithm that can stablize NA under arrival rate λ. We use
Xh(T ) to denote the total number of packets transferred through
h hops from their sources to destinations in time interval [0, T ].
Formally, it is required that for any given ε > 0, there must exist
an arbitrarily large T such that

λn − ε ≤ 1

T

∞∑
h=1

Xh(T ), (4)

where λ is the packet arrival rate at each node. Notice that in the
time interval [0, T ], the total number of transferred packets is at

least
∑∞

h=1 h Xh(T ), which must be upper bounded by the total
number of successful transmissions Y (T ) in this time interval
since it costs at least one successful transmission to transfer a
packet from one node to another. Thus, we have

∞∑
h=1

h Xh(T ) ≤ Y (T ). (5)

From (4) and (5), we have

1

T
Y (T ) ≥ 1

T
X1(T ) + 2

T

∞∑
h=2

Xh(T ) ≥ 1

T
X1(T )

+ 2

[
(λn − ε) − 1

T
X1(T )

]
, (6)

λ ≤ 1

2n

[
1

T
Y (T ) + 1

T
X1(T ) + 2ε

]
. (7)

Based on the property of the i.i.d. mobility, we can see that
for each node, its expected number of successful transmissions
in one time slot is just equal to STP PS. Thus, by applying the
law of large numbers, we have that as T → ∞

1

T
Y (T )

a.s.−→ n PS. (8)

Since a packet can be transferred from its source to its desti-
nation through single hop only when the source can conduct
a successful transmission directly to the destination, X1(T ) is
upper bounded by the total number of successful transmissions
Ysd(T ) between all source-destination pairs in time interval
[0, T ]. Also, based on the i.i.d. mobility, a transmitter selects
a node from the others with probability 1

n−1 . Since each node
has only one source node according to the derangement traf-
fic model, the expected number of successful transmissions
directly from one node to its destination node in one time slot
is equal to 1

n−1 PS. Thus, as T → ∞
1

T
Ysd(T )

a.s.−→ n

n − 1
PS. (9)

Substituting (8) and (9) into (7), we have

λ ≤ n

2(n − 1)
PS + ε

n
, as T → ∞. (10)

Since ε can be arbitrarily small, the result then follows. �
2) Proof of Sufficiency: In this section, we will prove that

the upper bound μ in (3) is just the throughput capacity of NA.
The basic idea of our proof is to show that for any λ < μ, the
delay E{D} under Algorithm 1 is bounded and thus the network
stability is ensured.

Lemma 2: (Sufficiency) In the A-MANET NA with n
mobile nodes and STP PS, if the packet arrival process at
each node is an i.i.d. Bernoulli stream with rate λ < μ and
the Algorithm 1 is adopted for packet routing, the expected
end-to-end packet delay of the network E{D} is

E{D} = n − λ − 1

μ − λ
= n − ρμ − 1

(1 − ρ)μ
, ρ = λ/μ. (11)
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Proof: At first, we present Algorithm 1 as follows:
Algorithm 1: Consider a transmitter Tx and its receiver

Rx in the current time slot. If Rx is the destination node of
Tx: Tx conducts source-to-destination transmission to Rx; oth-
erwise Tx flips an unbiased coin. If it is the head, Tx conducts
source-to-relay transmission to Rx; otherwise Tx conducts
relay-to-destination transmission to Rx. If the transmission is
successfully received at Rx2, Tx will remove the transmitted
packet from buffer; otherwise Tx still keeps the packet.

Queuing Structure: To support the operation of
Algorithm 1, each node maintains one source queue to
store locally generated packets and n − 2 relay queues to store
packets of other flows (one queue per flow). All the queues
follow the first-in-first-out discipline.

Source-to-destination: If Tx has packet(s) in its local queue,
then Tx sends the head-of-line packet of the queue to Rx.
Otherwise, Tx sends a null-packet to Rx.

Source-to-relay: If Tx has packet(s) in its local queue, then
Tx sends the head-of-line packet of the queue to Rx. Otherwise,
Tx sends a null-packet to Rx.

Relay-to-destination: If Tx has packet(s) in the relay queue
destined for Rx, then Tx sends the head-of-line packet of the
queue to Rx. Otherwise, Tx sends a null-packet to Rx.

Under Algorithm 1, if a transmitter’s corresponding
local/relay queue is empty, the transmitter will send a null-
packet to the receiver. This null-packet will be treated as a nor-
mal packet by the MAC layers of the transmitter and receiver,
but will be dropped (if correctly received) by the routing layer
of the receiver and thus the transmission of a null-packet will
place no impact on the queueing process of the receiver.

Recall that in NA, the probability that a node conducts a
successful transmission in a time slot is just equal to PS.
We use Psd , Psr and Prd to denote the probabilities that a
node can conduct a successful transmission in a time slot and
according to Algorithm 1 the transmission will be scheduled as
a source-to-destination, source-to-relay or relay-to-destination
transmission, respectively. Based on the properties of the i.i.d.
mobility, communication model and derangement traffic, we
can see that for one node that can conduct a successful trans-
mission in a time slot, with probability 1/(n − 1) the receiver
of this node is just its destination node and thus this transmis-
sion will be scheduled as a source-to-destination transmission
under Algorithm 1. Therefore, the probability Psd is determined
as Psd = 1

n−1 PS. Similarly, for a node that can conduct a suc-

cessful transmission in a time slot, with probability n−2
2(n−1)

the
transmission will be scheduled as a source-to-relay or relay-to-
destination transmission according to Algorithm 1. Thus, we
can see that the probabilities Psr and Prd are determined as
Psr = Prd = n−2

2(n−1)
PS.

Notice that based on our system models, the queuing process
of each flow has the following properties: i) the packet arrival
process to each flow is an i.i.d. Bernoulli process with the same
rate λ; ii) based on Algorithm 1, each flow is served equally
without priority, so each flow experiences the same service
process. Due to these properties, the queuing process of each
flow is identically distributed. We focus on a flow i in the

2Any node other than Rx will discard this packet if it receives the packet in
this time slot.

Fig. 1. The packet routing process of a single traffic flow under the
Algorithm 1.

following analysis and study its expected delay E{Di }. With
the help of Psd , Psr and Prd , the packet routing process of flow
i under Algorithm 1 is illustrated in Fig. 1, where the source
node conducts a successful source-to-destination transmission
with probability Psd and conducts a successful source-to-relay
transmission to one relay node with probability Psr

n−2 , and a
relay node conducts a successful relay-to-destination transmis-
sion to the destination node with probability Prd

n−2 . We can see
from Fig. 1 that the packet routing process of a flow involves a
two-stage relay process if the packet is not directly transmitted
to the destination. The first stage is the queuing process at the
source node, while the second stage is the queuing process at
one relay node.

Firstly, for the source queue, its packet arrival rate is λ and
its service rate is Psd + Psr = μ. Denoting l the length of the
source queue, its stationary distribution π(l) is given by [32]

π(0) =
(

1 − λ

μ

)
π(l) =

(
1 − λ

μ

)(
λ(1 − μ)

μ(1 − λ)

)l ( 1

1 − μ

)
for l ≥ 1. (12)

Thus, the expected queue length E{l} at the source is E{l} =∑∞
l=1 lπ(l) = λ2−λ

λ−μ
. Notice that the queue at the source is

reversible, so its output is also a Bernoulli stream with rate
λ [32].

Secondly, to analyze the queuing process at one of the n − 2
relay nodes, we need to know the conditional probability that
a packet is transmitted to this relay node given that it leaves
its source. Using the definition of conditional probability, this
probability can be determined as Psr

(n−2)
· 1

Psd+Psr
= 1

n , where
Psr

(n−2)
is the probability that the source conducts a successful

source-to-relay transmission to the relay node, and Psd + Psr

is the probability that the source node conducts a successful
source-to-destination or source-to-relay transmission. Based on
the above conditional probability and the fact that the output
from the source node is a Bernoulli stream with rate λ, we know
that the packet arrival process to a relay node is a Bernoulli
stream with rate λr = λ

n . Regarding the service rate μr of the
relay queue, it is equal to the probability of successfully per-
forming the relay-to-destination transmission with respect to a
given destination, which is determined as μr = Prd

n−2 = PS
2(n−1)

according to the derangement traffic model. Denoting lr the
relay queue length, its stationary distribution πr (lr ) is

πr (lr ) =
(

1 − λr

μr

)(
λr

μr

)lr
, lr ≥ 0. (13)
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Thus, the expected queue length E{lr } at a relay node is
E{lr } = ∑∞

lr =1 lrπr (lr ) = λr
μr −λr

. From Little’s Theorem, the
expected end-to-end delay E{Di } of any traffic flow i is evalu-
ated as E{Di } = [E{l} + (n − 2)E{lr }] /λ = n−λ−1

μ−λ
, then (11)

follows. �

B. Throughput Capacity Evaluation for NC

In this section, we will prove that the necessary and suffi-
cient conditions of the network stability developed in the above
section for NA actually also hold for NC and thus the through-
put capacity of NC can be calculated based on the STP PS
of NA.

Theorem 2: Consider an A-MANET NC where there are n
mobile nodes and the C-Aloha is adopted. If we use PS to
denote the STP of the corresponding A-MANET NA with n
nodes and A-Aloha, then the throughput capacity of the NC is
given by

μ = n

2(n − 1)
PS. (14)

Proof: The main idea is to show that the necessary and
sufficient conditions developed in Lemmas 1 and 2 also hold
for the NC , and thus the μ of (2) is also the throughput capacity
of NC . Recall that the C-Aloha and A-Aloha are only different
in that: when a node does not get any packet to transmit from the
upper layer routing algorithm, the C-Aloha will make the node
keep silent while the A-Aloha will still make the node conduct a
dummy-transmission with probability p. Firstly, we know from
Lemma 1 that for each λ > μ, the NA is unstable for any rout-
ing algorithm, indicating that the queue length in each node will
grow to infinity and the probability that a transmitter conduct
a dummy-transmission is zero. Since the dummy-transmission
occurs with zero probability, the NA and NC are indistinguish-
able, indicating that the queue length in each node of NC will
also grow to infinity [25]. This observation implies that the NC

cannot be stabilized for any λ > μ and thus μ is also an upper
bound on the throughput capacity of NC . Secondly, the upper
bound μ can also be achieved by adopting Algorithm 1 in NC .
This is because the Algorithm 1 always sends packets to the
MAC layer (Algorithm 1 sends a null-packet if the correspond-
ing queue is empty). Therefore, if the Algorithm 1 is employed,
the A-Aloha and C-Aloha actually perform the same, implying
that the Lemma 2 also holds for the NC . The theorem follows
by summing up the above arguments. �

Notice that Algorithm 1 generates null-packets, which place
no impact on the queueing system but cause interference. To
understand how Algorithm 1 can achieve the throughput capac-
ity of the NA and NC , we should notice that transmission of
a null-packet under Algorithm 1 occurs only when the corre-
sponding source/relay queue is empty, an event that becomes
increasingly unlikely as input rate approaches the throughput
capacity μ. In particular, if we let Pnull denote the probability
that a transmitter transmits a null-packet under the Algorithm 1,
Pnull corresponds to the probability that the source queue is
empty when a source-to-destination or source-to-relay trans-
mission is selected and the probability that the relay node queue
is empty when a relay-to-destination transmission is selected.
Based on (12) and (13), Pnull can be determined as

Pnull = 1

n − 1
π(0) + n − 2

2(n − 1)
π(0) + n − 2

2(n − 1)
πr (0)

=
(

1 − λ

μ

)
= (1 − ρ), (15)

which indicates clearly that as ρ → 1, i.e., λ → μ, Pnull van-
ishes to zero. Theorems 1 and 2 indicate that the only remaining
issue in the throughput capacity calculation for NA and NC

is to compute the STP PS of NA, which will be addressed in
Sections V and VI.

V. THROUGHPUT CAPACITY OF INFINITE NETWORK

This section studies the infinite network scenario where the
number of network nodes n grows to infinity. The exact expres-
sions for the STP PS of the infinite NA network under the NNT
and NRT will be derived, and then the exact expressions for the
throughput capacity are obtained.

A. Modeling the STP PS of NA

In this section, we evaluate the STP PS of NA under the NNT
and NRT schemes, respectively. At first, we note that accord-
ing to the definition of STP, when evaluating this probability,
the node under consideration is randomly distributed over the
network arena in the considered time slot and spatial averag-
ing should be taken over the locations of all the other nodes.
Due to the i.i.d. mobility and torus boundary considered in this
paper, the distribution of the nodes’ locations in each time slot
is spatially stationary and ergodic, which implies that the STP
in the time slot under consideration is just equal to the STP
conditioned on that the node under consideration is located in
an arbitrarily selected point (e.g., the center) of the network
arena (Chapter 1.6 in [33] and Chapter 12 in [34]. Based on
this property and for discussion convenience, we will assume
in the following sections that the considered node is located at
the center of the network arena and evaluate its STP under the
NNT and NRT schemes, respectively.

1) NNT: Without loss of generality, we focus on a node
i and its nearest neighbor node j in an arbitrary time slot.
According to the definition of STP, the node i conducts a
successful transmission to node j in the time slot iff the fol-
lowing three events happen simultaneously: (i) node i becomes
a transmitter; (ii) node j is silent; (iii) the condition of correct
reception specified by the protocol interference model in (1)
holds. We use indicator function δi, j = 1 to denote that the con-
dition in (1) is true for the transmission from i to j (δi, j = 0,
otherwise). Due to the i.i.d. mobility model and the A-Aloha
protocol, the above three events are mutually independent in
NA, so the STP PS under NNT is given by

PS =p(1 − p) Pr{δi, j = 1} = p(1 − p)E{δi, j }. (16)

Let E
{
δi, j |di j = r

}
denote the expectation of δi, j conditioned

on di j = r , we have

E{δi, j } =
∫ √

2
2

0
E
{
δi, j |di j = r

}
fR1(r) dr , (17)
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Fig. 2. Illustration of 

(i)
r , 


( j)
(1+�)r and 


(i, j)
r,� .

where
√

2
2 is the maximum distance between the transmitter and

receiver over a unit square and fR1(r) denotes the probability
density function of the distance between a node and its nearest
neighbor in the A-MANET under the i.i.d. mobility model (See,
Appendix A. Based on the evaluation of E{δi, j |di j = r}, PS can
be modeled as follows.

Lemma 3: Considering the A-MANET NA with n mobile
nodes, transmission probability p and guard interval � > 0, it
STP PS under the NNT scheme can be evaluated as

PS =
∫ √

2
2

0

n−2∑
k=0

(
n − 2

k

)
pk+1 (Pi, j (�, r)

)k
(1 − p)n−1−k

· fR1(r) dr, (18)

Pi, j (�, r) = 1 − |
(i)
r | − |
( j)

(1+�)r | + |
(i, j)
r,� |

1 − |
(i)
r |

, (19)

where 

(a)
r is the intersection between the network region

and the disc centered at node a with radius r , 

(i, j)
r,� is the

intersection between 

(i)
r and 


( j)
(1+�)r (Fig. 2) and | · | is the

region area.

Proof: At first, we evaluate E{δi, j |di j = r}. As illustrated
in Fig. 2, E{δi, j |di j = r} accounts for the probability that all

transmitting nodes other than i are outside of 

( j)
(1+�)r given

that all nodes other than i and j are outside of 

(i)
r . Denoting

k the number of transmitters other than i and j , we have from
the i.i.d. mobility model and A-Aloha protocol that k follows
the Binomial distribution with parameters p and n − 2. Let Pi, j

denote the probability that a node is outside of 

( j)
(1+�)r given

that it is outside of 

(i)
r , then we have from the law of total

probability

E{δi, j |di j = r} =
n−2∑
k=0

(
n − 2

k

)
(p · Pi, j (�, r))k(1 − p)n−2−k .

(20)

Combining (16), (17) and (20) completes the proof of the
lemma. �

Lemma 3 indicates that we need to determine |
(i)
r |,

|
( j)
(1+�)r | and |
(i, j)

r,� | to evaluate E{δi, j |di j = r}. Since |
(i)
r |

and |
( j)
(1+�)r | can be easily determined based on (36) in

Appendix A, the remaining issue is to determine |
(i, j)
r,� |. As

illustrated in Fig. 2, when 0 < � < 1, 

(i)
r and 


( j)
(1+�)r are

Fig. 3. 

(i, j)
r,� when 0 < � < 1 and 1

3+�
< r ≤

√
2

2 . In the diagrams � and r

are the same but the |
(i, j)
r,� | are different.

partially overlapped, but when � ≥ 1, 

(i)
r is completely con-

tained in 

( j)
(1+�)r . The different overlapping behaviors of these

two cases make the calculation of |
(i, j)
r,� | different, so we

need to consider them separately. In the following, we focus
on the case of 0 < � < 1. The evaluation for � ≥ 1 can be
conducted similarly (Appendix B). Notice that in addition to
�, |
(i, j)

r,� | also depends on r . When (3 + �)r ≤ 1 (or equiva-

lently 0 < r ≤ 1
3+�

), 

(i, j)
r,� just corresponds to the intersection

between two discs illustrated in Fig. 2a, so |
(i, j)
r,� | can be eas-

ily evaluated under this scenario. However, under the scenario

when (3 + �)r > 1 (or equivalently 1
3+�

< r ≤
√

2
2 ), it is quite

cumbersome to compute |
(i, j)
r,� |, due to that the torus causes the

two discs to overlap with one another in irregular and unsavory
manners illustrated in Fig. 3.

Based on the above discussion, for the case of 0 < � < 1,
E
{
δi, j
}

in (17) is evaluated as

E{δi, j } =
∫ 1

3+�

0
E
{
δi, j |di j = r

}
fR1(r) dr︸ ︷︷ ︸

(a)

+
∫ √

2
2

1
3+�

E
{
δi, j |di j = r

}
fR1(r) dr︸ ︷︷ ︸

(b)

, (21)

in which (a) can be analytically derived while the analysis
of (b) is highly cumbersome due to the difficulty in comput-
ing |
(i, j)

r,� |. Fortunately, as proved in Appendix B, the (b) in
(21) accounts for an increasingly negligible part as n increases.
Intuitively, as n increases (i.e., adding more nodes to the net-
work), the nearest neighbor distribution tends to tighten up
towards zero, causing smaller distances between a transmitter
and receiver. It follows from (1) that smaller distances between
a transmitter and receiver lead to smaller guard zones, and since
the network arena size is fixed, smaller guard zones decrease the
chance of having unsavory overlaps.

Lemma 4: Considering the A-MANET NA with n mobile
nodes, transmission probability p and guard interval � > 0, its
STP PS under the NNT scheme is given by

PS =P̂S + �(αn), 0 < α < 1, (22)

P̂S =
{

πp(1−p)
π+p·�(�)

, if 0 < � < 1
p(1−p)

1+2�p+�2 p
, if � ≥ 1

, (23)
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�(�) = π(1 + �)2 − (1 + �)2 arccos

(
1 + �

2

)

− arccos

(
1 − (1 + �)2

2

)
+ (1 + �)

√
1 − (1 + �)2

4
.

(24)

Proof: See Appendix B. �
2) NRT: Following an argument similar to that of NNT, we

have the following result.
Lemma 5: Considering the A-MANET NA with n mobile

nodes, transmission probability p and guard interval � > 0, its
STP PS under the NRT scheme is given by

PS = P̂S + �(αn), (25)

where 0 < α < 1 and P̂S = p(1−p)

1+2�p+�2 p
.

Proof: See Appendix C. �
Remark 1: Lemmas 4 and 5 indicate that for both NNT and

NRT schemes, the STP PS of NA consists of two parts. The
first part is P̂S, which is independent of n. The second part is of
order �(αn), which vanishes to 0 exponentially with n. Thus,
we have lim

n→∞PS = P̂S for the A-MANET NA under the NNT

or NRT scheme.
Remark 2: Notice that when � ≥ 1 the NNT and NRT

schemes result in the same expression of P̂S. This is because
under the NNT scheme, a transmitter can only conduct nearest-
neighbor transmissions, while under the NRT scheme, a
transmitter can conduct either nearest-neighbor transmissions
(where the nearest receiver is just its nearest neighbor) or non-
nearest-neighbor transmissions (where the nearest receiver is
not its nearest neighbor). Under the case of � ≥ 1, however, the
non-nearest-neighbor transmissions under the NRT scheme can
never satisfy the condition of correct reception specified by the
protocol interference model. This is because when � ≥ 1, the
disc centered at the transmitter with radius r is completely cov-
ered by the disc centered at the receiver with radius (1 + �)r ,
as illustrated in Fig. 2b. Thus, if the nearest receiver under NRT
is not the nearest neighbor of the transmitter under this case,
it implies that there must be some other transmitting node(s) in
the disc centered at the transmitter (hence in the disc centered at
the receiver of this transmission), making this transmission fail.

B. Throughput Capacity

Based on Theorems 1, 2 and Remark 1, we have the follow-
ing theorem.

Theorem 3: Consider the A-MANET NA or NC with n
mobile nodes, transmission probability p and guard interval
� > 0. If we use μNNT and μNRT to denote its throughput
capacity under the NNT and NRT schemes and μ∞

NNT and μ∞
NRT

to denote the throughput capacity of the corresponding infinite
network, respectively, then we have

μ∞
NNT = lim

n→∞ μNNT =
⎧⎨⎩

πp(1−p)
2π+2p·�(�)

, if 0 < � < 1
p(1−p)

2+4�p+2�2 p
, if � ≥ 1

(26)

μ∞
NRT = lim

n→∞ μNRT = p(1 − p)

2 + 4�p + 2�2 p
. (27)

Theorem 3 indicates that under either the NNT or NRT
scheme, the throughput capacity of the A-MANETs will con-
verge to a constant value as n grows to infinity. Moreover, the
convergence is exponential according to Lemmas 4 and 5.

VI. THROUGHPUT CAPACITY OF FINITE NETWORK

This section derives closed-form approximations to the STP
PS of NA and the throughput capacity of a finite NA or NC ,
and determines the corresponding approximation error bounds.
Optimization is also conducted to find the optimal values of p
for capacity maximization.

A. STP Approximation and Error Bound

According to Lemmas 4 and 5, the STP PS consists of a
constant part whose analytical expression can be derived and
an exponentially vanishing part whose analytical expression
is difficult to derive. This observation provides us a way to
approximate the STP PS in the A-MANET NA as follows. The
analysis on error bounds is provided in Appendices B and C,
and the actual values of the bounds are reported in Appendix D.

Corollary 1: Considering the NA with n mobile nodes,
transmission probability p and guard interval � > 0, an
approximation P̂S to its STP PS under the NNT scheme is
given by

P̂S =
⎧⎨⎩

πp(1−p)
π+p·�(�)

, if 0 < � < 1
p(1−p)

1+2�p+�2 p
, if � ≥ 1

, (28)

where the corresponding approximation error εP := PS − P̂S
vanishes to zero exponentially with n and is bounded as ε− ≤
εP ≤ ε+. See (49) and (50) for the expressions of ε− and ε+.

Corollary 2: Considering the NA with n mobile nodes,
transmission probability p and guard interval � > 0, an
approximation P̂S to its STP PS under the NRT scheme is
given by

P̂S = p(1 − p)

1 + 2�p + �2 p
, (29)

where the corresponding approximation error εP := PS − P̂S
vanishes to zero exponentially with n and is bounded as ε− ≤
εP ≤ ε+. See (51) and (52) for the expressions of ε− and ε+.

B. Throughput Capacity Approximation and Optimization

The combination of Theorems 1 and 2 and Corollaries 1 and
2 leads to the following results.

Theorem 4: For the NA or NC with n mobile nodes, trans-
mission probability p and guard interval � > 0, an approxi-
mation μ̂NNT to its throughput capacity μNNT under NNT is
given by

μ̂NNT = n

2(n − 1)
P̂S =

⎧⎨⎩
nπp(1−p)

2(n−1)(π+p·�(�))
, if 0 < � < 1

np(1−p)

2(n−1)(1+2�p+�2 p)
, if � ≥ 1

,

(30)
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where the approximation error εμ = n
2(n−1)

εP , and εP is the
approximation error in Corollary 1.

Corollary 3: Let p̂∗
NNT denote the optimal setting of p to

achieve μ̂∗
NNT = max

p∈(0,1)
μ̂NNT. We have from (30) that p̂∗

NNT

and μ̂∗
NNT are determined as

p̂∗
NNT =

⎧⎨⎩
√

π2+π ·�(�)−π

�(�)
, if 0 < � < 1

1
2+�

, if � ≥ 1
, (31)

μ̂∗
NNT =

⎧⎨⎩
nπ

2(n−1)
[
�(�)+2

(
π+

√
π2+π ·�(�)

)] , if 0 < � < 1

n
2(n−1)(2+�)2 , if � ≥ 1.

(32)

Theorem 5: For the NA or NC with n mobile nodes, trans-
mission probability p and guard interval � > 0, an approxi-
mation μ̂NRT to its throughput capacity μNRT under NRT is
given by

μ̂NRT = np(1 − p)

2(n − 1)(1 + 2�p + �2 p)
, (33)

where the approximation error εμ = n
2(n−1)

εP , and εP is the
approximation error in Corollary 2.

Corollary 4: Let p̂∗
NRT denote the optimal setting of p to

achieve μ̂∗
NRT = max

p∈(0,1)
μ̂NRT, we have from (33) that p̂∗

NRT and

μ̂∗
NRT are determined as

p̂∗
NRT = 1

2 + �
and μ̂∗

NRT = n

2(n − 1)(2 + �)2
. (34)

VII. NUMERICAL RESULTS AND DISCUSSIONS

A. Simulation Setting

To validate the theoretical results, a self-developed simu-
lator was used to simulate the packet delivery process under
Algorithm 1 [35]. A simulation scenario with p = 0.4, � = 0.2
and unit network arena of 1 × 1 is considered. To obtain the
simulated throughput capacity, we first measure the STP PS as
the time average number of successful transmissions of a spe-
cific node over 106 time slots in the NC , and then substitute the
measured PS into (2). To measure the throughput and delay, we
focus on a traffic flow and measure its throughput and average
packet delay over a period of 107 time slots for each system load
ρ = λ/μ̂NNT or ρ = λ/μ̂NRT. In addition to the i.i.d. mobility
model, we also implemented the following two models.

Random Direction Model [36]: Initially, network nodes are
uniformly distributed over the network arena, and each node
independently selects a direction θ uniformly from (0, 2π ], a
speed S uniformly from [vmin, vmax ] and a travel time τ fol-
lowing the Poisson distribution with mean τ̄ > 0. The node then
travels along the direction θ at speed S for a duration τ . When a
travel time has expired, a new setting of θ , S and τ is selected at
random, independently of previous ones. When a node reaches
a boundary, it is bounced back with angle θ or π − θ .

Random Walk Model [37]: Initially, network nodes are uni-
formly distributed over the network arena. At the beginning of
each time slot, each node independently and uniformly selects
a speed S from [vmin, vmax ] and a direction θ from (0, 2π ], and

Fig. 4. Throughput Capacity and Delay vs. Number of Nodes n.

it conducts a movement of (S · cos θ, S · sin θ). When a node
reaches a boundary, it is bounced back with angle θ or π − θ .

It is proved in [36] that for a general random direction model,
the steady-state distribution of nodes locations is uniform under
arbitrary distributions of direction, travel speed and travel time.
Notice that in the random walk model, a node always con-
ducts a movement of unit distance before changing directions,
so it can be regarded as a special case of the general random
direction model. Therefore, both of the above mobility models
will lead to a uniform distribution of nodes locations in steady
state.

B. Throughput Capacity and Delay vs. Number of Nodes n

To verify our throughput capacity results, we summarize in
Fig. 4a the simulation and theoretical results of throughput
capacity as functions of n. Fig. 4a shows that the simulation
results agree well with the approximations, indicating that (30)
and (33) can accurately approximate the throughput capacity
of finite A-MANETs. Fig. 4a also shows that the throughput
capacity results with the torus assumption are virtually indis-
tinguishable from those without this assumption, indicating that
the torus assumption does not incur a significant loss of accu-
racy here. We can see from Fig. 4a that as n increases the
throughput capacity under the NNT or NRT scheme will con-
verge to that of infinite networks. This observation agrees with
Theorem 3, and it indicates that the considered A-MANET can
provide a constant throughput capacity even as n grows to infin-
ity. To understand the corresponding average delay to achieve
the throughput capacity, we examine in Fig. 4b how the delay
under Algorithm 1 and the NNT scheme varies with n for the
settings of ρ = 0.8, � = 0.2 and p = {0.2, 0.4, 0.8}. Here, the
delay is computed from (11). Figs. 4a and 4b indicate that a
constant throughput capacity can be achieved in the A-MANET
at the cost of a linearly increasing average delay.
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Fig. 5. Throughput and Delay vs. System Load ρ with vmin = 0.1 per slot,
vmax = 0.2 per slot and τ̄ = 10 slots.

C. Throughput and Delay vs. System Load ρ

To demonstrate the throughput and delay performance as
input rate approaches throughput capacity, we summarized in
Fig. 5 the plots of throughput and delay versus system load
ρ for a network with n = 32, p = 0.4 and � = 0.2.3 Fig. 5a
show that for the A-MANET under i.i.d. mobility model, the
throughput linearly increases as ρ increases from 0 to 1 and
then approaches μ̂NNT or μ̂NRT as ρ further increases beyond
1. This is expected since the queuing system of the network is
underloaded when ρ < 1, and it saturates as ρ approaches 1 and
beyond. Fig. 5b indicates that (11) is accurate in reporting the
average delay under the i.i.d. mobility model.

Besides, we also provide in Fig. 5 the simulation results of
throughput and delay for the random walk and random direction
models with the setting of vmin = 0.1 per slot, vmax = 0.2 per
slot and τ̄ = 10 slots. Fig. 5a shows that for networks under the
random walk and random direction models, their throughputs
also approach the theoretical throughput capacity derived based
on the i.i.d. model as ρ tends to 1. This observation suggests that
while the throughput capacity result of this paper is developed
based on the i.i.d. model, it also severs as a good estimation to
the throughput capacity of the A-MANETs under the random
walk and random direction models. This might be for the reason
that these models lead to the same uniform distribution of nodes
locations in steady-state as the i.i.d. model (see Corollary 5 of
[30]. Fig. 5b shows that the mean delays under these mobility
models are lower bounded by that under the i.i.d. model.

3The theoretical results are obtained from μ̂NNT, μ̂NRT and (11).

Fig. 6. Throughput Capacity and Delay vs. Transmission Probability p.

D. Throughput Capacity and Delay vs. Transmission
Probability p

Based on our theoretical results, we explore the impact of
p on the throughput capacity. It is summarized in Fig. 6a how
μ̂NNT and μ̂NRT vary with p in a network with n = 128 and
� = 0.2. Fig. 6a shows that as p increases both μ̂NNT and
μ̂NRT first increase and then decrease, and just as discussed in
Corollaries 3 and 4 that there exists an optimal setting of p to
achieve the maximum capacity μ̂∗

NNT or μ̂∗
NRT. This is mainly

due to the reason that the effects of p on throughput capacity
are two-fold. On one hand, a higher transmission probability
will result in a larger number of simultaneous transmissions,
but on the other hand, it will lead to a lower probability that a
transmission is successfully received. Fig. 6a also indicates that
for a given setting of p the throughput capacity under the NRT
scheme is always higher than that under the NNT scheme. This
is because under the NRT scheme a transmitter will try to find
some other node as its receiver if the nearest neighbor is not
available, so more transmission opportunities can be obtained.
To further explore the effect of p on delay performance, we
summarize in Fig. 6b how the delay varies with p under the
settings of n = 128, ρ = 0.8 and � = {0.2, 1.0, 1.5}. Fig. 6b
shows that for a given setting of n, ρ and �, as p increases
the delay first decreases and then increases; while for a given
setting of n, ρ and p, the delay monotonously increases as �

increases. The main reason behind these phenomena is that as
shown in (11) the delay is inversely proportional to the capacity,
so the relationship between delay and (p,�) is just reverse to
the relationship between capacity and (p,�) shown in Fig. 6a.
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Fig. 7. Maximum Capacity vs. Guard Interval �.

E. Maximum Capacity vs. Guard Interval �

Fig. 6a shows that for a given n and �, there exist maximum
capacities μ̂∗

NNT and μ̂∗
NRT under the NNT and NRT schemes,

respectively. To understand the impact of � on the maxi-
mum capacity of A-MANETs, it is summarized in Fig. 7 how
μ̂∗

NNT and μ̂∗
NRT vary with � in a network of n = 128. Fig. 7

shows that as � increases both μ̂∗
NNT and μ̂∗

NRT monotonously
decrease. This is mainly due to the reason that under the pro-
tocol interference model (1), a larger value of � will lead to
a lower probability that a transmission is successfully received
and thus a smaller capacity. Another observation of Fig. 7 is that
as � increases, the gap between μ̂∗

NNT and μ̂∗
NRT quickly van-

ishes and becomes zero when � is larger than 1. This is because
under the NRT scheme, increasing � will lead to a decrease
in the successful probability of the non-nearest-neighbor trans-
missions and thus a reduction of capacity improvement μ̂∗

NRT −
μ̂∗

NNT. Specifically, as discussed in Remark 1, when � ≥ 1, the
successful probability of non-nearest-neighbor transmissions
becomes 0 and thus no capacity improvement can be obtained
by adopting NRT.

VIII. CONCLUSION

This paper represents the first attempt to derive the closed-
form expressions for the throughput capacity of A-MANETs.
The theoretical framework and results developed in this paper
are expected to be helpful not only for understanding the fun-
damental throughput performance of A-MANETs but also for
initiating the exact capacity evaluation for other MANET sce-
narios. Some interesting findings of this work are: 1) while
the theoretical capacity expressions were developed under the
i.i.d. mobility model, they also serve as a good estimation
to the throughput capacity of the A-MANETs with the more
practical random walk and random direction mobility models;
2) the throughput capacity of the A-MANETs will converge to
a constant as the number of network nodes grows to infinity;
3) for capacity maximization in the A-MANETs, the opti-
mal setting of transmission probability in the Aloha protocol
mainly depends on guard zone parameter and is not sensitive to
the number of network nodes. In this paper, only unicast traf-
fic scenario is investigated, so one possible future direction is
to conduct exact throughput capacity analysis for A-MANETs
with multicast traffic where a source may communicate with
multiple destinations. Another future direction is to extend the
study of this paper to conduct throughout capacity study for
A-MANETs under the more realistic SINR model.

Fig. 8. Illustration of ω(r) represented by the gray area in the figure.

APPENDIX A
NODE DISTANCE ANALYSIS

Following the method of [38], we derive the probability den-
sity function of the distance between the tagged node and its
k-th nearest neighbor.

Lemma 6: For an A-MANET with n mobile nodes, we use
Rk (0 < k ≤ n − 1) to denote the distance between the tagged
node and its k-th nearest neighbor at a time slot, then its
probability density function fRk (r) is determined as

fRk (r) = ω′(r) (ω(r))k−1 (1 − ω(r))n−k−1

B(k, n − k)
, (35)

ω(r) =
{

πr2 0 ≤ r ≤ 1
2

πr2 − 4r2arcsec(2r) + √
4r2 − 1 1

2 < r ≤
√

2
2

,

(36)

ω′(r) is the derivative of ω(r) and B(x, y) = �(x)�(y)
�(x+y)

is the
beta function.

Proof: Let ω(r) denote the intersection between the disc
centered at the tagged node with radius r and the network
arena.4 Since the network arena is a unit square, ω(r) can be
determined by considering the cases 0 ≤ r ≤ 1

2 and 1
2 < r ≤√

2
2 illustrated in Figs. 8 and 8b, respectively. Let Nr denote

the number of nodes (excluding the tagged one) that fall within
ω(r) in the current time slot, we can see that Nr follows the
Binomial distribution with parameters n − 1 and ω(r). Notice
that a node falls within ω(r) iff its distance to the concerned
node is no larger than r , so the cumulative density function
FRk (r) of Rk is given by

FRk (r) = Pr{Rk ≤ r}

= Pr{Nr ≥ k} =
n−1∑
t=k

(
n − 1

t

)
(ω(r))t (1 − ω(r))n−1−t

= Iω(r)(k, n − k), (37)

where Ix (a, b) is the regularized incomplete beta function.
Taking derivative with respect to r in both sides of (37), the
formula (35) then follows. �

APPENDIX B
PROOF OF LEMMA 4

1) Case of 0 < � < 1: Based on the discussion in
Section V-A, E{δi, j } can be evaluated as (21), where (a) can be
derived as follows. At first we have from geometric calculations

4For simplicity, we use ω(r) to denote both the intersection and its area.
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|
(i)
r | = πr2,

|
( j)
(1+�)r | = π(1 + �)2r2,

|
(i, j)
r,� | = r2(1 + �)2 arccos

(
1 + �

2

)
(38)

+ r2 arccos

(
1−(1 + �)2

2

)

− r2(1 + �)

√
1 − (1 + �)2

4
.

Based on (38), (19) and (20), the term E{δi, j |di j = r} in
integration (a) can be evaluated as

E{δi, j |di j = r} =
(

1 − p · π(1 + �)2r2 − |
(i, j)
r,� |

1 − πr2

)n−2

(39)

Based on (39) and Lemma 6, (a) can be evaluated as∫ 1
3+�

0
E
{
δi, j |di j = r

}
fR1(r) dr

= 2π(n − 1)

∫ 1
3+�

0
r
(

1 − (π + p · �(�))r2
)n−2

dr

= π

π + p · �(�)
− π

π + p · �(�)

(
1 − π + p · �(�)

(3 + �)2

)n−1

︸ ︷︷ ︸
(c)

(40)

As discussed in Section V-A, the evaluation of integration
(b) is quite cumbersome. However, we notice that the term
E
{
δi, j |di j = r

}
is monotonically decreasing. From the second

mean value theorem for integration, we know that there exists a

ξ ∈ ( 1
3+�

,
√

2
2 ] such that

0 ≤
∫ √

2
2

1
3+�

E
{
δi, j |di j = r

}
fR1(r) dr

=E

{
δi, j |di j = 1

3 + �

}∫ ξ

1
3+�

fR1(r) dr

≤E

{
δi, j |di j = 1

3 + �

}(
1 − FR1

(
1

3 + �

))
=
(

1 − p · �(�)

(3 + �)2 − π

)n−2 (
1 − π

(3 + �)2

)n−1

︸ ︷︷ ︸
(d)

. (41)

Since (c) and (d) exponentially vanish with n, the lemma
follows by denoting P̂S = πp(1−p)

π+p·�(�)
.

2) Case of � ≥ 1: Under this case E{δi, j } can be evaluated as

E{δi, j } =
∫ 1

2+2�

0
E
{
δi, j |di j = r

}
fR1(r) dr

+
∫ √

2
2

1
2+2�

E
{
δi, j |di j = r

}
fR1(r) dr .

In the first integration, the term E{δi, j |di j = r} is derived as

E{δi, j |di j = r} =
(

1 − p · π(1 + �)2r2 − πr2

1 − πr2

)n−2

. (42)

Hence,∫ 1
2+2�

0
E
{
δi, j |di j = r

}
fR1(r) dr

= 2π(n − 1)

∫ 1
2+2�

0
r
(

1 − (1 + 2�p + �2 p)πr2
)n−2

dr

= 1

1 + 2�p + �2 p

(
1 −

(
1 − (1 + 2�p + �2 p)π

(2 + 2�)2

)n−1)
.

(43)

In the second integration, the evaluation of E{δi, j |di j = r} is
also quite cumbersome. Following an argument similar to that
of (41), we have

0 ≤
∫ √

2
2

1
2+2�

E
{
δi, j |di j = r

}
fR1(r) dr

≤ E

{
δi, j |di j = 1

2 + 2�

}(
1 − FR1

(
1

2 + 2�

))
=
(

1 − p · π(1 + �)2 − π

(2 + 2�)2 − π

)n−2 (
1 − π

(2 + 2�)2

)n−1

.

(44)

Denoting P̂S = p(1−p)

1+2�p+�2 p
, the lemma follows after some

basic calculations.

APPENDIX C
PROOF OF LEMMA 5

Remark 1 indicates that when � ≥ 1, the NNT and NRT
result in the same STP, so it is adequate to prove the case of
0 < � < 1. Without loss of generality, we focus on a node i in
a time slot. We use Rk to denote the distance from node i to
its k-th nearest neighbor, Bi to denote the nearest silent node of
node i , and Bi = k to indicate that Bi is its k-th nearest neigh-
bor. The event that i can successfully conduct a transmission
in the time slot iff the following two events happen simultane-
ously. First, i becomes a transmitter. Second, the condition of
correct reception specified by the protocol interference model
of (1) holds for the transmitter i and its nearest silent node Bi .
We use indicator function δi,Bi = 1 to denote that the condi-
tion in (1) is true for the transmission from i to Bi (δi,Bi = 0,
otherwise). Since above two events are mutually independent,
we can see that STP PS under the NRT scheme is determined
as PS = p Pr{δi,Bi = 1} = pE{δi,Bi }. Conditioning on Bi = k,
we have E{δi,Bi } = ∑n−1

k=1 E{δi,Bi |Bi = k} · Pr{Bi = k},where
Pr{Bi = k} = pk−1(1 − p). Further conditioning on Rk = r
and combining the result of Lemma 6, the E{δi,Bi } can be
evaluated as

E{δi,Bi }

=
n−1∑
k=1

∫ 1
3+�

0
E{δi,k |Bi = k, Rk = r} Pr{Bi = k} fRk (r) dr

+
n−1∑
k=1

∫ √
2

2

1
3+�

E{δi,k |Bi = k, Rk = r} Pr{Bi = k} fRk (r) dr.

(45)
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The term E{δi,k |Bi = k, Rk = r} in the first part of (45) can be
determined as

E{δi,k |Bi = k, Rk = r}

=
(

1 − |
(i, j)
r,� |

πr2

)k−1 n−k−1∑
t=0

(
n − k − 1

t

)
pt (1 − p)n−k−1−t

·
(

1 − π(1 + �)2r2 − |
(i, j)
r,� |

1 − πr2

)t

=
(

1 − |
(i, j)
r,� |

πr2

)k−1(
1 − p · π(1 + �)2r2 − |
(i, j)

r,� |
1 − πr2

)n−1−k

,

(46)

where |
(i, j)
r,� | is given in (38). Hence, the first part of (45) can

be determined as
n−1∑
k=1

∫ 1
3+�

0
E{δi,k |Bi = k, Rk = r} Pr{Bi = k} fRk (r) dr

= (1−p)

∫ 1
3+�

0
2πr

n−1∑
k=1

�(n)

�(k)�(n − k)

(
p
(
πr2−|
(i, j)

r,� |
))k−1

·
(

1−πr2−p
(
π(1+�)2r2−|
(i, j)

r,� |
))n−k−1

dr

= (1−p)

∫ 1
3+�

0
2πr(n − 1)(1 − (1 + 2�p + �2 p)πr2)n−2 dr

= 1 − p

1 + 2�p + �2 p

(
1 −

(
1 − (1 + 2�p + �2 p)π

(3 + �)2

)n−1)
.

(47)

Similar to (41), the second part of (45) is bounded as
n−1∑
k=1

∫ √
2

2

1
3+�

E{δi,k |Bi = k, Rk = r} Pr{Bi = k} fRk (r) dr

≤
n−1∑
k=1

E

{
δi,k |Bi = k, Rk = 1

3 + �

}
Pr{Bi = k}

·
(

1 − FRk

(
1

3 + �

))

≤
n−1∑
k=1

E

{
δi,k |Bi = k, Rk = 1

3 + �

}
Pr{Bi = k}

= (1− p)

(
1− p · �(�)

(3+�)2−π

)n−1 −
(

p − p · �(�)−(1+�)2

π

)n−1

1 − p
(

1 + �(�)

(3+�)2−π
− �(�)−(1+�)2

π

) .

(48)

Denoting P̂S = p(1−p)

1+2�p+�2 p
, the lemma follows after some

basic calculations.

APPENDIX D
APPROXIMATION ERROR BOUNDS

NNT: The approximation error bounds of Corollary 1 are
given by

ε− =

⎧⎪⎨⎪⎩
− πp(1−p)

π+p·�(�)

(
1 − π+p·�(�)

(3+�)2

)n−1
, if 0 < � < 1

− p(1−p)

1+2�p+�2 p

(
1 − (1+2�p+�2 p)π

(2+2�)2

)n−1
, if � ≥ 1

(49)

ε+ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p(1 − p)

[(
1 − p · �(�)

(3+�)2−π

)n−2 (
1 − π

(3+�)2

)n−1

− π
π+p·�(�)

(
1 − π+p·�(�)

(3+�)2

)n−1
]

, if 0 < � < 1

p(1 − p)

[(
1 − p · π(1+�)2−π

(2+2�)2−π

)n−2 (
1 − π

(2+2�)2

)n−1

− 1
1+2�p+�2 p

(
1 − (1+2�p+�2 p)π

(2+2�)2

)n−1
]

, if � ≥ 1

(50)

NRT: The approximation error bounds of Corollary 2 are
given by

ε− = − p(1 − p)

1 + 2�p + �2 p

(
1 − (1 + 2�p + �2 p)π

(3 + �)2

)n−1

,

(51)

ε+ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p(1−p)

1−p
(

1+ �(�)

(3+�)2−π
− �(�)−(1+�)2

π

) [(1 − p�(�)

(3+�)2−π

)n−1

−
(

p − p · �(�)−(1+�)2

π

)n−1
]

− p(1−p)

1+2�p+�2 p

·
(

1 − (1+2�p+�2 p)π

(3+�)2

)n−1
, if 0 < � < 1

p(1 − p)

[(
1 − p · π(1+�)2−π

(2+2�)2−π

)n−2 (
1 − π

(2+2�)2

)n−1

− 1
1+2�p+�2 p

(
1 − (1+2�p+�2 p)π

(2+2�)2

)n−1
]
, if � ≥ 1.

(52)
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