
Improving Database Storage Usability with
the Cloud-based Architecture

Cuicui Su∗, Yongzhi Wang∗†, Yulong Shen∗, Ke Cheng∗ and Jiawen Ma∗
∗School of Computer Science and Technology, Xidian University, Xi’an, Shaanxi, China, 710071

†Key Laboratory of Grain Information Processing and Control (Henan University of Technology), Ministry of Education

Email: ccsu.hannah@gmail.com, yzwang@xidian.edu.cn

Abstract—Database is widely used for information storage and
management. With the explosion of the data size, the requirement
of the storage capacity is growing dramatically. Cloud offers
clients a scalable solution to meet the demand of the increasing
space. A cloud service, if used and managed properly, can
increase the resource usability and provide more secure services.

In this paper, we propose a cloud-based database architecture
that increases the database storage usability meanwhile ensuring
the data security. In this architecture, we move the database
storage into a shared cloud-based server and leave the database
engine at user’s domain. The transmission of database physical
files between the cloud and the database engine is achieved
through Network File System. To avoid information leakage
incurred by attacks on the cloud, the physical files stored in the
cloud were encrypted by the database engine. To verify our idea,
we used MySQL as our study case and evaluated the performance
of this new architecture. A series of experiments indicate that the
proposed architecture is promising in improving storage sharing,
meanwhile guaranteeing the data security.

I. INTRODUCTION

Database is widely used for the data storage and processing

[1], [2], [3], [4], [5]. As data grows, organizations need to

consume more on traditional physical storage. In order to

improve storage utilization, deal with the capacity limitation

of traditional physical storage to database server and cut costs,

we can move the physical files to a shared cloud-based server.

By sharing storage space with many other users, it is possible

for other users to access your data, sometimes because of

criminal intent. Security of stored data and data in transit

may be a concern when storing sensitive data at a cloud-based

server. The risk of having data read during transmission can be

mitigated through encryption technology. Encryption in transit

protects data as it is being transmitted to and from the cloud

service [6]. Encryption at rest protects data that is stored on

the cloud.

When an organization selects to store data on the cloud,

potentially sensitive data is at risk from insider attacks. Cloud

users need to ensure that all critical data are masked or

encrypted and that only authorized users have access to data

in its entirety. To avoid the information leakage, we offer users

an option to encrypt the data on the cloud by database engines.

We propose a new architecture that introduces Network File

System [7] to implement the transmission of physical files

between the DB engine and the cloud. The research attempts

to evaluate the performance of the new architecture by using

benchmarks.

The architecture is presented in Fig. 1. The clients obtain

information by sending queries to local database engine.

The database engine has two major components: the storage

engine and the query processor. The storage engine writes

data to and retrieves data from stable media (e.g., disks). The

query processor accepts, parses, and executes SQL commands.

We replace the disks with the cloud where encrypted data

files store in the architecture. The data transmission between

database engine and the cloud is implemented by NFS server.

Because the data on cloud is encrypted by the database engine

and the encryption key is stored on the database engine side,

people cannot retrieve information by attacking the cloud

directly. Meanwhile, different users share the cloud storage

service without interfering each other. This system is suitable

for organizations that require large and secure storage and

different access privileges for different departments, such as

the military information management system [8] and the bank

information management system, the model proposed in this

paper not only offers the space to store physical data, but also

protects the security of data.

Fig. 1. The DB model with encrypted data on NFS.

We can create multiple subdirectories that will be mounted

to data dirs of different database engines respectively in the

NFS shared directory on the cloud, which increases the storage

usability. But for one specific database engine, there is only

one subdirectory to mount it on. In this case, all the database

2017 IEEE Second International Conference on Data Science in Cyberspace

978-1-5386-1600-0/17 $31.00 © 2017 IEEE

DOI 10.1109/DSC.2017.102

494

engines share the cloud-based server as a storage platform.

We expect the access to remote data files on the cloud could

be comparable to access to local physical files in speed. So, the

feasibility of the new architecture will be verified by testing its

performance. We took MySQL as our study case and proposed

the proof-of-concept environment using a physical machine

as the NFS server in this paper. The private cloud model is

closer to the more traditional model of individual local access

networks (LANs) used in the past by enterprise but with the

added advantages of virtualization. So the proof-of-concept

environment is reasonable for the architecture.

TPS, transactions per second, is an important indicator to

MySQL performance evaluation. In this respect, a “Transac-

tion” is a unit of execution that a client application invokes

against a database [9]. And it was calculated as the total

number of events divided by the total time of execution.

This paper analyzed the performance of MySQL from the

perspective of TPS obtained from the benchmark used and

evaluated the decline in TPS due to remote data transmission.

And the result of the research shows that the performance loss

of the new architecture is moderate. So the new architecture

in this paper may be a promising approach to increasing the

storage usability to deal with massive data.

The contributions of the paper are twofold: (i) the intro-

duction of the architecture that increases the database storage

usability meanwhile ensuring the data security, and (ii) the

performance evaluation of a study case of the new architecture.

The remaining of the paper is organized as follows. Related

works are described in Section II. The insights into the ar-

chitecture implementation and configuration of the system are

given in Section III and IV. System evaluation are introduced

in Section V. Finally, conclusion is drawn in Section VI.

II. RELATED WORKS

Intels Software Guard Extensions (SGX) [10] is a set of ex-

tensions to the Intel architecture that aims to provide integrity

and confidentially guarantees to security-sensitive computation

performed on a computer where all the privileged software is

potentially malicious. Leveraging such a technology, Schuster

et al. [11] proposed a solution to protect the execution integrity

of MapReduce. We can apply SGX in DBMS to guarantee

the system security. In order to protect the confidentiality and

integrity of computation and data, we can upload them into

Intel SGX the trusted hardware environment. While, because

of the limited memory, we cannot upload all data into it.

We can store the data files on the cloud, and install NFS

service on the cloud server to implement the data transmission

between the local database engine and the cloud. Then we can

ensure the security of computation by using trusted hardware,

and security of data by using MySQL InnoDB Tablespace

Encryption. Users can connect with the MySQL engine and

send queries to it. If security of the connections between

MySQL engines and MySQL clients can be guaranteed, the

whole system is secure. In order to estimate the availability

of the system proposed above, this paper reports a study that

probes into the influence that the introduction of NFS server

exerts on MySQL performance.

The authors in [17] discussed the performance of MySQL

and also highlighted the database elements that could be

measured and adjusted during a benchmark. The authors in

[18] analyzed MySQL performance on a limited resource

server: Fedora and Ubuntu respectively. Two performance

tests were conducted on the same hardware, but different

distributions of Linux. The result of the paper presented that

Ubuntu gave better performance than Fedora even though

both were open source operating system. In [19], the authors

evaluated performance of MySQL Cluster 7.0 in distributed

data storage approach. The result of the paper illustrated that

when the number of data storage nodes where data was stored

increased, the number of successful transactions was improved

gratefully and the average number of successful transactions

per second was also. None of the papers above focused on

the transmission of data files between the MySQL engine and

remote physical files. Our research evaluated the performance

of MySQL server with data files stored in remote NFS server,

and analyzed the availability of the model proposed in this

paper.

An orthogonal problem related to our work is to protec-

t runtime integrity and control flow confidentiality of the

cloud computing. Researchers have proposed a wide range

of solutions from different perspectives [12], [13], [14], [15],

[16]. As a complementary work, this paper addresses the data

confidentiality problem.

III. ARCHITECTURE IMPLEMENTAION

As shown in Fig. 1 above. We introduced NFS server to

implement the transmission of MySQL physical files between

the database engine and the remote NFS server and MySQL

InnoDB Tablespace Encryption to guarantee security of data

files.

NFS is the abbreviation of Network File System, and it was

originally developed by the Sun Microsystems in 1984. NFS

was designed to achieve the sharing of file system resources

in a network. By NFS, the native NFS client application can

transparently read and write files located on the remote NFS

server, just as if it were a local file. The introduction of NFS

provides a way of making remote data files on the cloud

available to local MySQL engine. In NFS system, NFS server

stores the data on its disks, and application servers installed on

the NFS client side request data through well-formed protocol

messages. NFS structure is presented in Fig. 2.

Fig. 2. The NFS Structure.

495

We can achieve a multi-level access control by defining the

specific databases or tables that a specific user can access

through the MySQL Access Privilege System [20]. MySQL

Access Privilege System provides privileges that apply in

different contexts and at different levels of operation. Database

privileges apply to a database and to all objects within it. These

privileges can be granted for specific databases, or globally

so that they apply to all databases. Innodb file per table is

default in MySQL 5.6+ [21]. InnoDB storage engine sup-

ports data encryption for InnoDB tables stored in file-per-

table tablespaces from MySQL 5.7. This feature provides

at-rest encryption for physical tablespace data files. InnoDB

Tablespace Encryption uses a two tier encryption key archi-

tecture, consisting of a master encryption key and tablespace

keys. To enable encryption for a new InnoDB table or an

existing InnoDB table, specify the ENCRYPTION option in a

CREATE TABLE statement or an ALTER TABLE statement

simply [22]. The third party cannot get the master encryption

key stored in a keyring file specified by the keyring file data
configuration option on the local MySQL engine side to

decrypt the tablespace key. Therefore we can ensure the

security of the informantion, even after the third party got

the encrypted data files located on the remote NFS server.

Benchmarking refers to a set of standard test procedures

against a database server to test and predict the performance of

the system. A number of benchmarking tools are available to

evaluate performance of a database system. The performance

tests were all performed using Sysbench 1.0 [23] benchmark-

ing software in this paper.

First, we installed MySQL 5.7.13 on the NFS client host.

During MySQL’s installing, program mysql install db initial-

ized the MySQL data directory “/var/lib/mysql” by default,

and created the system tables that it contains. Then we

moved the entire directory “/var/lib/mysql” to the new created

directory “/nfsshare” at the NFS server side. To setup NFS

mounts, we installed NFS packages on both the NFS server

and the NFS client machines. Then start the services on both

machines. After installing packages and starting services on

both the machines, we configured them for file sharing. To

share a directory with NFS, we made an entry in “/etc/exports”
configuration file at NFS server side. We created a new

directory named “nfsshare” in “/” partition to share with

the applications at the end of the client, then made an entry

defining privilege in file exports for the directory to make the

new created directory shareable in the network. For installation

details, see [7].

Make sure there is a MySQL user and group on application

server side and NFS server side with the same UID and

GID. Make sure that the directory being exported and all the

contents are owned by mysql:mysql. Make sure mysql:mysql

has read and write access to the shared directory.

After configuring the NFS server, we mounted that shared

directory or partition to the client server where MySQL server

is. We mounted that shared directory to the local MySQL data

directory on the client server. Then restart the MySQL service

on the NFS client.

The hardware configuration in the paper is shown in Table

I. We decided to use Ubuntu 14.04 LTS as our operating

system for the system. In this research, we use MySQL 5.7.13

as our DBMS which is the latest version when I prepared

this research last year. In this research, we had used 3 PC

or laptop computers that were connected via a switch as

illustrated in Fig. 3. The specification of the NFS server is

a HP desktop with four 3.20GHz processing cores, 4GB-

2133MHz of RAM, 47.1GB SATA of hard drive and on

boarded 1000Mbps of network interface. The specification of

the HostA is a ASUS labtop with four 2.30GHz processing

cores, 2GB-1300MHz of RAM, 55.4GB SATA of hard drive

and on boarded 1000Mbps of network interface. Whereas the

HostB is a HP Desktop with eight 3.60GHz processing cores,

4GB-1600MHz of RAM, 50GB SATA of hard drive and on

boarded 1000Mbps of network interface. All the computers

were connected using a four-port 100Mbps switch with CAT5e

wired cable connections.

Fig. 3. Test case in this research.

Sysbench is a modular, cross-platform and multi-threaded

benchmark tool for evaluating OS parameters that are impor-

tant for a system running a database under intensive load. The

value of TPS is directly related to the type of transactions

being performed. In this experiment, change the number of

threads from 4 to 128, incremented in multiples of 2. The

performance variables that could be tweaked in Sysbench are

varied, such as type of transaction (read-only or read-write)

and size of each table to be processed (50000 rows or 10000

rows per table). The experiment was performed based on the

variables mentioned previously. Each test will be executed on

the same MySQL server host with different types of database

transactions as well as different volume of data. For each

case, each test was performed several times then the average

would be the final result. Comparisons using statistical charts

clearly identified differences of performances in term of TPS.

Microsoft Excel was used to analyze and illustrate results

statistically using graphs as demonstration tool. The MySQL

and Sysbench detailed configuration are given in Table II and

Table III.

On the MySQL client side, Sysbench tool started to send

496

TABLE I
HARDWARE SPECIFICATION

Server Specification(192.168.1.100)
Model HP Desktop

OS Ubuntu 14.04 LTS

CPU 3.20GHz 4

Processor Model Intel(R) Core(TM) i5-6500 CPU

Hard Disk 47.1GB SATA Hard Drive

Ram 4GB 2133MHz

Ethernet 100/1000M

HostA Specification(192.168.1.101)
Model ASUS Labtop

OS Ubuntu 14.04 LTS

CPU 2.30GHz 4

Processor Model Intel(R) Core(TM) i5-2410M CPU

Hard Disk 55.4GB SATA Hard Drive

Ram 2GB 1300MHz

Ethernet 100/1000M

HostB Specification(192.168.1.102)
Model HP Desktop

OS Ubuntu 14.04 LTS

CPU 3.60GHz 8

Processor Model Intel(R) Core(TM) i7-4790 CPU

Hard Disk 50GB SATA Hard Drive

Ram 4GB 1600MHz

Ethernet 100/1000M

Network Specification
Switch 10/100M

Cable CAT5e

TABLE II
MYSQL CONFIGURATION

Parameters Values
Version mysql Ver 14.14 Distrib 5.7.13

max connextions 151

max connext errors 100

binlog cache size 32K

thread cache size 9

innod thread concurrency 4, 8, 16, 32, 64, 128

requests to the MySQL engine. The connection between the

MySQL client program and the MySQL server can be done on

the same host, or between different hosts. In this experiment,

the two programs were on the same host, namely on the NFS

client host.

IV. SYSTEM EVALUATION

As mentioned in the previous section, the experiment was

performed using increasing number of threads in each mode

with two different table sizes, namely 10000 and 50000

rows per table respectively, and the same number of tables,

namely 10 tables. All the tests were performed under the

identical setup. In the tables below, the negative value in the

performance loss column represents for the improvement of

performance, and positive values for performance loss.

TABLE III
SYSBENCH 1.1.0 PARAMETERS

Parameters Values
Test Script oltp read only.lua/oltp read write.lua

—tables 10

—table-size 10000/50000

—threads 4, 8, 16, 32, 64, 128

—time 300

—report-interval 20

—percentile 99

Table IV and table V depict TPS values for read-write mode

where table size is 10,000. In the Sysbench read-write tests

for the MySQL server with encrypted data files on HostA and

the common MySQL below, TPS values for MySQL server

with encrypted data on HostA was lower than that of common

MySQL. For instance, TPS value of common MySQL server

for 128 concurrent user connections (CUC) is 579.25 whereas

TPS value of MySQL server with encrypted data on HostA is

372.96 for the same number of concurrent users, decreasing

by 35.61%.

The differences between common MySQL model and the

MySQL model with encrypted data on HostB are presented in

table V. To our surprise, in some cases where CUC is relatively

low, the TPS of MySQL model with data on HostB is higher

than that of common Mysql. It means that when we have low

concurrency of MySQL clients, the new model shows better

performance than the common MySQL. But with increasing

in number of concurrent user connections, the performance

advantage of MySQL server with encrypted data on HostB

over common MySQL is reducing, until when number of

threads comes to 128, performance of MySQL server with

encrypted data on HostB 15.56% lower than that of common

MySQL server.

TABLE IV
TPS VALUES FOR HOSTA READ-WRITE, TABLE SIZE: 10,000

No. of
Threads

TPS
common MySQL

TPS
data on HostA

Performance
loss

4 39.68 35.19 11.32%

8 85.64 84.34 1.52%

16 167.55 148.84 11.17%

32 286.39 234.43 18.14%

64 391.27 317.75 18.79%

128 579.25 372.96 35.61%

When the table size increases to 50,000, the similar results

are given as shown in table VI and table VII. With the increase

in CUC, the downgrade of performance is increasing, that is to

say the performance difference between the two is growing as

shown in table VI. In case of HostB, on identical configuration

with the test in table VI, the performance advantage of the

model with encrypted data on HostB over common MySQL

server has reduced, until the concurrent user connections come

to 16, with TPS value of the MySQL model with encrypted

497

TABLE V
TPS VALUES FOR HOSTB READ-WRITE, TABLE SIZE: 10,000

No. of
Threads

TPS
common MySQL

TPS
data on HostB

Performance
loss

4 39.68 53.11 -33.85%

8 85.64 114.74 -33.98%

16 167.55 188.07 -12.25%

32 286.39 306.60 -7.06%

64 391.27 429.38 -9.74%

128 579.25 489.12 15.56%

data on HostB 1.32% lower than that of common MySQL

server. Then with the increase in CUC, the downgrade of

performance is increasing as shown in table VII.

TABLE VI
TPS VALUES FOR HOSTA READ-WRITE, TABLE SIZE: 50,000

No. of
Threads

TPS
common MySQL

TPS
data on HostA

Performance
loss

4 43.28 37.09 14.31%

8 85.62 72.67 15.12%

16 152.89 113.78 25.58%

32 258.24 158.97 38.44%

64 369.56 198.00 46.42%

128 507.04 309.53 38.95%

TABLE VII
TPS VALUES FOR HOSTB READ-WRITE, TABLE SIZE: 50,000

No. of
Threads

TPS
common MySQL

TPS
data on HostB

Performance
loss

4 43.28 44.82 -3.54%

8 85.62 101.85 -18.96%

16 152.89 150.87 1.32%
32 258.24 229.23 11.23%

64 369.56 300.88 18.58%

128 507.04 389.67 23.15%

Next, we focus on the tests in terms of read-only mode.

The results of Sysbench Testing with read-only operations are

presented in table VIII, IX, X, and XI. The MySQL model

with encrypted data files on NFS server gets peak performance

with 8 CUC as shown in tables below, while performance

of common MySQL does not show regular changes with the

increase in CUC. But the MySQL with encrypted data on NFS

server shows little advantages over common MySQL server in

general, and performance loss caused by the new model is on

the rise.

From all the results given, the MySQL model with encrypt-

ed data on cloud-based server shows lower performance than

common MySQL server but the downgrade is moderate in

most cases, with MySQL engine on the same PC but data

files in different places. In some cases where the CUC takes

a lower value, there is the possibility of getting comparable

performance, even improving the performance, requiring rel-

atively high configuration of network and cloud-based server.

TABLE VIII
TPS VALUES FOR HOSTA READ-ONLY, TABLE SIZE: 10,000

No. of
Threads

TPS
common MySQL

TPS
data on HostA

Performance
loss

4 3465.16 3480.39 -0.44%

8 3592.26 3592.89 -0.02%

16 3500.26 3533.70 -0.96%

32 3555.52 3451.83 2.92%

64 3592.07 3343.20 6.93%

128 3519.89 2974.90 15.48%

TABLE IX
TPS VALUES FOR HOSTB READ-ONLY, TABLE SIZE: 10,000

No. of
Threads

TPS
common MySQL

TPS
data on HostB

Performance
loss

4 3465.16 3498.64 -0.97%

8 3592.26 3597.78 -0.15%

16 3500.26 3543.72 -1.24%

32 3555.52 3447.50 3.04%

64 3592.07 3358.13 6.51%

128 3519.89 2938.76 16.51%

When moving NFS server from physical PC to the cloud-

based server, the similar conclusion would be drawn. So

increasing the storage usability meanwhile ensuring the data

security leads to moderate performance degradation. In con-

clusion, the new architecture is a promising way to expand the

storage.

V. CONCLUSION

In this paper, we have proposed an architecture that im-

proves database storage usability meanwhile guaranteeing the

data security, using NFS to implement the data transmission

between database engine and the remote physical files on the

cloud-based server. And we do a series of tests to evaluate the

availability of the new architecture in our research.

We can conclude from the study that the introduction of

NFS server downgrades the performance of the system in high

concurrency of MySQL clients, but the performance loss is

moderate. So the MySQL model with encrypted data files on

NFS server is a promising approach in terms of performance.

And when the number of concurrent user connections is less

than one certain value, the system proposed in this paper is

available. That is to say, the new architecture in this paper is

a promising approach to improving database storage usability

meanwhile guaranteeing the data security.

ACKNOWLEDGMENT

This paper is supported in part by the Open Fund of

the Chinese Key Laboratory of the Grain Information Pro-

cessing and Control (No. KFJJ-2015-202), the Fundamental

Research Funds for the Central Universities (No. XJJS15002,

XJS16042, JBG160303, JB160312 and BDY131419), and the

NSFC (No. U1536202, 61571352, 61373173, 61602364 and

61602365).

498

TABLE X
TPS VALUES FOR HOSTA READ-ONLY, TABLE SIZE: 50,000

No. of
Threads

TPS
common MySQL

TPS
data on HostA

Performance
loss

4 3527.36 3485.18 1.20%

8 3611.52 3588.61 0.63%

16 3554.69 3531.13 0.66%

32 3606.78 3458.56 4.11%

64 3572.62 3322.41 7.00%

128 3593.28 2930.31 18.45%

TABLE XI
TPS VALUES FOR HOSTB READ-ONLY, TABLE SIZE: 50,000

No. of
Threads

TPS
common MySQL

TPS
data on HostB

Performance
loss

4 3527.36 3448.61 2.23%

8 3611.52 3563.81 1.32%

16 3554.69 3517.56 1.04%

32 3606.78 3396.36 5.83%

64 3572.62 3321.86 7.02%

128 3593.28 2933.60 18.36%

REFERENCES

[1] Bajaj, S., and Sion, R. (2014). Trusteddb: A trusted hardware-based
database with privacy and data confidentiality. IEEE Transactions on
Knowledge and Data Engineering, 26(3), 752-765.

[2] Bater, J., Elliott, G., Eggen, C., Goel, S., Kho, A., and Rogers, J. (2017).
SMCQL: secure querying for federated databases. Proceedings of the
VLDB Endowment, 10(6), 673-684.

[3] Poddar, R., Boelter, T.,and Popa, R. A. (2016). Arx: A Strongly Encrypted
Database System. IACR Cryptology ePrint Archive, 2016, 591.

[4] Wong, W. K., Kao, B., Cheung, D. W. L., Li, R., and Yiu, S. M.
(2014, June). Secure query processing with data interoperability in a
cloud database environment. In Proceedings of the 2014 ACM SIGMOD
international conference on Management of data (pp. 1395-1406). ACM.

[5] Arasu, A., Eguro, K., Joglekar, M., Kaushik, R., Kossmann, D., and
Ramamurthy, R. (2015, April). Transaction processing on confidential
data using cipherbase. In Data Engineering (ICDE), 2015 IEEE 31st
International Conference on (pp. 435-446). IEEE.

[6] Nancy Messieh. “Publishers beware: Is CodexCloud the Grooveshark for
ebooks?” October 2011.

[7] Christopher Smith , “Setting Up an NFS Server.”
http://nfs.sourceforge.net/nfs-howto/ar01s03.html.

[8] Dulłk, M., and Junior, M. D. (2016). Security in Military Cloud Com-
puting Applications. Science and Military Journal, 11(1), 26.

[9] MySQL Performance Analysis and Tuning Tips on HPUX, Prepared By
ViSolve Database Performance Team.

[10] Costan, Victor, and Srinivas Devadas. “Intel SGX Explained.” IACR
Cryptology ePrint Archive 2016 (2016): 86.

[11] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M. Peinado,G.
Mainar-Ruiz, and M. Russinovich, Vc3: Trustworthy data analytic-
s in the cloud using sgx, in Proceedings of the 2015 IEEE Sym-
posium on Security and Privacy, ser. SP 15. Washington, DC, US-
A: IEEE Computer Society, 2015, pp. 38C54. [Online]. Available:
http://dx.doi.org/10.1109/SP.2015.10

[12] Y. Wang; Y. Shen; H. Wang; J. Cao; X. Jiang, ”MtMR: Ensuring
MapReduce Computation Integrity with Merkle Tree-based Verifications,”
in IEEE Transactions on Big Data, doi: 10.1109/TBDATA.2016.2599928

[13] Yongzhi Wang, Jinpeng Wei, Shaolei Ren, Yulong Shen, Toward in-
tegrity assurance of outsourced computing - a game theoretic perspective,
Elsevier Journal of Future Generation Computer Systems (FGCS), 2016,
55:87-100.

[14] Yongzhi Wang, Yulong Shen, RIA C An Audition-based Method to
Protect the Runtime Integrity of MapReduce Applications, 23rd ACM

Conference on Computer and Communications Security (ACM CCS
2016), Oct 24-28, 2016, Vienna, Austria. Poster Paper.

[15] Yongzhi Wang, Jinpeng Wei, and Mudhakar Srivatsa. ”Result Integrity
Check for MapReduce Computation on Hybrid Clouds”. Proceedings
of the 6th IEEE International Conference on Cloud Computing (IEEE
CLOUD 2013), IEEE Computer Society, Santa Clara, CA, June 27-July
2, 2013, pages 847-854.

[16] Yongzhi Wang, Jinpeng Wei. Towards Protecting Control Flow Confi-
dentiality on Cloud Based Computation. Elsevier Journal of Computers
and Security (Computers and Security).Vol. 52, pp.106-127, July 2015.
doi:10.1016/j.cose.2015.04.005.

[17] MySQL Performance Benchmarks, Measuring MySQLs Scalability and
Throughput, A MySQLTechnical White Paper, May 2005.

[18] Ahmed, M., Uddin, M. M., Azad, M. S., and Haseeb, S. “MySQL
performance analysis on a limited resource server: Fedora vs. Ubuntu
Linux.” Proceedings of the 2010 Spring Simulation Multiconference.
Society for Computer Simulation International, 2010.

[19] Pukdesree, Sorapak, V. Lacharoj, and P. Sirisang. “Performance evalua-
tion of distributed database on PC cluster computers.” Wseas Transactions
on Computers 10.1(2010):21-30.

[20] Security in MySQL, Oracle and/or its affiliates.
[21] MySQL Internals Manual, Oracle and/or its affiliates.
[22] MySQL 5.7 Reference Manual Including MySQL NDB Cluster 7.5,

Oracle and/or its affiliates.
[23] Kopytov, Alexey. “SysBench manual.” MySQL AB (2012).

499

