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a b s t r a c t

Outsourced computing is gaining popularity in recent years. However, due to the existence of malicious
workers in the open outsourced environment, offering high accuracy computing services is critical and
challenging. A practical solution for this class of problems is to replicate outsourced tasks and compare the
replicated task results, or to verify task results by the outsourcer herself. However, sincemost outsourced
computing services are not free, the portion of tasks to be replicated or verified is restricted by the
outsourcer’s budget. In this paper, we propose Integrity Assurance Outsourced Computing (IAOC) system,
which employs probabilistic task replication, probabilistic task verification and credit management
techniques to offer a high accuracy guarantee for the generalized outsourced computing jobs. Based on
IAOC system, we perform theoretical analysis and model the behaviors of IAOC system and the attacker
as a two-player zero sum game. We propose two algorithms, Interactive Gradient Descent (IGD) algorithm
and Tiered Interactive Gradient Descent (TIGD) algorithm that can find the optimal parameter settings
under user’s accuracy requirement, without or with considering user’s budget requirement. We prove
that the parameter setting generated by IGD/TIGDalgorithm formaNashEquilibrium, and also suggests an
accuracy lower bound. Our experiments show that even in themost severe situation, where themalicious
workers dominate the outsourced computing environment, our algorithm is able to find the parameter
settings satisfying user’s budget and accuracy requirement.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Outsourced computing is gaining popularity in recent years.
The essential reason behind such a booming technical trend is the
challenge of ever increasing computation scale and difficulty.
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The increase of computing scale is substantiated by the
computationswhose input data sizes are significantly large, known
as ‘‘big data’’. The solution to such a challenge is to adopt parallel
computation paradigm, such as MapReduce [1]. The parallel
computation framework is usually running as a cluster, which
consists of multiple worker nodes. During computation, the input
is split into multiple chunks, each of which is assigned to a worker
node and processed as a task. Such a framework could easily
scale up by adding more computation nodes to the cluster if the
input size increases. However, since the customer does not want
or cannot afford of investing a computation cluster, she usually
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outsources her computation to a computation service provider
(e.g., cloud vendor1 or grid computing network [2,3]), onwhich she
can create a cluster swiftly and on demand, while saving the costs
of infrastructure set up and maintenance.

The challenge of computation difficulty is substantiated by the
fact that computers cannot replace humans on tasks that require
human intelligent, such as recognizing images, finding bushiness
information on the Internet, or solving Captchas. In most cases,
such a class of computation is not difficult for human being. Yet
they are tedious and require a lot of human effort. Crowdsourcing
such as Mechanical Turk2 offers an option to address such
a challenge. In this computing paradigm, the crowdsourcing
company categorizes similar tasks into batches, and assigns tasks
to humans on the internet to solve. The crowdsourcing company
receives the task results from the workers, verifies the correctness
of their results and pays workers based on the correctness of their
task results.

Although outsourced computations can have a variable of
different formats, they share the following similar characteristics.

(a) The computation job is usually significantly large, so that the
job owner cannot process it locally. Therefore, such jobs usually
are split into multiple tasks, and computed by computation
service providers.

(b) The task number of a job is usually proportional to the input
data size and is usually large. When the input data size
increases, the job can scale up by increasing the task number.

(c) The outsourced computation is usually not free. The compu-
tation service provider usually charges the user based on the
amount of computation performed (correctly).

However, most outsourced computing paradigms share the
same vulnerability: Since the tasks are outsourced to untrusted
workers, if some workers are malicious, they could tamper the task
result, and therefore affect the job result correctness.

In this paper, we extend the existing solution in [4] and [5]
to a generalized class of outsourced computing jobs, propose In-
tegrity Assurance Outsourced Computing (IAOC for short) system.
IAOC employs probabilistic task replication, probabilistic task ver-
ification and credit management techniques to offer high result
accuracy assurance. We perform theoretical analysis on IAOC sys-
tem and model the accuracy of outsourced computing based on
the system parameters. We find that the outsourced computing
accuracy is determined together by IAOC system and the partici-
pant malicious workers. Hence, wemodel the outsourced comput-
ing as a two-player zero sum game, where the IAOC system and
themaliciousworkers can adjust their behaviors tomaximize their
benefits. We propose a novel algorithm called Interactive Gradient
Descent algorithm (IGD for short) to search for the optimal behav-
iors (i.e., parameter setting) for IAOC system that satisfies user’s
accuracy requirement. We prove that the algorithm generated op-
timal behavior forms Nash Equilibrium. In other words, either the
IAOC and the attacker do not have incentive to deviate from the
algorithm suggested behavior. Therefore, the algorithm predicted
accuracy is the highest lower bound.

Based on IGDalgorithm,wepropose a Tiered Interactive Gradient
Descent (TIGD) algorithm, that also generates optimal behavior for
IAOC system and the malicious worker, while considering user’s
outsource budget from multiple aspects (see Section 5.2). The
generated optimal behavior satisfies user’s budget requirement,
meanwhile, guarantees the highest lower bound of the job
accuracy.

1 Amazon Web Services. http://aws.amazon.com.
2 https://www.mturk.com.
We perform a set of experiments based on TIGD algorithm.
The result shows that the algorithm is effective in finding optimal
parameter setting even in the most severe situation where all the
workers in the outsourced environment are malicious.

The rest of this paper is organized as follows. Section 2 de-
fines the generalized outsourced computation system and the
system assumptions. Section 3 presents the integrity assur-
ance outsourced computing (IAOC) system on the generalized
outsourced computing system. Section 4 builds a mathematical
model of IAOC system to measure the accuracy of the job and per-
forms a set of simulation based on this model. Section 5 presents
the IGD and TIGD algorithm. Section 6 describes and analyzes the
experiment result. Section 7 discusses related work, and Section 8
concludes the paper.

2. System definition and assumption

2.1. System definition

In this section,wedefine the generalized outsourced computing
system. The entity who provides the outsourced computing
service is called a provider. The entity who outsources its
computation to the provider is called a user. A provider maintains
a distributed system to perform the computation. The system
consists of a master and many workers. The master controls the
entire computation and responsible for assigning computation
to workers. Each worker is the actual entity to perform the
computation. The unit of computations outsourced by the user
is a job. Since the outsourced job is usually significantly large, a
job is usually split into multiple (maybe a significant number of)
tasks, which are assigned to different workers to compute. As a
reward, the provider charges the user according to the amount of
computation she has performed for that user. The user can verify
the task results returned by the provider. If the user finds that
the task results are incorrect, she can reject the provider’s results,
but she has to show the proof to the provider that the results are
incorrect. Therefore, the user only pays the provider the amount of
computation that she accepts.

In some scenarios, the master accepts jobs from the user
and hires workers to compute those jobs. For example, in
crowdsourcing computing, the crowdsourcing company accepts
jobs from the user, assigns tasks to workers on the Internet and
pays workers on behalf of the user. The crowdsourcing company is
trusted. Therefore, the crowdsourcing company can verify the task
results for the user and determine whether to accept or reject the
worker submitted results.

2.2. System assumption

In the outsourced computing system, we assume the master
is trusted, but workers can be malicious due to the open
environment. The malicious workers’ goal is to insert incorrect
results to the job without been detected. For example, in the
crowdsourcing computing scenario, the worker can return trivial
but incorrect answers to the user in order to earnmoremoney.We
assume the malicious workers are highly intelligent. For example,
they can exchange the task information and coordinate with each
other to cheat at the optimal time. For instance, if two tasks that
compute the same input are assigned to two malicious workers
simultaneously, they can return the same erroneous results (i.e., to
collude) so that simply comparing the task result results cannot
detect the error. We call such malicious workers collusiveworkers.

We assume that the task number in a job is big enough and all
task results are equivalently important to the overall job result.
In other words, if a small number of task results are incorrect
and undetected, it will not undermine the overall job accuracy
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significantly.We argue that this is a reasonable assumption. Firstly,
one primary reason for the computation outsource is that the
computation task number is too large. Otherwise, the user would
perform the computation locally. Secondly, highly parallel is a
necessary factor to address the challenge of scaling-up input data.
In such a highly parallel computations, task results are usually
equally important to the overall job result. However, we have to
point out that for some jobs, the importance of task results are
severely skewed. Ourmethod is not suitable for such a class of jobs.

3. Integrity assurance system design

We expend the MapReduce integrity assurance framework
proposed in [4] to the generalized outsourced computing system
andpropose the Integrity AssuranceOutsourced Computing (IAOC)
system. The system work flow is shown in Fig. 1.

In IAOC algorithm, each worker will return the task result (or
the hash code of the result) to the master when she finishes a
task. Themaster compares or verifies the returned results to detect
malicious workers. During the job execution, IAOC performs a
two-layer result checking technique on each task. In the first layer
check, the master firstly assigns the task to a randomly chosen
workerW1 (step 1) and asks theworker to return its task result (or
hash code of the result) (step 2). Then, the master probabilistically
replicates this task (step 3) and assigns the replicated task to
another randomly chosen workers W2 (step 4). The probability
that a task being replicated is called the replication probability,
marked as r . Notice that the master replicates a task and assigns
the replicated task only when its original task result is returned
to the master. We call this technique as hold-and-test. Such a
sequence is to reduce the malicious workers’ collusion chance.
When the original and replicated task results are returned, the
master compares the two results to decide if a malicious worker
exists (step 5). If the task results are different, themasterwill verify
the task by re-executing the task itself and determine themalicious
worker (step 6). If the task results are the same, the task has
passed the first layer check and themaster will perform the second
layer check on it. The second layer check is used to detect the
collusive worker. In the second layer check, the master verifies the
consistent task result probabilistically (step 7). The probability of
verifying a pair of consistent results is called verification probability,
marked as v.

Since in the two-layer check, the task replication and the result
verification are performed probabilistically, the un-replicated/un-
verified task result can be incorrect and undetected. In order
to guarantee a high probability of task result correctness, the
master maintains a credit for each worker and only accepts a
worker’s task results in a batch when the worker’s credit achieves
certain threshold. Before that, the master stores the worker’s task
results in that worker’s buffer temporarily. For example, when
a task executed by worker W1 passes a two-layer check, the
master increments W1’s credit (step 9) and stores the original
task result in W1’s buffer. When the credit of a worker achieves
certain threshold, theworker becomes trusted temporarily and the
buffered results generated by this worker is accepted in a batch by
themaster (step 10). The buffer is therefore emptied. The threshold
is called the credit threshold, marked as T . After the results are
accepted, this worker becomes untrusted again, and its credit is
reset to 0. If aworker fails at any two-layer check, themaster shows
that worker the proof of the check results (step 11) and rejects the
task results stored in that worker’s buffer. The master then moves
it to a black list (step 12) and will never assign tasks to it. For the
tasks that are rejected by themaster, themaster drops those results
returned by that worker and reschedules those tasks (step 13).

In the IAOC system, the master is trusted. Therefore the master
checks the correctness of the task results and pays the workers
on behalf of the user. The master pays each worker based on the
number of tasks whose results are accepted by the master. The
master does not pay for a task if its result is rejected by the master.
With such a policy, even if tasks can be rescheduled due to the
detection of malicious workers, the master only pays each original
task oncewhen its result is accepted. (Themaster also needs to pay
for the replicated task if the first-layer check is performed.) The
master does not have to pay for the rejected tasks. Therefore task
rescheduling will not increase the master’s financial burden. For
example, in the crowdsourcing computing case, the crowdsourcing
company only pays the workers for the tasks whose results are
accepted. The company does not pay for those rejected tasks.

Note that in a real business scenario, the master usually pays
theworkers on behalf of the user. Therefore, themasterwill charge
the user the same amount of money it pays the workers. Since the
master only has to pay the worker for the tasks that it accepted,
the cost of this part is proportional to the number of original tasks
and their replication tasks if available. In other words, the cost is
proportional to the job size and the replication probability r . In
addition, the master also has to charge the user for the cost of job
management, e.g., the cost of the verification tasks performed in
the second-layer check. Since each original task will be verified
at most once, the cost for the verification is proportional to the
verification probability v. Therefore, the cost for a user to outsource
a job to IAOC is proportional to the number of original tasks, the
replication probability r and the verification probability v.

We perform the theoretical analysis in Section 4 and propose
algorithms to select the optimal system parameter values for T , r
and v to achieve the highest job accuracy lower bound, without or
with considering user’s budget restriction.

4. Systemmodel and simulation

4.1. System model

In this section, we build a mathematical model to evaluate
the job accuracy of the IAOC algorithm. Since we assume the
outsourced computing is highly parallel and each task result is
equally contributed to the overall job result, the job accuracy is
proportional to the portion of correct task results. Therefore, we
define the job error rate as the fraction of incorrect task results out
of the total task results accepted in one job, marked as J .

Before creating a model to calculate J , we need to model
malicious workers’ behavior.

We define the fraction of malicious workers in the outsourced
environment as the malicious worker fraction, marked as m.
We assume m to be a constant value. That is, even though
some malicious workers are detected and black-listed during job
execution, m decreases very little either because the total worker
number is large, or because the existence of sybil attack [6].

Since it is easier to detect the non-collusive worker than the
collusive worker, we consider the worst situation, that is we
assume all the malicious workers in the outsourced environment
are collusive workers. Due to the existence of hold-and-test
technique, our following analysis shows that the best strategy for
the collusive worker is to cheat randomly in a hope of not being
found.

Remember that the malicious worker’s goal is to inject as many
incorrect task results as possible without being detected. We are
now performing adversary analysis to analyze malicious workers’
strategy under the IAOC system.
The adversary analysis
Suppose a task is assigned to a malicious worker, let us sayW , this
task can be an original task or a replicated task. We analyze W ’s
strategy on the two cases.
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Fig. 1. Integrity assurance outsourced computing.
(1) If the task is an original task,W does not knowwhether the task
will be replicated. Also, if the task will be replicated, W also
does not know which worker will be assigned to execute the
replicated task.W is therefore in a dilemma to decide whether
to cheat. If she decides not to cheat, she loses a chance of
inserting incorrect results to the job. If she decides to cheat,
she can be detected if the task is later replicated and assigned
to a benign worker. Even if the replicated task is assigned to a
collusive worker later,W can still be detected if the task result
is verified in the second-layer check. Therefore, in this case, in
order to inject error results, W can only cheat randomly in a
hope of not being detected.

(2) If the task is a replicated task,W can first query othermalicious
workers to see if the corresponding original task was executed
by a malicious worker.
(a) If a malicious worker, let us say W ′, replies that she has

executed the original task,W will return themaster a result
consistent to whatW ′ returned.

(b) If nomalicious worker responds the inquiry,W knows that
the original task was executed by a benignworker. ThusW
will honestly execute the task and return the correct result
to the master.

In fact, W can only determine whether the current task is a
replicated task in case 2(a) (by sending inquiry to other malicious
workers). She cannot distinguish case 1 and case 2(b). Therefore,
forW , it is only safe to cheat in case 2(a). In other cases, in order to
inject error results, she can only cheat randomly in a hope of not
being detected.

Based on the above analysis, the strategy for amaliciousworker
to perform is as follows.
The collusive worker’s strategy
When a collusive worker, W , receives a task, she will first test
whether it is a replicated task: she assumes this task to be a
replicated task and query other malicious workers to see if anyone
has executed its corresponding original task.

(1) If another malicious worker, W ′, replies. W knows that the
current task is a replicated task and the original task was
executed by W ′. W then returns the master a task result
consistent to whatW ′ returns.

(2) If no malicious worker responds the inquiry, W knows that
either the current task is an original task, or it is a replicated
task whose corresponding original task was executed by a
benign worker. But she cannot distinguish the two situations.
Therefore, W randomly determines whether to cheat and
returns a correct or incorrect result to the master according to
the decision.
SinceW ’s cheat behavior in case 2 is randomized,wemodel this
behavior as a probabilistic event. We define the probability that a
collusive worker cheats as the cheat probability, marked as c .

We model the IAOC system with the replication probability r ,
verification probability v, and credit threshold T , as presented in
Section 3. We summarize the system parameters and evaluation
metrics in Table 1. We perform probability analysis and model the
job error rate, shown in Theorem 4.1.

Theorem 4.1. Assuming that the task assignment is performed
independently by the master and uniformly distributed across all
workers on the IAOC environment, the probability for a malicious
worker to survive after executing n original tasks is

Sn = (1− cr + crm(1− v))n. (1)

The job error rate of IAOC is

J = m(c(1− r)+ crm(1− v))(1− cr + crm(1− v))T−1. (2)

The proof of Theorem 4.1 is shown in the Appendix

4.2. System simulation

In order to obtain an intuition on how the system parameters
affect the job error rate J , we perform a set of simulations based on
(2). The simulation results are shown in Fig. 2.

Fig. 2(a) shows that when other parameters (i.e., c , r , v and m)
are fixed, increasing credit threshold T will reduce job error rate J .
When T is small, increasing T can reduce J quickly. Yet as T grows,
the effect of reducing the job error rate is weakened. For example,
when m is 1.0, increasing T from 0 to 200 can reduce J from 0.1 to
0.04. However, when T is further increased from 200 to 400, J is
only reduced from 0.04 to 0.015. The figure also shows that when
T is fixed, a higher value of m can incur a higher value of job error
rate.

Fig. 2(b) and (c) shows that when other parameters (i.e., T , c ,
m and v (or r)) are fixed, increasing r (or v) can also help reducing
job error rate. Similarly, J reduces faster when r (or v) is small than
when r (or v) is large. The two figures also show that a higher value
ofm incurs a higher job error ratewhen other parameter values are
fixed.

Fig. 2(d) shows how the job error rate changes with different
cheat probability c . From the malicious worker’s perspective, in
order to achieve the highest job error rate, the malicious worker
has tomake a trade-off and choose an optimal value for c. If c is too
high, themaliciousworker can be easily detected. If the c is too low,
very few incorrect task results will be inserted. As Fig. 2(d) shows,
when T is 100, r is 0.3, v is 0.15 and m is 1.0, setting c close to 0.2



Y. Wang et al. / Future Generation Computer Systems 55 (2016) 87–100 91
Table 1
Integrity assurance outsourced computing modeling parameters.

Note Item Definition

m malicious worker fraction The fraction of malicious workers in the outsourced environment.
c cheat probability The probability that a malicious worker decides to cheat if she finds she is not in case 2 in the Collusive Worker’s Strategy.
r replication probability The probability that IAOC system replicates a task in the first-layer check.
v verification probability The probability that IAOC system verifies a task in the second-layer check.
T credit threshold The credit a worker has to achieve to make his task results accepted by the master.
J job error rate The fraction of incorrect task results out of the total task results accepted in one job.
Fig. 2. Simulation results of IAOC algorithm under different parameters.
will achieve the highest job error rate (less than 0.08). Similarly,
when other parameters are fixed, increasing m will incur a higher
job error rate.

In fact, it is easy to prove the following monotonic property for
job error rate (2) by analyzing the signs of the partial derivatives of
(2) on T , r , v, m and c , respectively:

Theorem 4.2. When other parameters are fixed, the job error rate J
will
(a) monotonically decrease if the credit threshold T increases.
(b) monotonically decrease if the replication probability r increases.
(c) monotonically decrease if the verification probability v increases.
(d) monotonically increase if the malicious worker fraction m

increases.
(e) first increase and then decrease when the cheat probability c

increases.
We also study the monotonicity of the job error rate (2) when
the attacker always chooses the best cheat probability.

Theorem 4.3. When other parameters are fixed and the attacker
always chooses the optimal cheat probability tomaximize the job error
rate, the job error rate J will
(a) monotonically decrease if the credit threshold T increases.
(b) monotonically decrease if the replication probability r increases.
(c) monotonically decrease if the verification probability v increases.

Proof. Since J is a convex function on variable c , the attacker can
search for the optimal value of c to maximize the job error rate by
solving the equation ∂ J

∂c = 0. By solving the equation, the attacker
has

c =
1

rT (1−m(1− v))
. (3)
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When the attacker sets c as 1
rT (1−m(1−v))

, it will make the IAOC
system achieve the highest job error rate. By substituting c with
(3) on (2), we have

J = m
(T − 1)T−1

T T


1

r(1−m+mv)
− 1


. (4)

According to (4), J is monotonically decreasing, when either T > 1
is increasing, or r is increasing, or v is increasing.

Theorem 4.2 suggests that the IAOC system and the attacker
together determine the job error rate.

From the IAOC system’s perspective, the job error rate will be
decreased if she

(a) Increases the credit threshold T , or
(b) Increases the replication probability r , or
(c) Increases the verification probability v.

From the Attacker’s perspective, the job error ratewill be increased
if she

(a) Increases the malicious worker fractionm, or
(b) Sets the cheat probability c to the optimal value to achieve a

maximum job error rate.

The system forms a two-player zero-sum game. In the next
section, we propose two algorithms to find system parameter
settings that suggest optimal parameter setting that satisfies the
user’s accuracy requirement, without or with considering user’s
budget requirement.

5. Finding optimal parameter setting

In this section, we introduce two algorithms to find the opti-
mal system parameter setting. We first introduces the Interactive
Gradient Descent Algorithm (IGD algorithm for short), which auto-
matically searches the parameter setting of T that can guarantee
user’s accuracy requirement no matter how does the attacker sets
her cheat probability c .

Based on IGD algorithm, we describe Tiered Interactive Gradient
Descent (TIGD) Algorithm, which automatically searches the
parameter settings that make the job error rate J as close to
the user’s accuracy requirement as possible, meanwhile satisfying
user’s budge requirements.

5.1. Interactive Gradient Descent Algorithm

In this section, we propose Interactive Gradient Descent Algo-
rithm, an algorithm that can search for the optimal value of T to sat-
isfy user’s accuracy requirement. In this algorithm, we assume the
values of r and v are preset by the user and are fixed. We present
the Tiered Interactive Gradient Descent algorithm in Section 5.2 to
remove this assumption.

According to Theorem 4.2, from the IAOC system’s perspective,
setting T as large as possible surely can minimize the job error
rate. However, setting T as a significantly large number of tasks
requires the accumulation of a significantly large credit, which is
not practical in the real situation. On the other hand, the effect of
decreasing the job error rate is weakening when T grows large.
Therefore, we assume the accuracy is acceptable if IAOC system
can achieve a reasonably small job error rate. We define such a job
error rate as the acceptable job error rate, marked as J0. Usually, J0 is
a very small number that is greater than 0 but very close to 0. Our
goal is to find a value T that makes the job error rate close enough
to J0 whenmalicious workers choose the optimal cheat probability
to maximize the job error rate.

In order to achieve our goal, we analyze the behavior of both
IAOC and the attacker. Since the IAOC and the attacker form a two-
player zero-sum game, the two players have conflicting interests.
For the attacker, it will maximize the job error rate J (i.e., to make J
as close to 1.0 as possible). For IAOC, it will make the job error rate
close to the acceptable job error rate J0 as much as possible. We
formalize the twoplayers’ interests by defining their loss functions.
We show that finding a parameter setting thatminimizes a player’s
loss function is equivalent to achieving that player’s goal. In other
words, for each player, in order to achieve its goal, it will search for
a parameter setting that minimizes its loss function.

For the IAOC system, we define its loss function as follows.

LIAOC = (J − J0)2. (5)

By substituting J with (2), we have

LIAOC (T , r, v,m, c, J0) =

m


c(1− r)+ crm(1− v)


·


1− cr + crm(1− v)

T−1
− J0

2

.

The squire operation in (5) ensures that as J approaches J0,
the loss function becomes smaller. In other words, if IAOC can
minimize its loss function, she can make J as close to J0 as possible,
which achieves its goal. Since we assume the value of r and v are
fixed, tominimize the loss, IAOC needs to search for an appropriate
value for T .

On the other hand, when IAOC chooses a value for T , r and v,
the attacker will need to search for appropriate values for m and c
to maximize the job error rate, and thereby to achieve its goal. For
the value ofm, the attacker only needs to set it as large as possible,
since a larger value ofmwill incur a higher job error rate. Therefore,
we assume m to be the highest fraction of malicious workers the
attacker can inject to the public cloud. In the worst case that the
malicious worker dominates the public cloud, we assumem as 1.0.
For the value of c , the attacker needs to find a proper value between
0 and 1 tomaximize the job error rate (according to property (e) in
Theorem 4.2). We define the attacker’s loss function as follows:

LATT = (1− J)2. (6)

By substituting J with (2), we have

LATT (T , r, v,m, c) =

1−m


c(1− r)+ crm(1− v)


·


1− cr + crm(1− v)

T−1
2

.

The square operation in (6) ensures that as J approaches 1.0,
the loss function becomes smaller. In other words, if the attacker
can minimize its loss function, she can make J as large as possible,
which achieves her goal. In order tominimize the loss function, the
attacker has to find a suitable value for c .

Both IAOC and the attacker need to minimize their own
utilities. However, the value of the loss function for each player
is determined by the parameters controlled not only by itself
but also by its opponent. We therefore propose the Interactive
Gradient Descent algorithm that can help IAOC search for a
parameter setting, which makes both parties have no incentive
to deviate. In other words, the output of the algorithm achieves
Nash Equilibrium in the two-player game. The algorithm is shown
in Algorithm 1. The intuition of the algorithm is to simulate
the two-player game, in which two players take turns to adjust
the parameter it controls to minimize its loss function value.
Theorem 5.1 shows that after limited iterations, the algorithmwill
terminate. Theorem 5.2 shows that the algorithm result ensures
the game achieves Nash Equilibrium. Corollary 5.2.1 shows that
the algorithm returned job error rate will be close enough to the
acceptable job error rate J0.
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Algorithm 1 Interactive_Gradient_Descent (m, r, v, J0, Tinit , cinit )
1: T ← Tinit
2: c ← cinit
3: JIAOC ← 0
4: JATT ← 1
5: while |JIAOC − JATT | < δ do
6: result ← minimizeLiaoc(LIAOC , T , r, v,m, c, J0)
7: JIAOC ← result.getNewJ()
8: T ← result.getNewT ()
9: result ← minimizeLatt(LATT , T , r, v,m, c)

10: JATT ← result.getNewJ()
11: c ← result.getNewC()
12: end while
13: Topt ← T
14: copt ← c
15: Jopt ← JATT
16: return Topt , copt , Jopt

As shown in Algorithm 1, the IGD algorithm takes accepted job
error rate J0,m, r , v, the initial value of T (Tinit) and the initial value
of c (cinit) as arguments and returns a suggested value of T (Topt),
which guarantees that the job error rate does not exceed Jopt , no
matter what cheat probability the attacker chooses (in fact, the
optimal value of c the attacker can choose to maximum the job
error rate is the suggested copt ). Note that in this algorithm, m, r
and v are fixed values, which do not change during the algorithm
execution.

The algorithm performs multiple iterations until converge. In
each iteration, it first searches for the value T that minimizes the
loss function LIAOC on variable T , with the current value c fixed
(in the function minimizeLiaoc in line 6 of Algorithm 1). This step
simulates the situation that when the attacker sets a value for c ,
IAOC searches for the optimal value of T that makes J close to J0
as much as possible. After this step, the corresponding value of J
is recorded in JIAOC , and the value of T is updated with the new
value (lines 7 and8). After that, it invokes the functionminimizeLatt
(line 9) to search for a value of c that minimizes the attacker loss
function LATT . This step simulates the situation that when IAOC sets
a value for T , the attacker searches for the optimal value of c that
makes J as high as possible (i.e., as close to 1 as possible). After
this step, the corresponding value of J is recorded in JATT , and the
value of c is updated with the new value (lines 10 and 11). After
each iteration, the algorithm checks if the difference between JIAOC
and JATT are reduced to a small value (i.e., the variable δ). If true,
the iteration terminates and the latest value of T , c and JATT are
returned; otherwise, the algorithm proceeds to the next iteration.

Since LIAOC is differentiable on variable T , we can perform gra-
dient descent on variable T in function minimizeLiaoc to minimize
LIAOC . Since LATT is differentiable on variable c , we can perform gra-
dient descent on variable c in function minimizeLatt to minimize
LATT . Gradient descent algorithm can search for the local minimum
value for a given function. Since the two loss functions are both
convex functions, whose local minimum value is also the global
minimum value, the return of the gradient descent algorithm will
always be the optimal parameters that minimize the loss. The two
function implementations are standard gradient descent proce-
dure. The pseudo code of minimizeLiaoc is shown in Algorithm 2.
The algorithm adjusts the value of T in the negative direction of the
loss function gradient in multiple iterations until the loss function
value converges. The same operation is performed on the variable
c for the loss function LATT in the functionminimizeLatt . Due to the
space limitation, we skip the pseudo code here. The accuracy and
the efficiency of the IGD algorithm depends on three parameters:
the step size γ and the convergence threshold ϵ in Algorithm 2
and the δ in Algorithm 1. If the step size γ is too small, the conver-
gence of gradient descent algorithm will be very slow. If the step
size γ is too large, the convergence will be initially very fast, but
the algorithm will oscillate about the optimum later. The conver-
gence threshold ϵ in Algorithm 2 and δ in Algorithm 1 should be
set as small as possible. However, setting the values too small will
make the convergence very slow. We chose reasonable values for
the above parameters based on experimental results. We will dis-
cuss the choice of all the parameters in Section 6.

Algorithm 2minimizeLiaoc(LIAOC , Tinit , rinit , vinit , minit , cinit , J0)
1: lossold ←+∞
2: lossnew ← LIAOC (Tinit , rinit , vinit ,minit , cinit , J0)
3: T ← Tinit
4: while |lossnew − lossold| > ϵ do
5: T ← T − γ ∗

∂LIAOC
∂T

6: lossold ← lossnew
7: lossnew ← LIAOC (T , rinit , vinit ,minit , cinit , J0)
8: end while
9: return T

The following theorems show that, Algorithm 1 will converge
after a limited number of iterations; the return parameter values
guarantee Nash Equilibrium and the Jopt returned from the
algorithm is close enough to J0.

Lemma 5.0.1. For any two consecutive iterations in Algorithm 1,
suppose the algorithm generates JIAOC i and JATT i in an iteration, and
generates JIAOC i+1 and JATT i+1 in the next iteration. We have

0 < JIAOCi+1 < JATTi+1 < JATTi . (7)

Proof. It is trivially to see that 0 < JIAOCi+1 < JATTi+1 . In (5),
when J0 is small enough, LIAOC (T ) is monotonically decreasing with
the increase of T . Therefore, in any two consecutive iterations in
Algorithm 1, namely iteration i and iteration i + 1. We mark the
resulting JIAOC , JATT , T and c in iteration i as JIAOCi , JATTi , Ti and ci. In
order for the iteration i+1 to receive aminimum job error rate after
calling minimizeLiaoc at line 6 of Algorithm 1, T will be increased.
In other words, Ti+1 > Ti. Since J is monotonically decreasing with
the increase of T (according to Theorem 4.2), which makes the
minimum of LATT monotonically increase with the increase of T ,
we have Min(LATTi) < Min(LATTi+1). Thus JATTi+1 < JATTi .

Theorem 5.1. Algorithm 1 will terminate after a limited number of
iterations.

Proof. According to Lemma 5.0.1, JATT is monotonically decreasing
in each iteration. We are proving that after limited number of
iterations, |JIAOC − JATT | will be no larger than an arbitrarily small
positive number δ. By contradiction, we assume |JIAOC − JATT | is
always larger than a small value δ, since JATT is monotonically
decreasing, suppose after k iterations, JATT decreases to JATTk < δ,
since JIAOCk < JATTk and |JIAOCk−JATTk | < δ, we have JIAOCk < 0, which
contradicts with Lemma 5.0.1. Therefore, setting the threshold in
Algorithm 1 as δ will make the algorithm terminate. Since δ is an
arbitrarily small positive number, setting threshold as any positive
value will guarantee the termination of Algorithm 1.

We show that the resulting algorithm is a Nash equilibrium.

Theorem 5.2. The Algorithm 1 returns a set of parameter setting that
form Nash Equilibrium.

Proof. Firstly, since the loss functions LIAOC and LATT are convex
functions. They both have no more than one minimum value.
Therefore, the local minimum values generated by the gradient
descent algorithm are global minimum values.
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Suppose the IGD algorithm returns Jopt , copt and Topt . According
to the definition of the algorithm, Topt ensures that the IAOC
system’s loss function LIAOC achieves the global minimum value,
when the attacker sets the cheat probability as copt . Also, copt
ensures that the attacker’s loss function LATT achieves the global
minimum value, when IAOC system sets the credit threshold as
Topt . Therefore, for IAOC system, changing T from Topt to any other
value T ′ will increase LIAOC , if the attacker keeps the setting of c as
copt . The IAOC system therefore has no incentive to deviate from
Topt . Similarly, for the attacker, changing c from copt to any other
value c ′ will increase LATT , if IAOC system keeps the setting of T as
Topt . The attacker therefore has no incentive to deviate from copt .
Since both players have no incentive to deviate from IGD returned
parameter values, Nash Equilibrium is achieved.

Corollary 5.2.1. The IGD algorithm (Algorithm 1) returned job error
rate Jopt satisfies user’s accuracy requirement. In other words, Jopt is
close enough to J0.

Proof. Suppose Algorithm 1 terminates when the value of JIAOC is
close enough to JATT at a certain iteration, i, we have |JIAOCi− JATTi | <
δ. According to Theorem 4.2, J is monotonically decreasing when T
increases. It is also easy to prove that limT→∞ J = 0. Therefore, for
any J0 that is close to 0, there exists a T that makes J = J0. In other
words, the minimum of LIAOC is 0. A gradient descent algorithm
performed in Algorithm 2 can find a local minimum of LIAOC , which
is a global minimum due to the fact that LIAOC is a convex function.
Therefore the invocation of minimizeLiaoc at line 6 of Algorithm
1 returns an JIAOCi , which makes |JIAOCi − J0| < ξ , where ξ is
an arbitrary small positive number. Since Jopt = JATTi , we have
|Jopt − J0| < ξ + δ. Since ξ and δ are both arbitrary small values,
Jopt is close enough to J0.

Since the IGD algorithm returned job error rate is close enough
to the accepted job error rate and the attacker cannot further
increase the job error rate, the parameter setting returned from the
IGD algorithm is the optimal setting. By setting the credit threshold
T with the IGD returned value Topt , IAOC can achieve the lowest job
error rate upper bound Jopt .

5.2. Tiered interactive gradient descent algorithm

Normally, the user wishes to set J0 as a very small value
(e.g., 0.001), and assumes m is large (e.g., 1.0). Our experiment in
Section 6 shows that under such a setting, the IGD algorithm will
return a large value of T . For example, according to the last row of
Table 3, when m is 1.0, J0 is 0.001, the IGD algorithm returns a T
value as large as 27,796. It is because the effect of decreasing job
error rate is weakening when T increases. (see Fig. 2(a)). However,
we observe that increasing the value of v or r can effectively
decreasing job error rate, especially when the value of v or r is
small (see Fig. 2(b) and (c)). Therefore, in order to achieve a small
job error rate, instead of unlimitedly increasing T , increasing v or
r would be a good option.

On the other hand, outsourced computing is not free. Users
usually have to consider budget restrictions when outsourcing
jobs. Budget restrictions include the following aspects:

(a) The total number of tasks in a job. Even if increasing T can help
decreasing job error rate, the IAOC system requires the total
number of tasks no less than the value of T . Hence the credit
threshold should be no greater than the total task number. It
should have a limit. We call the maximum value of T that IAOC
can set as the maximum credit threshold, marked as Tmax.

(b) The number of replicated tasks. Since the computing service
provider usually charges users according to the used resource,
assuming each task takes the similar amount of resource, the
extra financial cost is therefore proportional to the number
of replicated tasks. Hence the replication probability r should
have an upper limit. We call the maximum value of r that IAOC
can set as the maximum replication probability, marked as rmax.

(c) The number of verified tasks. Verifying task requires users
to consume their own computing resources, which may not
be free (e.g., it requires users to invest on their own IT
infrastructure) or time consuming (e.g., it needs to download
data from computing service providers). Hence the verification
probability v should also be bound with a limitation. We mark
the maximum value of v that IAOC can set as the maximum
verification probability, marked as vmax.

Under this situation,we propose the Tiered InteractiveGradient
Descent (TIGD) algorithm, which ensures that the IAOC’s budget is
within the user’s setting (Tmax, rmax and vmax), meanwhile returning
a job error rate as close to J0 as possible.

The TIGD algorithm is based on the InteractiveGradientDescent
algorithm. It performs three sets of IGD algorithms to adjust
the value of T , r , and v, respectively. The sequence of the three
interactive gradient descents is determined by the importance of
the three budget aspects. The IGD on T and c is firstly performed
because T can be increased ‘‘for free’’. As long as T does not
exceed Tmax, the user do not have to pay extra to the computing
service provider. The IGD on r and c is performed before the
IGD on v and c. It is because the task replication is performed
on the public cloud, and the task verification is performed on
the private cloud. Increasing task verification probability means
putting more computing workload on the private cloud, which
can increase IT infrastructure investment and involve more cross-
cloud communication (due to the fact that the DFS is deployed on
the public cloud). However, increasing replication probability only
increases the workload on the public cloud, which is economically
practical.

The TIGD algorithm is shown in Algorithm 3. The algorithm
accepts the following parameters: the user evaluation on m (m0),
accepted job error rate (J0); the initial replication probability and
the maximum replication probability (rinit and rmax); the initial
verification probability and the maximum verification probability
(vinit and vmax); the initial credit threshold and the maximum
credit threshold (Tinit and Tmax); and the initial value of the cheat
probability (cinit ). The algorithm returns a suggested parameter
setting, Topt , ropt , vopt , which guarantees that the job error rate
does not exceed Jopt , no matter what cheat probability the attacker
chooses (in fact, the optimal value of c the attacker can choose to
maximize the job error rate is copt ).

The algorithm performs three sets of iterations. Each set of
iteration performs a round of IGD algorithm. However, in the IGD
algorithm in Algorithm 1, the interactive gradient descents are
performed on variables T and c . The three IGDs in Algorithm 3 are
performed on variables T and c , r and c , and v and c , sequentially.
Another difference is that in the TIGD algorithm, restricted gradient
descent algorithms are performed instead of standard gradient
descent algorithms on variables T , r , and v (in lines 8, 21, 35 in
Algorithm 3). However, the standard gradient descents are still
performed on variable c because we assume the attacker does not
have any budget or restriction concerns. The restricted gradient
descent on T is shown in Algorithm 4. In this algorithm, if the
variable value achieves its upper bound before the loss function
converges, the algorithm will terminate. For instance, when the
restricted gradient descent is performed on variable T in Algorithm
4, the gradient descent algorithm terminates either when the loss
function converges (in line 4), or when T achieves Tmax (in line 6),
whichever is earlier. The restricted gradient descent on r and v
are similar to Algorithm 4, except that the variable to perform the
gradient descent on r or v. We skip the pseudo code due to the
space limit.
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Algorithm 3 Tiered_Interactive_Gradient_Descent( m0, J0, rinit ,
rmax, vinit , vmax, Tinit , Tmax, cinit )
1: T ← Tinit
2: c ← cinit
3: r ← rinit
4: v← vinit
5: JIAOC ← 0
6: JATT ← 1
7: while |JIAOC − JATT | < δ do
8: gdResult ← restrictedMinimizeLiaocOnT (
9: LIAOC , T , r, v,m, c, J0, Tmax)

10: JIAOC ← gdResult.getNewJ()
11: T ← gdResult.getNewT ()
12: gdResult ← minimizeLatt(
13: LATT , T , r, v,m, c)
14: JATT ← gdResult.getNewJ()
15: c ← gdResult.getNewC()
16: end while
17: if |JATT − J0| < δ then
18: JIAOC ← 0
19: JATT ← 1
20: while |JIAOC − JATT | < δ do
21: gdResult ← restrictedMinimizeLiaocOnR(
22: LIAOC , T , r, v,m, c, J0, rmax)
23: JIAOC ← gdResult.getNewJ()
24: r ← gdResult.getNewR()
25: gdResult ← minimizeLatt(
26: LATT , c, T , r, v,m)
27: JATT ← gdResult.getNewJ()
28: c ← gdResult.getNewC()
29: end while
30: end if
31: if |JATT − J0| < δ then
32: JIAOC ← 0
33: JATT ← 1
34: while |JIAOC − JATT | < δ do
35: gdResult ← restrictedMinimizeLiaocOnV (
36: LIAOC , T , r, v,m, c, J0, vmax)
37: JIAOC ← gdResult.getNewJ()
38: v← gdResult.getNewV ()
39: gdResult ← minimizeLatt(
40: LATT , c, T , r, v,m)
41: JATT ← gdResult.getNewJ()
42: c ← gdResult.getNewC()
43: end while
44: end if
45: Topt ← T
46: ropt ← r
47: vopt ← v
48: copt ← c
49: Jopt ← JATT
50: return Topt , ropt , vopt , copt , Jopt

The Algorithm 3 first performs an interactive gradient descent
on T and c (lines 7–16). This iteration will try to make J as close
to J0 as possible, meanwhile guaranteeing T not exceeding Tmax. If
the generated job error rate is not close enough to J0, the algorithm
will perform another interactive gradient descent on r and c (lines
20–29). In this iteration, T is set as a fixed value generated from the
last IGD. This iteration will make J further closer to J0, meanwhile
guaranteeing r not exceeding rmax. If the resulting J is still not close
enough to J0, a final round of interactive gradient descent will be
performed on v and c (lines 34–43). The resulting Jopt in line 49 is
the final job error rate that is closest to J0. Meanwhile, the resulting
Algorithm 4 restrictedMinimizeLiaocOnT(LIAOC , Tinit , rinit , vinit ,
minit , cinit , J0, Tmax)
1: lossold ←+∞
2: lossnew ← LIAOC (Tinit , rinit , vinit ,minit , cinit , J0)
3: T ← Tinit
4: while |lossnew − lossold| > ϵ do
5: Tnew ← T − γ ∗

∂LIAOC
∂T

6: if Tnew > Tmax then
7: break
8: end if
9: T ← Tnew

10: lossold ← lossnew
11: lossnew ← LIAOC (T , rinit , vinit ,minit , cinit , J0)
12: end while
13: return T

Topt , ropt and vopt will not exceed the user budget setting Tmax, rmax
and vmax, respectively.

Note that the TIGD algorithm does not guarantee that the
resulting job error rate Jopt is arbitrarily close to J0. If the values of
Tmax, rmax and vmax are too low, the resulting Jopt may not be close
enough to J0. In this situation, increasing Tmax, rmax or vmax will be
helpful in reducing the difference between Jopt and J0. However, we
can prove that Jopt is the lowest job error rate that IAOC can achieve
under the current budget setting.

The following theorem proves that, the TIGD algorithm in
Algorithm3will terminate after a limited number of iterations; the
parameters suggested from the algorithm form Nash Equilibrium
under the budget restriction; the job error rate Jopt returned
from the algorithm is the lowest upper bound under the budget
restriction.

Theorem 5.3. Algorithm 3 will terminate after a limited number of
iterations.

Proof. In Theorem 5.1, we have proved that the interactive
gradient descent in Algorithm 1 will converge. With the similar
technique, we can prove that the IGD on r and c and IGD on v and
c will converge.

The difference between the TIGD algorithm and the IGD
algorithm is that the former uses restricted gradient descents
in each set of iterations. Since the restricted gradient descent
only adds one more termination condition for the current set
of iteration, it only makes the current iteration terminate before
the loss function value converges. Hence, it will not hinder the
convergence at any round of IGD in the TIGD algorithm. Therefore,
Algorithm 3 will terminate.

Theorem 5.4. The TIGD algorithm (Algorithm 3) returned parame-
ters, Topt , ropt , vopt and copt form Nash Equilibrium under the budget
restrictions.

Proof. The TIGD algorithm (Algorithm 3) can terminate under
three conditions:

(a) After the first IGD, the resulting job error rate is close enough
to J0 (i.e., the predicate |JATT − J0| < δ in line 17 returns false);

(b) After the first IGD, the predicate in line 15 returns true. Also,
after the second IGD, the resulting job error rate is close enough
to J0 (i.e., the predicate |JATT − J0| < δ in line 31 returns false);

(c) The predicates in lines 17 and 31 both return true and the third
IGD is performed.

From the attacker perspective, in each case, the resulting value
of c in the last IGD will be the optimal value, which makes
the attacker’s loss function achieve minimum. Therefore, the
attacker has no incentive to deviate from this value. From IAOC’s
perspective, it will end up with two possibilities:
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Table 2
Parameter settings in TIGD experiments.

Item Explanation Value

J0 The acceptable job error rate. 1E–3
γT The step size in gradient descent on variable T . (The γ value in the implementation of restrictedMinimizeLiaocOnT in Algorithm

3.)
100

γ The step size in gradient descent/restricted gradient descent on variable r , v and c. (The γ value in the implementation of
restrictedMinimizeLiaocOnR, restrictedMinimizeLiaocOnV andminimizeLatt in Algorithm 3.)

5E–5

ϵ The converge threshold in each gradient descent/restricted gradient descent (the ϵ value in the implementation of each
minimization function in Algorithm 3).

1E–15

δ The converge threshold in the TIGD algorithm. (The variable δ in Algorithm 3.) 1E–5
Tinit The initial value of T 10
rinit The initial value of r 0.1
vinit The initial value of v 0.1
cinit The initial value of c 0.1
(1) The resulting Jopt is close enough to J0. The possible terminate
condition can be either a, b, or c.

(2) The resulting Jopt is not close enough to J0. The possible
terminate condition can only be c.

For possibility (1), the resulting loss function LIAOC already
achieves its minimum value. IAOC has no incentive to deviate from
the parameters suggested from the TIGD algorithms. For possibility
(2), the loss function LIAOC does not achieve its minimum value.
Increasing the value of T , r or v can further reduce the job error rate
and thereby reducing LIAOC . However, in this case, the algorithm
returned Topt , ropt , and vopt already achieve theirmaximumbounds,
Tmax, rmax and vmax, respectively. Further increasing those values
will violate the budget requirement. Therefore, IAOC still has no
incentive to deviate from Topt , ropt or vopt .

Corollary 5.4.1. The resulting value Jopt returned from Algorithm 3
either is close enough to the accepted job error rate J0 or is the closest
value to J0 under budget restrictions.

Proof. The algorithm will terminate with two possibilities:

(1) The returned Jopt is close enough to J0. That is, |Jopt − J0| < δ.
(2) The returned Jopt is not close enough to J0. That is, |Jopt − J0| >
= δ.

For case (1), the returned Jopt is close enough to J0. For case (2), the
algorithm returned Topt , ropt and vopt will achieve the maximum
upper bounds Tmax, rmax and vmax. By contradiction, if there exists
another optimal job error rate J ′opt < Jopt , according to Theorem4.3,
J ′opt ’s corresponding parameters T ′, r ′ and v′ will satisfy at least
one of the following conditions: T ′opt > Topt , r ′opt > ropt , v′opt >
vopt , which will violate the budget restriction. Therefore, Jopt is the
value closest to the acceptable job error rate J0 under the budget
restriction in case (2).

The TIGD algorithm can find parameter setting that either
guarantees the resulting job error rate close enough to J0, or
guarantees the resulting job error rate to be the lowest upper
boundwithin the budget restriction. Therefore, the TIGD algorithm
returned parameter setting is an optimal setting. By setting system
parameters as Topt , ropt and vopt , IAOC can achieve the lowest job
error rate upper bound.

6. Experiment

The execution of IAOC system consists of two phases: the pa-
rameter searching phase using the TIGD/IGD algorithm described
in Section 3, followed by the actual job computation phase per-
forming the two-layer checking technique described in Section 5.
Since the two-layer checking technique is generalized based on
the MapReduce integrity assurance framework proposed in [4],
we refer readers to [4] for the experimental results of the actual
Table 3
Experiment result.

m Tmax rmax vmax Topt ropt vopt Jopt (%)

1.0 10000 0.3 0.3 10,000 0.3 0.111 0.107
1.0 1000 1.0 1.0 1,000 1.0 0.231 0.122
1.0 1000 0.3 0.3 1,000 0.3 0.3 0.372
1.0 100 1.0 1.0 100 1.0 0.752 0.124
1.0 +∞

a 0.1 0.1 27,796 0.1 0.1 0.114
a This setting is equivalent to executing IGD algorithm.

job computation phase. In this section, we mainly study the effect
of parameter searching phase. Specifically, we tested the effect of
TIGD/IGD algorithm with different accuracy and budget require-
ments. Our experiments mainly focus on the TIGD algorithm. We
treat the IGD algorithm as a special case of TIGD, where Tmax is un-
bounded, vmax = vinit and rmax = rinit . Since IAOC system is a gener-
alized framework that is suitable for most outsourced computing
scenario, our experiments are not targeting to a specific applica-
tion. It is applicable to most outsourced computing scenario.

In this set of experiments, we evaluated the most severe
situation by assuming m as 1.0. We changed the budget
requirements, including the max credit threshold (Tmax), the max
replication probability (rmax) and the max verification probability
(vmax), and observed the TIGD suggested parameters and their
corresponding optimal job error rates. In the experiments, we set
other parameters as fixed values listed in Table 2.

The experimental results are shown in Table 3. Table 3 shows
that in each systemsetting, the TIGDalgorithmcan find the optimal
job error rate under the user’s budget requirements. For instance,
when Tmax was 10,000, rmax and vmax were 0.3, the TIGD algorithm
can find an optimal job error rate as 0.107%, with Topt as 10,000, ropt
as 0.3 and vopt as 0.111. When Tmax was 1000, rmax and vmax were
1.0, the TIGD algorithm can find an optimal job error rate as 0.122%,
with Topt as 1000, ropt as 1.0 and vopt as 0.231.When Tmax was 1000,
rmax and vmax were 0.3, the optimal value Jopt that the algorithm can
find is 0.372%. Although such a job error rate was high, it was the
best value that IAOC can achieve under user budget requirements.
In order to further reduce the job error rate, the user had to either
increase Tmax, rmax or vmax. The fourth row in the table indicates that
when Tmax was small (such as 100), the TIGD algorithm can still
achieve a small value of Jopt (0.124%), if ropt and vopt were set to a
large value.

The configuration of the last row of the table was equivalent
to execution of an IGD algorithm. It sets the value of rmax and
vmax the same as their initial values (rinit = 0.1 and vinit = 0.1,
respectively). Tmax was set to infinity, which means that T can
be increased unboundedly. This experiment was used to compare
with the TIGD algorithm. The first row of this table had the same
initial system configure and generated the same job error rate. We
notice that, in order to achieve the optimal job error rate 0.114%,
Topt has to be set to 27,796 in the IGD algorithm. Compared to
the first row of Table 3, which achieved the similar job error rate,
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Fig. 3. Tiered interactive gradient descent execution detail.

Fig. 4. Interactive gradient descent execution detail.

the resulting Topt that was generated by IGD algorithm was 178%
higher than the one generated by TIGD algorithm. The result shows
that in order to achieve a small job error rate, raising rmax and
vmax slightly (to 0.3) can significantly reduce the value of the credit
threshold Topt .

To give readers an intuitive understanding of the working
procedure of TIGD and IGD algorithm, we recorded the job error
rate change during the algorithm executions. Fig. 3 shows the
execution details of TIGD when setting parameters as the first
row of Table 3. The three disjoint curves reflect three iterations
of interactive gradient descent algorithm. In the first iteration of
interactive gradient descent, IAOC and the attacker take turn to
adjust T and c to minimize their loss function values. We observe
that after three rounds of interactions, IAOC achieves the upper
bound of T (10,000). The attacker finds the optimal value of c that
maximize its loss function when IAOC set T to 10,000. (Notice that
even though in the figure the second and third round appears to
be the same value of T and c , their values are actually different
with a higher number precision.) The second curve shows the
second iteration of interactive gradient descent, where IAOC and
the attacker adjust r and c respectively to minimize their loss
function values. Notice that adjusting r has a significant effect in
helping reducing job error rate. After the first round of interactive
gradient descent, the job error rate is 0.364%. After the second
round of interactive gradient descent, the job error rate drops
to 0.119%. In the last iteration of interactive gradient descent,
IAOC and the attacker adjust the value of v and c respectively to
minimize their loss function values. After this iteration, the job
error rate finally drops to 0.107%. The algorithm returns optimal
system parameters: Topt as 10,000, ropt as 0.3 and vopt as 0.111.

Fig. 4 shows the execution details of IGD when setting
parameters as the last row of Table 3. We observe that after four
rounds of interactive gradient descent, the algorithm can also
achieve low job error rate (0.114%). However, it requires a higher
value of credit threshold (i.e. Topt = 27,796).
7. Related work

Task scheduling with budget restriction. Most of solutions
toward budget restricted task scheduling falls into one of two
directions: formal and heuristics. In formal method, the system is
usually modeled as a linear programming problem [7–10], which
needs to achieve a certain goal (e.g., maximize the execution
performance) within a set of constraints (e.g., job execution cost or
deadlines). By solving linear programming equation, the solution
suggests a set of parameters, which achieves the goal, while
satisfying the constraints. In heuristic method [11,12], the solution
is to break the scheduling plan into multiple steps, which are
usually sorted by priority. During the scheduling plan making, the
solution finds optimal solutions step by step with greedy strategy.
The solution ensures the requirement with a high priority is firstly
satisfied.

Most budget restricted task scheduling solutions assume tasks
are executed in a trusted environment, and thus does not consider
the existence ofmalicious workers. In our work, we treat the result
integrity as the first-class citizen, offer a solution that can achieve
high accuracy even if the malicious worker is able to choose the
best strategy to sabotage the computation.

Integrity assurance of outsourced computing. Researchers
have studied such a problem for decades and proposed a wide
range of solutions.

Secure co-processor [13] provides a hardware-based solution
toward the trusted outsourced computing. The secure hardware
chip Trusted PlatformModules (TPMs) installed on computers can
verify the integrity of the worker’s software stack ranging from
the bios configuration at the booting procedure to the application
that executes the outsourced task. By verifying the computing
system completely complies the software stack specification, such
a technology can guarantee the correctness of task result [14].
However, the solution requires the configuration of the worker’s
machine to be exactly identical to the TPM’s expectation. Such a
strict requirement is only suitable for the dedicated worker, which
is used for certain computation task. But it is not suitable for the
voluntary computing or P2P computing [2,3]. Further more, such a
solution is useless on crowdsourcing based outsourced computing.

Another class of solution is using zero-knowledge proof
[15–17]. It requires interaction between the master (verifier) the
worker (prover). If the worker can submit proof to the master and
themaster verifies the proof, the master believes the assigned task
is faithfully executed and accept the result. Gennaro et al. [18]
propose a zero-knowledge protocol that requires no interaction.
Although such a class of solutions is promising, they are only
efficient on certain special applications, therefore are not suitable
for generalized outsourced computing.

A class of practical solutions toward such a problem falls to
the direction of task replication and verification. Our solution is
following this direction.

The byzantine fault tolerance algorithm [19–25] leverages
redundancy to address such a problem. However, the high
dependency of such a solution is built upon the cost of high
redundancy, which makes it impractical in outsourced computing
environment. Theoretical study in [26] shows that to guarantee the
storage (or computation) integrity, it takes at least 3f + 1 replicas,
where f is the number of faulty (malicious) storage nodes (or
computation workers). For the outsourced computing, that means
the number of replicas for each task is at least four (including
the original task). Our method, which leverages probabilistic task
replication and probabilistic task verification, can reduce most
tasks’ replica numbers to at most two (some tasks might be
replicated more than once due to the task reschedule). In addition,
the byzantine fault tolerance algorithm works in the environment
where malicious worker fraction is less than 1/3, i.e., m < 1/3,
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whereas our solution canwork even ifmaliciousworkers dominate
the environment. The limitation of our solution is that we can
only guarantee a high portion of tasks to be computed correctly,
i.e., J < 1.0, where the byzantine fault tolerance algorithm can
guarantee complete integrity.

Other researchers propose solutions with partial redundancy
and partial verification. Golle et al. [27] propose to duplicate
computation tasks in distributed computation environment, and
make theoretical study on the replication probabilistic distribution
that forces the malicious worker to cooperate, rather than defect.
However, similar to the byzantine fault tolerance algorithm, such
a scheme requires a small or even a negligible fraction of malicious
workers in the outsourced environment. Zhao et al. [28] propose
to insert indistinguishable quizzes to the task package and assign
quizzes along with regular tasks to workers. Themaster knows the
results of those quizzes, and thus is able to verify the quiz answers
quickly and detect malicious workers. Their simulation result
shows that by combining reputation system, quiz approach gains
a higher accuracy and a lower overhead than the replication-based
approach. However, suggested by their simulation, the reputation
accumulation is a long-term process so that in order to accumulate
a reliable reputation, it takes as many as 105 tasks to execute for a
worker. In addition, this solution does not consider the intelligent
malicious worker who behaves honestly at the beginning to earn a
reliable reputation, and cheats afterwards.

Some researchers propose further improvement solutions to
the original task replication and verification idea, e.g., [29–31].
While others apply the idea on specific applications. For exam-
ple, [32] propose a variant of task verification solution targeting on
one-way hash function computation. [33,34,4] and [5] are target-
ing onMapReduce applications. [4] and [5] combine the task repli-
cation, task verification and reputation system techniques, propose
and implement an integrity assuranceMapReduce system on a hy-
brid cloud architecture.

This paper extends the solution in [4,5] to the generalized
outsourced computing problem. In addition, we perform further
theoretical analysis, and propose two algorithms that can find
the optimal system parameter setting within user’s accuracy
requirement without and with considering user’s budget.

8. Conclusion

Protecting the correctness of outsourced computing is a critical
and challenging problem. In this paper, we extended the existing
solution in [4] and [5] to propose Integrity Assurance Outsourced
Computing (IAOC) system, which offers high accuracy guarantee
for generalized outsourced computing. Based on the IAOC system,
we built a model to compute the job error rate, a metric
of job result accuracy. Based on the theoretical analysis, we
proposed the Interactive Gradient Descent (IGD) algorithm and
the Tiered Interactive Gradient Descent (TIGD) algorithm that
can search for the optimal parameter setting to satisfy user’s
accuracy requirement, without or with considering user’s budget
requirements. We proved that the IGD and TIGD algorithm will
find the optimal parameters that guarantee the job error rate to
be the lowest upper bound. Our experiments showed that even in
the most severe situation, where the malicious nodes completely
dominate the outsourced computing environment, IGD and TIGD
algorithm still can find the parameter setting that satisfies user’s
budget and accuracy requirements.
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Appendix. Proof of Theorem 4.1

Proof. Sn, the probability of a malicious worker to survive after
executing n original tasks is the probability summation of all
permutations on n independent events. Each event should fall into
one of the below three cases:

(1) Theworker does not cheat. Theprobability in this case is (1−c).
(2) The worker cheats, but the task is not replicated. The

probability in this case is c(1− r).
(3) The worker cheats, and the task is replicated. However, the

other worker executing the replicated task can collude. When
the consistent results pass the first-layer check, the task result
is not verified. The probability in this case is crm(1− v).

By summing up the probability of difference permutations of above
three cases on n independent events, we have

Sn =
n

i=0

n−i
j=0

n
i

 
n− i
j


(1− c)i(c(1− r))j(crm(1− v))n−i−j


.

By applying multinomial theorem, we have

Sn = (1− cr + crm(1− v))n.

Weare nowderiving the value of J . Suppose the credit threshold
is T , the probability that the master accept exactly k out of T incor-
rect task results consists of (T −k) events that the worker does not
cheat, and k events that the worker cheats but undetected. That is

∆k =

k
i=0


T

T − k


k
i


(1− c)T−k(c(1− r))i(crm(1− v))k−i


.

The expected number of tasks returning incorrect results in a
batch (i.e. in T tasks) is

E =
T

k=0

(k ·∆k)

=

T
k=0


k ·

k
i=0


T

T − k

 
k
i


× (1− c)T−k(c(1− r))i(crm(1− v))k−i


.

The error rate of T tasks is therefore

e =
E
T

.

Since the task assignment is uniformly distributed on all work-
ers, and the malicious worker fraction m stays constant. We have
the error rate in a job (i.e., job error rate):

J = m · e+ (1−m) · 0
= me

=
m
T
·

T
k=0


k ·

k
i=0


T

T − k

 
k
i


× (1− c)T−k(c(1− r))i(crm(1− v))k−i


.

We are now simplifying the equation J . By reorganizing equa-
tion J , we have

J =
m
T
·

T
k=0


k ·


T

T − k


· (1− c)T−k

·

k
i=0


k
i


(c(1− r))i(crm(1− v))k−i


.
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By applying multinomial theorem, to the last summation term, we
have

J =
m
T
·

T
k=0


k ·


T

T − k


· (1− c)T−k

·


c(1− r)+ crm(1− v)

k


.

For simplicity, we define

A = 1− c

B = crm(1− v).

By replacing kwith T − l, we have

J =
m
T
·

T
l=0


(T − l) ·


T
l


· Al
· BT−l


.

Expanding


T
l


, we have

J = m ·
T

l=0

(T − 1)!
l! · (T − l− 1)!

· Al
· BT−l

= m ·
T

l=0


T − 1

l


· Al
· BT−l

= m ·
T−1

l=0


T − 1

l


· Al
· BT−l

+


T − 1
T


· AT


.

By binomial definition, we have


T−1
T


=

(T−1)!
T !·(−1)! . By factorial

definition n! = (n + 1)!/(n + 1), we have 0! = 1!/1 = 1 and
(−1)! = 0!/0 = 1/0. By replacing


T−1
T


with factorial form and

replacing (−1)!with 1/0, we have

J = m ·
T−1

l=0


T − 1

l


· Al
· BT−l

+
(T − 1)!
T ! · (−1)!

· AT


= m ·
T−1

l=0


T − 1

l


· Al
· BT−l

+
1

T · (1/0)
· AT


= m ·


B · (A+ B)T−1 + 0


= m


c(1− r)+ crm(1− v)


1− cr + crm(1− v)

T−1
.
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