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Abstract—A sketch is a probabilistic data structure that is used
to record frequencies of items in a multi-set. Sketches have been
applied in a variety of fields, such as data stream processing,
natural language processing, distributed data sets etc. In this
paper, we propose a new sketch, called Slim-Fat (SF) sketch,
which has a much smaller memory footprint for query while
supporting updates. The key idea behind our proposed SF-sketch
is to maintain two separate sketches: a small sketch called Slim-
subsketch and a large sketch called Fat-subsketch. The Slim-
subsketch enables fast and accurate querying. The Fat-subsketch
is used to assist the insertion and deletion from Slim-subsketch.
We implemented and evaluated SF-sketch along with several prior
sketches and compared them side by side. Our experimental
results show that SF-sketch significantly outperforms the most
commonly used CM-sketch in terms of accuracy. The full version
is provided at arXiv.org [12].

I. INTRODUCTION

A sketch is a probabilistic data structure that is used to
record frequencies of distinct items in a multi-set. Due to
their small memory footprints, high accuracy, and fast speeds
of queries, insertions, and deletions, several types of sketches
are being extensively used in data stream processing [1], [2],
[3], [4]. Sketches are also being applied in other fields, such
as sparse approximation in compressed sensing [5], network
anomaly detection [6], and natural language processing [7],
and more [14], [15]. This paper focuses on the design of a
new sketch that not only has a much smaller memory footprint
compared to the existing sketches, but is also more accurate
while achieving the same query speed as the best prior sketch.

Charikar et al. proposed the Count sketch (C-sketch) [8].
C-sketch experiences two types of errors: over-estimation error,
where the result of a query is a value larger than the true value,
and under-estimation error, where the result of a query is a
value smaller than the true value. Improving on the C-sketch,
Cormode and Muthukrishnan proposed the Count-min (CM)
sketch [9], which does not suffer from the under-estimation
error, but only from the over-estimation error. In a further
enhancement, Cormode et al. proposed the conservative update
(CU) sketch [10], which improves the accuracy at the cost of
not supporting item deletions, i.e., once the information about
an item is inserted into the CU-sketch, it cannot be removed
from the sketch without affecting the information of the other
items in the sketch. CML-sketch [11] further improves the
accuracy at the cost of suffering both over-estimation and
under-estimation errors. As CM-sketch supports deletions and
does not have under-estimation error, it is still the most popular
sketch. However, we find that CM sketch is not compressed.
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The design goal of this paper is to save the space and improve
the accuracy of CM-sketch while keeping its advantages.

In this paper, we present a new sketch, called the Slim-
Fat (SF) sketch, which achieves significantly higher accuracy
compared to prior art while supporting deletions and achieving
the same query speed as the widely used CM-sketch. The
key idea behind our proposed SF-sketch is to maintain two
separate sketches: one is for query called Slim-subsketch and
another is for update called Fat-subsketch. Slim-subsketch has
significantly fewer counters compared to the Fat-subsketch.
The motivation behind the two hierarchy architecture is to
separate query and update. For example, in a distributing
system for stream processing, update can be done locally on
every machine, and the result should be sent to other parts of
the system. Therefore, we store the a big sketch locally with all
information and send a small Sketch with only the information
for query in order to reduce communication overhead. In
designing our SF-sketch, we start with a bare bones version
of the sketch and make improvements step by step to arrive at
its final design.

We use the SF1-sketch to present the slim-fat architecture.
We introduce the SF2-sketch, which maintains an additional s-
ketch called Deletion-subsketch, to support deletion. To reduce
the memory usage, the SF3-sketch gets rid of the Deletion-
subsketch by making the hash functions of the slim sketch
and the fat sketch corresponding. Furthermore, for the SF4-
sketch, we take advantage of locality so that the number of
memory access to the Fat-sketch is minimal. Finally, we reduce
over-estimation error by giving the slim sketch a smaller upper
bound, and we reach the final version of the SF-sketch.

Key Contributions: 1) We propose a new sketch, namely
the SF-sketch, which has higher accuracy compared to the
prior art while supporting deletions and keeping the query
speed unchanged. 2) We implemented C-sketch, CM-sketch,
CU-sketch, CML-sketch and SF-sketch on GPU platforms to
evaluate and compare the performance of all these sketches.
Experimental results show that SF-sketch outperforms CM-
sketch by up to 33.1 times in terms of average relative error.

II. THE SLIM-FAT SKETCH

Next, we will present five different versions of SF-sketch,
which we name SF1-sketch through SF4-sketch, and finally
SFF-sketch, which is our final design. Each version addresses
the limitations of its predecessor version.

In our slim-fat architecture (shown in Figure 1), there
is a set of arrays with fewer counters per array called a
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Slim-subsketch, and a set of arrays with comparatively more
counters per array called a Fat-subsketch. When inserting or
deleting an item, we first update the Fat-subsketch, and then
update the Slim-subsketch based on the observations we make
from the Fat-subsketch. The key insight at work behind our
proposed scheme is that, when inserting an item, if the value
of any counter in the Slim-subsketch to which the incoming
item maps is already greater than the number of times that item
has already been inserted, then incrementing that counter only
degrades the accuracy during the query operation. Therefore,
such a counter should not be incremented. The Fat-subsketch
enables us to determine whether such a counter in the Slim-
subsketch is already greater than the number of times the item
has already appeared.

A. SF1: Optimizing Accuracy Using One DRAM Subsketch

As shown in Figure 1, SF1-sketch consists of d arrays in
both Slim-subsketch and Fat-subsketch. The Fat-subsketch is
exactly a standard CM-sketch with many more counters than
the Slim-subsketch. We represent the ith array in the Slim-
subsketch with Ai and in the Fat-subsketch with Bi. Each array
in the Slim-subsketch consists of w buckets while each array
in the Fat-subsketch consists of w′ buckets, where w′ > w.
Furthermore, each bucket in both Slim and Fat-subsketches
contains one counter. We represent the counter in the j th

bucket of the ith array in the Slim-subsketch with Ai[j], where
1 � i � d and 1 � j � w. Similarly, we represent the counter
in the kth bucket of the ith array in the Fat-subsketch with
Bi[k], where 1 � i � d and 1 � k � w′. Each array Ai

is associated with a uniformly distributed independent hash
function hi(.), where the output of hi(.) lies in the range
[1, w]. Similarly, each array Bi is associated with a uniformly
distributed independent hash function gi(.), where the output
of gi(.) lies in the range [1, w′]. The structure of the SF1-sketch
is shown in Figure 1.

Slim   Sketch Fat   Sketch
1      2                w 1      2                w                                 w

A1

Ad

B1

Bd

e

Stored in SRAM for fast query Stored in DRAM to optimize accuracy

Fig. 1. The Slim-Fat sketch architecture

Insertion: When inserting an item, the SF1-sketch first inserts
it into the Fat-subsketch, and based on the observations made
from the Fat-subsketch, increments appropriate counters in the
Slim-subsketch. To insert an item e into the Fat-subsketch, we
first compute the d hash functions g1(e), g2(e), . . . , gd(e) and
increment the d counters B1[g1(e)], B2[g2(e)], . . . , Bd[gd(e)]
by 1. Then, we estimate its current frequency of e by find-
ing the minimum value among all counters we just incre-
mented and represent it with Bmin

e . To insert the item e
into the Slim-subsketch, we compute the d hash functions
and identify the smallest counter(s) among the d counters
A1[h1(e)], A2[h2(e)], . . . , Ad[hd(e)]. If the smallest counter(s)
are not smaller than Bmin

e , insertion operation ends. Other-
wise, we increment the smallest counter(s) by 1. Note that if
mindi=1 Ai[hi(e)] � Bmin

e , we do nothing.

Query: When querying the frequency of item e, the SF1-
sketch computes the d hash functions h1(e), h2(e), . . . , hd(e),
and returns the value of the smallest counter among
A1[h1(e)], A2[h2(e)], . . . , Ad[hd(e)] as the result of the query.
Note that the query is entirely answered from the Slim-
subsketch. The query method remains the same in the latter
versions, so we do not repeat it.

Advantages and Limitations: The key advantage of the SF1-
sketch is that it maintains a very small Slim-subsketch for very
accurate and fast query. Unfortunately, the SF1-sketch does not
support deletions from the Slim-subsketch. We address this
problem in the next version of SF-sketch.

B. SF2: Supporting Deletion Using the Deletion-subsketch

To support deletions, in addition to the Slim- and Fat-
subsketch, the SF2-sketch maintains another sketch called the
Deletion-subsketch, which is represented by C. Unlike Fat-
subsketch, all the parameters (d, w, hi(.)) of the Deletion-
subsketch are same with those of the Slim-subsketch. The
Deletion-subsketch helps in deciding which counters to decre-
ment in the Slim-subsketch when deleting an item.

Insertion: Apart from updating Slim- and Fat-
subsketches, the SF2-sketch also insert the item e into
the Deletion-subsketch by incrementing the d counters
C1[h1(e)], C2[h2(e)], . . . , Cd[hd(e)] by 1.

Deletion: To delete an item e from the SF2-sketch, we first
delete it from the Fat-subsketch by decrementing the d counters
B1[g1(e)], B2[g2(e)], . . . , Bd[gd(e)] by 1 and then delete it
from the Deletion-subsketch by decrementing the d counters
C1[h1(e)], C2[h2(e)], . . . , Cd[hd(e)] by 1. Finally, we delete
it from the Slim-subsketch. We leverage the fact that each
counter in the Deletion-subsketch is always less than or equal
to the real value of the item. Because when inserting an item,
even if a counter in the Slim-subsketch to which the incoming
item maps to is not incremented, the corresponding counter
in the Deletion-subsketch is always incremented. As a result,
the Deletion-subsketch draws an upper bound of the Slim-
subsketch. To delete the item e from the Slim-subsketch, for
each i ∈ [1, d], we compare Ai[hi(e)] with Ci[hi(e)] and
decrement Ai[hi(e)] by 1 when Ai[hi(e)] > Ci[hi(e)].

Advantages and Limitations: The SF2-sketch is advantageous
over the SF1-sketch because it supports deletions. However, it
is not efficient in terms of memory usage and update speed
because it has to maintain an additional sketch, the Deletion-
subsketch. We address this problem in SF3-sketch.

C. SF3: Supporting Deletion Using One DRAM Subsketch

In SF3-sketch, we get rid of the separate Deletion-
subsketch, and modify the Fat-subsketch so that, in addition to
insertions, it can assist deletions in the Slim-subsketch. In the
Fat-subsketch of SF3-sketch, the number of buckets in each
array is given by w′ = z × w, where z is a positive integer.
In other words, the Fat-subsketch consumes z times as much
memory as the Slim-subsketch. In addition, the hash functions
of the Slim-subsketch, hi(.), are derived from the hash func-

tions of the Fat-subsketch, gi(.), by hi(.) =
(
gi(.)−1

)
%w+1

Note that calculating the hash function hi(.) from the hash
function gi(.) using the equation above essentially associates
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each counter Ai[j] in the Slim-subsketch with z counters
Bi[j], Bi[j + w], Bi[j + 2w], . . . , Bi[j + (z − 1)w] in the
Fat-subsketch. Every time a counter in the Slim-subsketch is
incremented, it is certain that one of its associated z counters
in the Fat-subsketch is also incremented. This further means
that the value of a counter in the Slim-subsketch will always
be less than or equal to the sum of values of all its associated
counters in the Fat-subsketch.

Insertion: When inserting an item e, the SF3-sketch using the
same rule with SF1- and SF2-sketches, except that the hash
functions of the Slim-sketch is changed.

Deletion: To delete an item e from the SF3-sketch, we first
delete it from the Fat-subsketch by decrementing the d counters
B1[g1(e)], B2[g2(e)], . . . , Bd[gd(e)] by 1. Then we delete e
from the Slim-subsketch. For each i ∈ [1, d], we compare

Ai[hi(e)] with
∑z−1

m=0 Bi[hi(e) + (m × w)] and decrement

Ai[hi(e)] by 1 if Ai[hi(e)] >
∑z−1

m=0 Bi[hi(e) + (m × w)].
Here we leverage the fact that the value of a counter in the
Slim-subsketch should be less than or equal to the sum of
values of all its associated counters in the Fat-subsketch.

Advantages and Limitations: The advantage of SF3-sketch over
the SF2-sketch is that it does not have to maintain a separate
Deletion-subsketch. Unfortunately, it is not efficient in terms
of deletion speed. Since to check the sum, it needs d × z
memory accesses to add up the counters in each array of
the Fat-subsketch. In the next version of our SF-sketch, we
address this limitation while keeping the advantages of all three
previous versions of the SF-sketch.

D. SF4: Improving Deletion Speed

As shown in Figure 2, in the Fat-subsketch of the SF4-
sketch, we have d arrays with w′ = w buckets each, and each
bucket now contains z counters instead of one counter. We
represent the kth counter in the jth bucket of the ith array in the
Fat-subsketch with Bi[j][k]. Each array Bi in the Fat-subsketch
is associated with two uniformly distributed independent hash
functions: hi(.) mapping an item to a bucket in the ith array,
and fi(.) mapping an item to a counter inside the bucket
Bi[hi(.)]. The Slim-subsketch uses the same hash functions
hi(.) as the Fat-subsketch to map items to buckets.

Slim   Sketch Fat sketch
1      2                w     1           2                                        w 

A1

Ad

B1

Bd

e

Stored in SRAM for fast query Stored in DRAM to support update

Fig. 2. The SF4- and & SFF-sketch architecture

Insertion: To insert an item e into the Fat-subsketch, we
first compute d hash functions h1(e), h2(e), . . . , hd(e) and
another d hash functions f1(e), f2(e), . . . , fd(e) and incre-
ment the d counters B1[h1(e)][f1(e)], B2[h2(e)][f2(e)], . . .,
Bd[hd(e)][fd(e)] by 1. Next, we find the minimum value
among all counters we just incremented and represent it with
Bmin

e . To insert the item e into the Slim-subsketch, we identify
the counters with the smallest value among the d counters

A1[h1(e)], A2[h2(e)], . . . , Ad[hd(e)] and increment them by 1
only if their values are less than Bmin

e .

Deletion: To delete the item e from the Fat-subsketch, we
decrement the d counters B1[h1(e)][f1(e)], B2[h2(e)][f2(e)],
. . ., Bd[hd(e)][fd(e)] by 1. To delete the item e from the Slim-
subsketch, for each i ∈ [1, d], we compare Ai[hi(e)] with∑z

k=1 Bi[hi(e)][k] and decrement counter Ai[hi(e)] by 1 if
Ai[hi(e)] >

∑z
k=1 Bi[hi(e)][k]. we leverage the fact stated

earlier that the value of a counter in the Slim-subsketch should
always be less than or equal to the sum of values of all
counters in the corresponding bucket in the Fat-subsketch.

Advantages and Limitations: The advantage SF4-sketch has
over SF3-sketch is that all counters in the Fat-subsketch
corresponding to a counter in the Slim-subsketch are now
located in the same bucket. Thus, one deletion from the Fat-
subsketch only needs d × z × b/W memory accesses, where
b is the number of bits of each counter, W is the size of the
machine word, and b < W . Based on SF4-sketch, our final
version SFF-sketch aims to minimize the over-estimation error.

E. SFF: Reducing Over-Estimation Error

The structure of the SFF-sketch as well as the query and
insertion process are exactly the same as those of the SF4-
sketch. The key idea behind the SFF-sketch is that when
performing a deletion, we keep the value of each counter in
the Slim-subsketch always less than or equal to the value of
the largest counter instead of the sum of the corresponding
bucket of the Fat-subsketch.

Deletion: To delete an item e from the Slim-subsketch, we
first check the d buckets B1[h1(e)], B2[h2(e)]...Bd[hd(e)].
For each i ∈ [1, d], if maxzk=1 Bi[hi(e)][k] changes when
deleting item e from the Fat-subsketch, we set Ai[hi(e)] =
maxzk=1 Bi[hi(e)][k] if Ai[hi(e)] > maxzk=1 Bi[hi(e)][k].
Otherwise, we leave the value of Ai[hi(e)] unchanged.

Advantages: The key advantage of SFF-sketch over SF4-sketch
is that during deletion operation, it significantly reduces the
counter values in the Slim-subsketch, and furthermore reduces
the over-estimation error of SFF-sketch. We should mention
that SFF-sketch does not suffer from under-estimation error,
which is formally proved in the full version of this paper [12].

III. EXPERIMENTAL RESULTS

A. Experimental Setup

We present the experimental results on skewed dataset in
this paper, which are generated by the well known YCSB [13].
We keep the skewness of our skewed dataset equal to the
default value for YCSB, which is 0.99. Experiments on
more kinds of datasets can be seen in the full version of our
paper [12].

B. Experiments on Accuracy

We use relative error (RE) to quantify the accuracy of
sketches. Let fe represent the actual frequency of an item e
and let f̂e represent the estimate of the frequency returned by
the sketch, the relative error is defined as the ratio |f̂e−fe|/fe.
To evaluate accuracy, we used 100K distinct items and fixed
parameter setting (d = 5, w = 40000, z = 3). We calculated
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relative errors for different sketches in two settings: (1) by in-
crementally increasing the number of insertion operations; (2)
by incrementally increasing the number of deletion operations.

Relative Error vs. # of Insertions: Our experimental results,
reported in Figure 3, show that in case of skewed workload,
the average relative error of SF-sketch is [0.3, 2.8], [3.2, 12.7],
[3.0, 14.8], and [1.5, 2.7] times smaller than the average rel-
ative errors of CML, C, CM, and CU-sketches, respectively.
The converged average relative error of our SF-sketch is 2.8,
12.7, 14.8 and 2.7 times smaller than the converged average
relative errors of CML, C, CM, and CU-sketch, respectively.

Relative Error vs. # of Deletions: Our experimental results,
reported in Figure 4, show that for skewed workload, the
average relative error of SF-sketch is [2.1 to 12.7] and [1.9
to 14.8] times smaller than the average relative errors of C
and CM-sketches, respectively.

C. Experiments on query speed

We measure two metrics in our experiments on GPU:
throughput and average query latency. We did experiments
on a range of CUDA configurations: stream (1 ∼ 24), block
(64 ∼ 512, step = 32), and thread (128 ∼ 1024, step = 128).
We observed that the throughput of all five sketches (i.e., CML,
C, CM, CU and SF-sketches) was almost the same. For this
reason, we only present results for SF-sketch.

Our experimental results for three different data sets show
that the query speed in GPU increases with the increase in
the batch size. As shown in Figure 5, for the batch size of
20K queries, the query speed is around 50 million queries
per second (Mqps). With increase in the batch size, SF-sketch
reaches a query speed higher than 110 Mqps.

Our experimental results for three different data sets show
that for SF-sketch, to reduce latency, the batch size of 28K is
the most optimal for our experimental setup. Figure 6 shows
that the the average query latency of SF-sketch is below 410 μs
for batch sizes � 28K. For batch sizes � 32k, the latency
increases to 511 ∼ 584 μs.

IV. CONCLUSION

In this paper, we proposed a new sketch, namely the
SF-sketch, which achieves up to 14.8 times higher accuracy
compared to the CM-sketch while using the same amount
of memory for query and keeping the query and update
speeds as fast as the CM-sketch. The key idea behind our
proposed SF-sketch is to maintain two separate sketches, one
for query called Slim-subsketch and another for supporting
update called Fat-subsketch. The Slim-subsketch enables SF-
sketch to achieve high query speed and small communication
overhead while the Fat-subsketch enables it to achieve high
query accuracy. To evaluate and compare the performance
of our proposed SF-sketch, we conducted experiments on
GPU platforms. Our experimental results show that our SF-
sketch significantly outperforms the-state-of-the-art in terms
of accuracy.
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