
Computer Communications 99 (2017) 84–92

Contents lists available at ScienceDirect

Computer Communications

journal homepage: www.elsevier.com/locate/comcom

Exploiting Content Delivery Networks for covert channel

communications

Yongzhi Wang

a , b , Yulong Shen

a , ∗, Xiaopeng Jiao

a , Tao Zhang

a , Xu Si a , Ahmed Salem

a ,
Jia Liu

c

a School of Computer Science and Technology, Xidian University, 2 South Taibai Road, Xi’an, Shaanxi, PR China
b Key Laboratory of Grain Information Processing and Control, (Henan University of Technology), Ministry of Education, PR China
c School of Systems Information Science, Future University Hakodate, Hakodate 041-8655, Japan

a r t i c l e i n f o

Article history:

Available online 25 July 2016

Keywords:

Content Delivery Networks

Covert channel

Information hiding

a b s t r a c t

Content Delivery Networks (CDNs) became an important infrastructure in today’s Internet architecture.

More and more content providers use CDNs to improve their service quality and reliability. However, pro-

viding better quality of service (QoS) by using CDNs could also be abused by attackers to commit network

crimes. In this paper, we show that CDNs can be used as a covert communication channel to circumvent

network censorships. Specifically, we propose the CDN covert channel attack, where accessing contents

through different CDN nodes can form a unique pattern, which can be used in encoding secret messages.

We implemented a proof-of-concept covert channel based on our proposed attack on CloudFront, a com-

mercial CDN service provided by Amazon Web Service. We showed that our constructed covert channel

can transmit messages with various lengths with an average transmission efficiency as 2.29 bits per re-

quest (i.e., each penetration request transmits 2.29 bits of secret message on average). After presenting the

CDN covert channel attack, we also discuss possible countermeasures.

© 2016 Elsevier B.V. All rights reserved.

a

(

t

e

a

A

t

o

m

b

t

q

a

w

i

t

t

1. Introduction

Content Delivery Networks (CDNs) have received a wide accep-

tance as a solution to provide on-demand capacity and faster con-

tent accessibility. Akamai [1] , a leader CDN provider, has deployed

85,800 servers in about 1800 districts within a thousands of differ-

ent ISPs in more than 79 countries. Today, most of the major con-

tent providers, such as CNN, Reuters, Yahoo, Youtube, utilize CDNs

to achieve high speed content access.

CDNs enable the user to access the objects from the closest

edge server, thus obtains a much higher access speed. On the other

hand, due to CDNs ’ open characteristic, CDNs can be also abused

by the attacker for illegal purposes. For instance, [2] described a

denial of service (DoS) attack that makes a huge number of CDN

edge servers serve as malicious content visitors, which can exhaust

the original content server’s resource. In our paper, we continue to

play the devil’s advocate to explore other possible attacks. By ex-

ploring vulnerabilities from a different perspective, we show that
∗ Corresponding author. Tel: +862988201779; Fax: +862988202427.

E-mail addresses: yzwang@xidian.edu.cn (Y. Wang), ylshen@mail.xidian.edu.cn

(Y. Shen), xpjiao@mail.xidian.edu.cn (X. Jiao), taozhang@xidian.edu.cn (T.

Zhang), bryant123@foxmail.com (X. Si), engahmedsalem2@yahoo.com (A. Salem),

jliu871219@gmail.com (J. Liu).

t

W

a

i

S

http://dx.doi.org/10.1016/j.comcom.2016.07.011

0140-3664/© 2016 Elsevier B.V. All rights reserved.
 malicious content provider (MCP) and a malicious content visitor

MCV) can use a CDN to construct a covert channel. Specifically,

he MCV can access the MCP ’s contents through different CDN

dge servers. Using different CDN edge servers generates different

ccess patterns, which can be used to encode secret messages.

We call our proposed attack as the CDN covert channel attack .

s far as we know, this is the first paper that describes such an at-

ack. We performed a proof-of-concept CDN covert channel attack

n a real commercial CDN, the Amazon CloudFront . In our experi-

ents, we showed that secret messages with arbitrary lengths can

e sent through this channel. Our experiments in Section 4 shows

hat the transmission efficiency can be 2.25 bits per penetration re-

uest . We also discussed the traditional HTTP-based covert channel

ttack and explored its possible attack scheme in an environment

here the CDN is introduced. The ultimate goal of our research

s to prevent proposed attacks. Therefore, after presenting the at-

ack details, we discussed possible countermeasures regarding to

he proposed attacks.

The paper is organized as follows. We declare the research mo-

ivation, the system model and the attacker model in Section 2 .

e describe the design of the CDN-based covert channel attack

nd the HTTP-based covert channel attack in the CDN environment

n Section 3 . We describe the experimental details and results in

ection 4 . We discuss possible countermeasures in Section 5 . We

http://dx.doi.org/10.1016/j.comcom.2016.07.011
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comcom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comcom.2016.07.011&domain=pdf
mailto:yzwang@xidian.edu.cn
mailto:ylshen@mail.xidian.edu.cn
mailto:xpjiao@mail.xidian.edu.cn
mailto:taozhang@xidian.edu.cn
mailto:bryant123@foxmail.com
mailto:engahmedsalem2@yahoo.com
mailto:jliu871219@gmail.com
http://dx.doi.org/10.1016/j.comcom.2016.07.011

Y. Wang et al. / Computer Communications 99 (2017) 84–92 85

Fig. 1. The Scenario of CDN covert channel attack.

d

p

2

m

2

t

s

c

a

t

t

f

b

c

i

t

t

a

n

t

i

t

T

l

n

a

u

n

l

t

t

c

c

(

n

t

2

o

s

D

t

w

t

r

c

t

r

i

s

d

o

a

r

r

m

[

2

a

c

c

b

m

i

t

c

w

w

c

t

o

W

b

t

3

3

F
iscuss the related work in Section 6 . We conclude the paper and

oint out the future works in Section 7 .

. Research motivations, the system model and the attacker

odel

.1. Research motivations

The covert channel communication is usually used for transmit-

ing secret information while circumventing the Internet’s censor-

hip. One of the applications of the covert channel is the botnet

ommand-and-control (C & C) as shown in Fig. 1 . A botnet usu-

lly consists of a number of bots and a bot master. The bot mas-

er sends commands or updates to the bots. Each bot, according to

he bot master’s command, performs attacks or steals information

rom the infected host, and submits stolen data or attack results

ack to the bot master. The bot master can be deployed on the

ontent provider’s server. Bots can be deployed on the content vis-

tor’s machines. The botnet commands or updates can be sent to

he bots when bots visit the content provider’s server as a visi-

or. Given the high volume of the content to be transmitted from

 content provider to the visitor, it is fairly easy to hide the bot-

et commands and updates in the transmitted content. However,

he information sent from a content visitor to the content provider

s usually limited. In many protocols such as HTTP and DNS, con-

ent visitors only send content requests to the content provider.

he amount of information hidden in a request is usually quite

imited. Besides, certain censorship mechanisms exist in the Inter-

et to recognize such requests. On the other hand, in a botnet, the

mount of information sent from the bot to the bot master are

sually large. Therefore, finding an effective and safe covert chan-

el that can transmit a large amount of information is still a chal-

enging problem. Our research thus focuses on the secret informa-

ion transmission in this direction, i.e., from the content visitor to

he content provider. Attackers have constructed different covert

hannels on existing protocols for the message transmission, in-

luding Relay Chat Protocol (IRC), HTTP [3] , Domain Name System

DNS) [4] , email [5] , etc. Our research propose a novel covert chan-

el, which uses CDN services to transmit information from the bot

o the bot master secretly.

.2. The system model

A CDN can be modeled as in Fig. 2 . A typical CDN consists

f a large number of edge servers and domain name system (DNS)
ervers. Edge servers cache contents provided by content providers.

NS servers direct content visitors to the edge server that caches

he requested content. As shown in Fig. 2 , when a content visitor

ants to access an object that is hosted on the content provider,

he request is sent to the local DNS server (step 1). The server will

eturn the IP address of the requested object if such information is

ached in the local DNS server (step 4). Otherwise, it will forward

he request to the CDN ’s recursive DNS server (step 2), which will

eturn the IP address of the closest edge server to the content vis-

tor (step 3). The IP address will be returned from the local DNS

erver to the content provider (step 4). With the edge server’s ad-

ress, the content visitor sends a request to the edge server and

btains the object if the object is cached in the edge server (step 5

nd 6). If the object is not cached, the edge server will forward the

equest to the content provider to fetch the object and return the

eceived object to the content visitor. Meanwhile, the edge server

ay cache the obtained object using different caching algorithms

1,6] to avoid future cache miss (step 7 and 8).

.3. The attacker model

In our research, we assume that the bot master is deployed on

 server, which provides contents through CDN services. Thus the

ontent provider is a Malicious Content Provider (MCP). This server

an belong to a benign content provider, which is compromised by

eing installed a bot master. It can also be a server belonging to a

alicious content provider. In this case, the bot master is deployed

ntentionally by the malicious content provider. We assume that

he bot is installed on the visitor’s host. Thus the visitor is a Mali-

ious Content Visitor (MCV). A benign visitor can be installed a bot

hen it visits a malicious content server. Our paper will show that

hen the visitor, i.e., the bot, accesses the content provided by the

ontent provider, i.e., the bot master, it can send covert messages

o the bot master through the CDN. In our paper, we mainly focus

n the information transmission from the bot to the bot master.

e assume that the information sent from the bot master to the

ot can be hidden in the content provided by the MCP through

raditional information hiding techniques [7] .

. Attack design

.1. Architecture

The architecture of the CDN covert channel attack is shown in

ig. 3 . A MCP (the bot master) hosts a server to provide contents

86 Y. Wang et al. / Computer Communications 99 (2017) 84–92

Fig. 2. The system model of a CDN.

c

n

a

t

t

e

i

3

e

t

e

3

u

s

v

e

i

t

l

d

E

a

d

p

3

s
to its visitors via a CDN. A MCV (the bot) sends requests to the

MCP to access contents provided by the MCP. Since the MCP em-

ploys a CDN to distribute its content, the MCV ’s requests are sent

to the edge servers of the CDN. Usually, the MCV ’s requests will

not achieve the MCP, if the edge server caches the requested con-

tent. In this case, the edge server will directly return the cached

objects to the MCV. However, in our proposed attack, we force

the MCV to send a special request, called the penetration request ,

which will force the edge server to fetch the latest contents from

the MCP. Additionally, we force the MCV to select an edge server

to send the requests. The MCP thus can know which edge server

was used to pass the MCV ’s request. Such information can be used

to encode secret messages sent from the MCV to the MCP.

The CDN covert channel attack can be divided into six steps, as

shown below.

a. Set up a MCP server that uses a CDN service.

b. Collect the IP address information of the CDN edge servers.

c. Generate the information encoding scheme.

d. Broadcast the collected IP information and the encoding

scheme to all MCP and MCVs.

e. On the MCV, encode the secret message into a series of pen-

etration requests and send these requests.

f. On the MCP, decode received requests to restore the original

secret message.

Notice that step b and c can be performed by MCP, or a MCV,

or any other host that is controlled by the attacker. We verified

that the collected IP information in step b is stable (the details are

described in Section 4). The collected IP information can be per-

formed only once and be reused by all other MCVs and the MCP.

Thus steps b and c only need to be performed once. In step d, the

collected IP information and the encoding scheme need to be sent

to the MCP and all the MCVs through an offline channel, which
an be through an email or a file transferring. This step also only

eeds to be performed once and will be reused afterwards. Step e

nd f need to be performed in rounds repeatedly. In each round,

he MCV sends a certain amount of information to the MCP.

The essential ingredients that achieves the above six steps are

he MCP server setup, IP address information collecting and the

ncoding scheme design. We will elaborate these three techniques

n the next section.

.2. Channel construction details

In this section, we will describe the three important ingredi-

nts required to ensure a successful covert channel, i.e., setting up

he MCP server, collecting edge server’s IP address information, and

ncoding the secret message.

.2.1. Setting up the MCP server

Setting up a MCP that uses a CDN service is similar to setting

p a benign content provider. The only difference is that the MCP

hould be able to log the IP addresses of its direct visitor (i.e. the

isitor that directly sends requests to the MCP, it can be differ-

nt from the MCV, as described later). For example, in our exper-

ments in Section 4 , we set up a Tomcat web server as the con-

ent provider. The Tomcat server has the logging function that can

og each HTTP request received by the MCP, along with the IP ad-

ress of the request sender. The sample log file is shown in Fig. 4 .

ach line of the log records the information of a request. For ex-

mple, the first line in Fig. 4 indicates that a visitor with IP ad-

ress 216.137.58.45 has sent a GET request for the object /testAp-

/css/test.css with a query string batch_1 .

.2.2. Collecting IP address information

We noticed that IP addresses in the log file belong to edge

ervers that directly access the content. They usually are not the

Y. Wang et al. / Computer Communications 99 (2017) 84–92 87

Fig. 3. The architecture of CDN covert channel attack.

Fig. 4. A sample of the MCP’s log file.

e

f

a

l

r

(

A

t

s

d

e

F

fi

M

t

M

h

u

t

r

r

w

u

u

s

h

b
dge servers that directly receive the MCV’s requests. To make our

uture presentation clear, we will call the edge server that directly

ccess the content from the MCP as the last hop edge server (or the

ast hop server for short) and we will call the edge server that di-

ectly receives the request from the MCV as the first hop edge server

or the first hop server for short). For instance, our experiments on

mazon CloudFront (in Section 4) showed that for each request,

he first hop server and the last hop server usually are not the

ame edge server. Although the documentation for the CloudFront

oes not explain why the edge server receiving a request is differ-

nt from the one fetching the object, we guess that Amazon Cloud-

ront might use the following request forwarding mechanism. The

rst hop edge server that receives the request is far away from the

CP. To fetch the latest object, the first hop edge server might go
hrough multiple edge servers (multiple hops) before reaching the

CP. In other words, when an edge server is selected as the next

op server, it will recursively select the hops for the next steps,

ntil the MCP is reached. The requested object is thus cached in

he first hop edge server for future access (it is possible that the

equested object will be cached in each hop to speed up future

equests).

Our goal is to make the MCP to be able to recognize from

hich edge server the request is sent. Such information can be

sed in encoding secret messages. Our following techniques enable

s to choose the first hop edge server in which the request will be

ent to. However, the IP address in the log file belongs to the last

op edge server. Fortunately, we verified that the correspondence

etween the first hop servers and the last hop servers are fairly

88 Y. Wang et al. / Computer Communications 99 (2017) 84–92

t

s

fi

i

e

v

d

j

q

c

l

f

s

h

M

s

l

t

w

t

5

1

o

W

t

t

t

t

4

h

g

3

m

c

t

e

g

t

t

m

a

N

g

t

c

s

h

i

o

b

i

t

t

e

c

b

p

s

s

d

s

u
stable (the verification details are described in Section 4). Thus if

we can collect the mapping information between first hop servers

and last hop servers, it will help the MCP to derive the first hop

edge server from the requesting last hop edge server and therefore

distinguish the information sent from the MCV.

We break our IP information collecting step (step b) into two

sub-steps as follows:

b.1. Collect the IP addresses of valid first hop edge servers.

b.2. Collect the mapping information between the first hop edge

server and the last hop edge server.

In order to collect the mapping information, we first need to

ensure that each request sent by the MCV will be received by the

MCP. In other words, the request needs to bypass the CDN’s DNS

lookup and the content caching mechanism. We call such requests

as penetration requests . To generate penetration requests, we reuse

the technique described in [2] . Specifically, to access an object at

the MCP, the MCV will use a command-line tool named curl to

specify which edge server the object will be requested from and

append a search string (the optional portion of a URL after “?”)

to ensure that the requests are sent to the MCP. We can verify

whether a request has been sent to the MCP by reading the log

file on the MCP. For instance, suppose that a MCP has an original

domain name mydomain.com . When this MCP employs a CDN ser-

vice, the distribution domain name that will be assigned to this

MCP by the CDN is mydomain.cloudfront.net . If a MCV wants to re-

quest an object http://mydomain.com/testApp/css/test.css through

a specific CDN server 54.16.44.39, it can issue the following com-

mand instead of simply accessing http://mydomain.cloudfront.net/

testApp/css/test.css in a browser.

curl − H Host : mydomain . cloudfront . net
http : // 54 . 16 . 44 . 39 / testApp / css / test . css ? batch _ 1

In this command, the MCV sends the HTTP GET request to

the CDN edge server 54.16.44.39 to access the object /testApp/c-

ss/test.css at the MCP. By specifying the expected host header

through the “-H” argument, the CDN edge server knows that the

object belongs to the distribution mydomain.cloudfront.net. Nor-

mally, the edge server will check if it has already cached the ex-

pected object locally. It will return the cached object if the check

result is true. In this case, the request will not achieve at the MCP,

which will fail the covert communication. In order to avoid this,

in the curl request, the MCV appends a random query string, such

as ? batch_1 , which forces the edge server to fetch the latest ob-

ject from the MCP. It is because the CDN cache uses the entire URL

strings, including the search string, as the cache key. When an url

that requests the same object but with a different query string is

received by CDN, it will be considered as a new key. Since such

a key does not exist in the cached keys, the request will be for-

warded to the MCP.

With the help of the penetration request, we are able to collect

the IP information with the two sub-steps mentioned previously

(i.e., the sub-step b.1 and b.2). In the sub-step b.1, we first col-

lect as many valid edge server IP addresses as possible. Our start-

ing point is to find the IP address ranges that could be CDN edge

servers. Our experiments were performed on Amazon CloudFront.

In our experiments, we were able to find the IP address ranges of

Amazon’s CDN edge servers in its document [8] . We found that not

each address could be used to send the penetration request. Specif-

ically, when using the curl command with different edge server IP

address, some servers returned error code, such as “Empty reply

from server”, or “Operation timed out”. In order to collect as many

valid IP addresses as possible, we wrote a script to try different

IP addresses that are within one address range reported in [8] . In
otal, we were able to find 47,925 valid IP addresses. These edge

ervers can be used as first hop edge servers.

The sub-step b.2 is to collect the mapping information between

rst hop edge servers and last hop edge servers. This information

s collected at the same time of performing sub-step b.1. For each

dge server address we tried in the above script, if the address is

alid, we recorded the first hop and the last hop edge server ad-

ress pairs. Specifically, our script on the MCV requests the ob-

ect from different first hop edge servers. The MCP logs the re-

uests received from the last hop edge server. In order to track the

orrespondence relationship between first hop edge servers and

ast hop edge servers, our script appends a unique query string

or each request that will be sent through a different first hop

erver. By doing so, the query string and its corresponding last

op edge server address will be reflected in the same line of the

CP’s log. Thus, the first hop edge server and the last hop edge

erver are connected by the query string. Therefore, we can col-

ect the mapping information between the first hop server and

he last hop server. In the mapping information that we collected,

e found that usually multiple first hop addresses correspond to

he same last hop address. For example, both the first hop servers

4.192.15.127 and 54.192.15.128 correspond to one last hop server

26.137.58.45. Therefore the two first hop servers are set into

ne group that corresponds to the last hop server 126.137.58.45.

hen sending a penetration request through this last hop server

o the MCP, we only need to select one first hop server from

he group that corresponds to it and send the request through

he selected server. It is because that the MCP cannot distinguish

he two first hop servers. In our experiments, although we found

7,925 valid first hop server addresses, we only collected 78 last

op servers, which means we broke the first hop servers into 78

roups.

.2.3. Secret message encoding scheme

With the previous preparation, we are able to encode secret

essage into a set of penetration requests. Any secret message

an be represented as a binary sequence. We can therefore send

he binary sequence through the CDN covert channel. The detailed

ncoding scheme is as follows. Suppose we collected N first hop

roups, we denote the collection of the groups as { g 1 , . . . , g N } and

heir corresponding last hop servers as { l 1 , . . . , l N } . We can send

he secret message in multiple batches, each batch will send at

ost N bits. We call the maximum number of bits can be sent in

 batch as the channel base . Specifically, for a batch that consists of

 bits, requesting an object through any first hop server in group

 i represents sending a 1 on the i th bit; not requesting an object

hrough g i represents sending a 0 on the i th bit. Different batches

an be distinguished by requesting different objects (for instance,

ending an object request testApp/css/batch_j.css through any first

op server in group g i indicates that the i th bit in the j th batch

s 1), or appending different query strings if requesting the same

bject (for instance, sending an object request testApp/css/test.css?

atch_j through any first hop server in group g i indicates that the

 th bit in the j th batch is 1). In order to decode the secret message,

he MCP collects the information for each batch through grouping

he requests by the requested objects or by the query strings. For

ach group of requests, based on the availability of the requests re-

eived from last hop servers { l 1 , . . . , l N } , the MCP can restore each

atch into a binary sequence.

Our experiments chose to distinguish different batches by ap-

ending different query strings in the penetration requests. In this

ection, we describe such an encoding scheme briefly. The detailed

cheme can be found in Section 4.3 . The scheme that distinguishes

ifferent batches according to the different requested objects is

imilar to this scheme, we skip discussing it in this paper. Fig. 5

ses an example to show the idea of the encoding scheme. In

http://mydomain.com/testApp/css/test.css
http://mydomain.cloudfront.net/testApp/css/test.css

Y. Wang et al. / Computer Communications 99 (2017) 84–92 89

Fig. 5. An example of message encoding.

F

c

fi

t

b

2

i

b

s

s

w

a

F

t

l

w

e

a

m

t

w

w

t

p

m

c

t

i

T

t

c

3

c

h

w

T

C

t

c

t

q

t

c

a

q

t

d

i

t

p

f

e

n

a

fi

a

fi

C

fi

s

i

s

o

fi

T

r

N

fi

a
ig. 5 , we assume there are three edge servers. In other words, the

hannel base is 3. To encode a sequence of binary “011101...11”, we

rst split the original sequence into 3-bit chunks. If the length of

he binary is not an integral of 3, the length of the last chunk will

e less than 3. For instance, in the figure, the last chunk only has

 bits. For each chunk, we send a request through an edge server

n the first hop server group g i , if the value of the corresponding

it i in this chunk is 1. If the corresponding bit i is 0, we do not

end any request. For requests corresponding to chunk j , the query

tring is batch_j . For instance, for the first chunk “011”, the requests

ith the query string batch_1 are sent through the edge servers 2

nd 3, since only the second and the third bits in this chunk are 1.

or the chunk that does not have the full length, we also specify

he chunk length in the query string. For instance, to transmit the

ast chunk (the chunk N) that only has two bits, the query string

ill be batch_N_length_2 . Such requests will be sent through the

dge servers 1 and 2, indicating that the first 2 bits in this chunk

re both 1.

The encoding scheme has created a basic channel. However, to

ake this channel practical, we still have to consider other fac-

ors. For instance, if some edge servers are unreliable, requests

ill not be delivered to the MCP. In this case, sending a bit 1

ill be mis-received as 0. To evade such a problem, error correc-

ion code can be used. The internet censorship can also perform

attern matching on the request query string to detect the secret

essage. To evade such detection, the query strings need to be en-

rypted. Those problems are classic communication problems. Ma-

ure solutions already exists [9] and can be applied to our encod-

ng schemes. In this paper, we only focus on the basic channel.

herefore, our solution does not consider the above problems. In-

egrating solutions of the above problems to the constructed covert

hannel will be our future work.

.3. HTTP-based covert channel attacks through CDN

We also explore the possibility of applying HTTP-based covert

hannel attacks [10] under the CDN environment. The idea is to
ave the MCP and the MCV agree on a certain encoding scheme,

here each file name corresponds to a secret message to be sent.

he files are hosted on the MCP but initially NOT cached on the

DN. To send a secret message, the MCV sends requests to the MCP

hrough the CDN, requesting different files. Since the files are not

ached on the CDN, the CDN edge server will fetch the file from

he MCP. The MCP, upon receiving this request, will send the re-

uested file to the CDN edge server, which will be forwarded to

he MCV. Meanwhile, the MCP decodes the file name into the se-

ret message. When the same secret message is going to be sent

gain, the MCP and the MCV will update the name of the re-

uested file corresponding to the secrete message based on a cer-

ain pre-agreed update protocol, (e.g., the file name can be a ran-

om number generated by a pseudo random generator). By do-

ng so, we ensure that all secret messages will be delivered to

he MCP.

We give a concrete covert channel design following the above

rinciple: The MCP and the MCV share a key (or a random seed

or a pseudorandom number generator), K , which is used to gen-

rate distinct file names. The MCP hosts N files, where N is a large

umber. The names of the files are unique random numbers gener-

ted based on K and thus known by the MCP and the MCVs. Each

le has an index, ranging from 0 to N − 1 , known to both the MCP

nd the MCVs (e.g., the index is based on the sorted order of the

le names). Notice that initially, the files are not cached by the

DN. To transmit a logN bit long value v , the client requests the

le at index v . Since the file is not cached by the CDN, the edge

erver will fetch the file from the MCP. Once the file is requested,

t will be cached by the CDN, which means the next request of the

ame information will not reach the MCP. To solve such a problem,

nce a file is requested, the file name is replaced by a different

le name generated based on K , on both the MCP and the MCV.

he indexes of the file names will be updated (e.g., the indexes are

eassigned based on the sorted order of the updated file names).

ote that since both the MCP and the MCV know the requested

le, if the file name replacement algorithm and the index update

lgorithm are deterministic, the updated indexes on the MCP and

90 Y. Wang et al. / Computer Communications 99 (2017) 84–92

g

s

m

c

t

m

e

h

w

w

s

M

4

s

i

s

j

s

a

s

w

t

t

s

c

w

t

s

c

t

r

t

l

s

a

l

i

g

g

o

i

s

w

u

w

f

T

w

i

k

r

a

s

b

t

s

a

t

w

t

n
the MCV will be synchronized. Therefore, we ensure that all secret

messages will be delivered to the MCP.

The advantage of such a covert channel is that the size of the

message (i.e., the number of bits) transmitted in each request can

be defined based on the encoding scheme (e.g, the above concrete

design can transmit logN bits of message in each request.). How-

ever, such a covert channel is more of a HTTP-based covert channel

applied under the CDN environment. We therefore only propose

this idea and do not thoroughly explore this direction.

4. Experiments

We constructed a proof-of-concept covert channel on Amazon

CloudFront, a commercial CDN service, and performed a series of

experiments.

4.1. Environment setup

The experiments was performed on Amazon Web Services (AWS).

We hosted a Tomcat web server on Amazon EC2 instance, acting

as the MCP. To show the concept and to make experiments sim-

ple, this web server only hosts one object (i.e., testApp/css/test.css),

which can be accessed through HTTP GET requests. We leveraged

Tomcat server’s log function to record all the object requests re-

ceived by the MCP. The log format is shown in Fig. 4 . In each entry

of the log file, the IP address is the last hop IP address that directly

requests the object, the “GET” command records the requested ob-

ject and the query string, if available. We created a CloudFront

distribution that caches the hosted objects on CloudFront’s edge

servers. We performed the CDN covert channel attack on this ex-

perimental environment.

4.2. IP information collection

We collected the IP addresses and the IP address mapping in-

formation with the methods described in Section 3.2.2 . Specifi-

cally, we obtained the IP address ranges of the CloudFront’s edge

servers from AWS’s documentation [8] . That document indicates

17 IP address ranges that are assigned to AWS’s edge servers. We

only chose one out of the 17 address ranges to perform our ex-

periments. This range contains 65,535 IP addresses. We wrote a

script to send penetration requests using each IP address in the

selected range as the first hop server. By using the technique de-

scribed in Section 3.2.2 , each request tries to penetrate the CDN

cache to arrive at the MCP through a last hop edge server. Each

request will “GET” the same object (testApp/css/test.css). To pene-

trate the caching mechanism, we appended different query strings

for each request. The query string contains the IP address of the

first hop server that we used in that request. As a result, the first

hop server IP address will also be reflected in the Tomcat server’s

log, which facilitates our log file processing. During our experi-

ments, although most penetration requests were successfully sent

to the MCP, several requests through several IP addresses timed

out and did not receive any reply. As a result, we collected 62,538

out of 65,536 available IP addresses that can be used as first hop

servers. By processing the Tomcat log, we found 78 first hop edge

server mapping groups that map to 78 last hop edge servers.

We verified the stability of those mappings. Specifically, we sent

penetration requests repeatedly through the same first hop IP ad-

dress and verify whether the requests can be received from its cor-

responding last hop IP address. We found that the mappings be-

tween the first hop edge server and the last hop edge server pre-

serves at the beginning. As time passes, some requests sent by the

first hop edge server are received by another last hop edge server.

Such a finding means that the mapping information can be directly

used for a short time after it was collected. As time passes, to
uarantee an accurate transmission, either error correction codes

hould be applied to the secret messages, or the mapping infor-

ation should be re-collected. In this paper, we only focus on the

ase that the mappings are preserved. We will explore the solution

o the case that the mappings are partially preserved in the future.

We also verified the stability of the mappings in the space di-

ension. Specifically, we set up multiple EC2 instances in differ-

nt regions and sent penetration requests through the same first

op IP address from those instances. We found that those requests

ere all sent to the MCP through the last hop edge server that

as previously mapped to the current group. The verification re-

ults indicate that the mapping information, once collected by one

CV, can be re-used by other MCVs from different locations.

.3. Secret message transmission

We collected 78 last edge servers in the previous step. Thus we

et the channel base as 78 in our experiment. The message encod-

ng and decoding procedure follow Section 3.2.3 . In each batch, we

ent 78 bits. Since the MCP in our experiments only hosts one ob-

ect, to distinguish different batches, requests that belong to the

ame batch will use the same query string; requests belonging to

 different batch will use a different query string. The encoding

cheme follows the example in Fig. 5 . To indicate the batch order,

e include the order information in the query string. To extend

he scheme to the scenario where multiple MCVs send information

o the MCP, we also include the MCV ’s information in each query

tring. For instance, suppose the channel base of a CDN covert

hannel is b , if a MCV x sends requests in batch i , the query strings

ill be MCV_x_batch_i . For the last batch, whose length l is less

han the channel base b , we also specify the length in the query

tring, marked as MCV_x_batch_i_length_l . As we transmit the se-

ret message, we found that in some batches, penetration requests

hrough some first hop servers timed out and did not receive any

espond, which failed the transmission of several bits. We also no-

iced that those first hop servers restored their functionalities in

ater batches. We guess that when an edge server is overloaded, it

imply drops the request, which makes the request timed out. To

void such a transmission failure, we dynamically change the se-

ected first hop server to ensure the communication quality. Specif-

cally, if a penetration request sent through a first hop server in

roup g failed, we will switch to another first hop server in this

roup to send the request. If this server still fails, we switch to an-

ther, until the request is sent successfully from a first hop server

n group g . However, if all the first hop servers in group g fails to

end the request, we fails to directly send 1 in bit g . In this case,

e might lose one bit during the transmission. To remedy this fail-

re, we send this bit in the query string of another request that

as successfully sent. For example, suppose in batch i , the MCV x

ails to send requests through all the first hop servers in group g .

he query string of another successfully sent penetration requests

ill be MCV_x_batch_i_drop_i_g , indicating that the g th bit in batch

 is 1, but failed to be transmitted. The MCP receiving this request

nows that the g th bit in batch i should be 1, although it did not

eceive such a request.

Based on the above encoding rule, we wrote a python script to

utomatically translate secret messages into a binary strings and

end a series of penetration requests based on the values of the

inary strings. Our experiments showed that, if we send penetra-

ion requests too frequently, CloudFront will trade it as a denial-of-

ervice attack and will disable the CDN service on our account. To

void such a detection, the time interval between each two pene-

ration requests is set to be a random large number. The requests

ere logged by the Tomcat server. We wrote another python script

o restore the requests collected in the log file back into the origi-

al secret message. To measure the performance of our CDN covert

Y. Wang et al. / Computer Communications 99 (2017) 84–92 91

Table 1

Experimental results.

Message size (Bytes) 64 1k 2k 4k 8k 16k

Request number 218 3359 7219 14 ,606 29 ,377 58 ,819

Transmission efficiency

(bits/request)

2 .04 2 .05 1 .95 1 .98 1 .09 2 .15

c

s

m

t

fi

r

t

c

s

m

fi

i

a

v

5

i

c

C

n

t

e

fi

o

c

r

c

t

w

t

r

p

s

s

u

s

t

b

a

e

s

s

t

o

s

a

e

c

t

t

t

r

c

c

t

p

s

e

n

n

i

a

n

s

a

q

f

g

s

i

t

t

o

a

u

M

l

t

t

i

j

s

u

v

e

d

t

t

f

q

u

c

q

n

s

n

o

c

l

w

a

6

i

A

s

p

t

t

v

k

e

p
hannel, we performed the message transmission with different

izes of secret messages. Our experiments showed that all the

essages are transmitted successfully. Table 1 shows the message

ransmission efficiency for different lengths of secret messages, de-

ned as the number of bits sent when sending one penetration

equest. Table 1 shows that the request number is proportional to

he message size, which makes the values of transmission efficien-

ies fairly stable. On average, our experiments achieved a transmis-

ion efficiency of 2.29 bits/request. In this experiment, we did not

easure the number of bits sent in a certain amount of time, de-

ned as the transmission speed . The reason is that such a metrics

s largely related to the random time intervals inserted between

ny two consecutive penetration requests, which has a very large

ariance.

. Countermeasures

In this section, we first discuss countermeasures that can mit-

gate the CDN covert channel attack. After that, We discuss the

ountermeasures of the HTTP-based covert channel attacks in the

DN environment.

In order to construct a CDN covert channel, three requirements

eeds to be satisfied. Firstly, the MCV can choose an edge server

o request an object. Secondly, the penetration request can bypass

dge servers ’ caching mechanism. Lastly, the mapping between the

rst hop edge server and the last hop edge server are stable. If any

f the three prerequisites is dissatisfied, the CDN covert channel

an be blocked. We discuss the possibility of disabling the three

equirements separately. In this paper, our focus is to analyze the

auses of our proposed attack and discuss general directions for

he defense. We will leave detailed defense solutions as our future

ork.

Our experiments showed that Amazon CloudFront allows users

o specify an edge server by adjusting the IP address to send

equests. According to [2] , Akamai, the biggest commercial CDN

rovider, and CoralCDN, the biggest free public CDN, also support

uch a function. To disable such a support, the CDN provider can

et up a special type of server, called routing servers , to forward

sers ’ requests to edge servers. With the routing server, the edge

erver only accepts requests from routing servers. One disadvan-

age of such solution is that the routing server can become the

ottleneck of the CDN infrastructure. Even worse, performing DoS

ttack to routing servers will compromise the availability of the

ntire CDN service. To mitigate such a disadvantage, one improved

olution using routing servers is as follows: Whenever a routing

erver receives a request from a user, it selects an edge server for

he requesting user and generates a certificate token , which is based

n the information of the requesting user and the selected edge

erver. The certificate token will be sent to the selected edge server

nd the requesting user. In addition, the IP address of the selected

dge server will be returned to the requesting user so that the user

an connect to the edge server. The requesting user then sends

he request and the certificate token to the selected edge server

hrough the received IP address. The edge server will first check

he certificate token, if it matches the one it received from the

outing server, it will process the request. By following this pro-

edure, the routing server does not need to maintain the request
onnection, thus reduces its workload. Such a solution will make

he CDN itself to be able to determine the edge server, which will

revent the MCV from bypassing the CDN ’s routing mechanism.

In order to prevent bypassing the edge server’s cache, the edge

erver can disable the query string parameter. By doing so, the

dge server will update the cached object only when the origi-

al server updates its own original object. Thus there will be no

ecessity for the user to fetch the object directly from the orig-

nal server, which will break the covert channel. However, en-

bling query string parameter is a feature to better support dy-

amic content delivery. For instance, sometimes, different objects

hould be returned based on different query strings. Simply dis-

bling the query string parameter will degrade the CDN ’s service

uality. Therefore, under the current service requirement, it is in-

easible to prevent bypassing the cache mechanism without down-

rading the service quality.

Our experiments on Amazon CloudFront shows that the edge

erver that receives the request from the MCV (the first hop server)

s different from the edge server that is requesting the object from

he MCP (the last hop server). According to our experiments, al-

hough first hop servers and last hop servers are not the same set

f edge servers, the mappings between the two types of servers

re stable. Requesting an object from a first hop server always ends

p with receiving the request from a fixed last hop server. The

CP can thus derive the first hop server mapping group from the

ast hop server, from which the request was received. To interfere

he covert channel, the CDN can randomize the mapping between

he first hop server and the last hop server. Specifically, by adjust-

ng the routing algorithm to make the route different for each ob-

ect requests can randomize the mapping between the first hop

erver and the last hop server. Since the exact routing algorithm

sed in Amazon CloudFront is not public, it is difficult to pro-

ide a concrete solution on our experimental environment. How-

ver, designing a generalized routing algorithm that introduce ran-

omness to defend the CDN covert channel attack is an interesting

opic.

The HTTP-based covert channel attacks can be detected by de-

ecting the request pattern signature. When such attacks are per-

ormed in the CDN environment (as described in Section 3.3), fre-

uent cache missing is a request pattern signature that can be

sed to detect such attacks. To hide such a signature, the MCV

an inject requests to the original requests set. The injected re-

uests are repetitions of the previously sent requests, which will

ot reach the MCP, but only to make the cache missing frequency

imilar to that of the normal access. However, such a strategy can-

ot reduce the total number of cache missing incidents. The size

f the secret message to be sent is proportional to the number of

ache missing incidents. When the secret message to be sent is

arge enough, the number of the cache missing incidents is large,

hich can be used as a request pattern signature in detecting such

ttacks.

. Related works

Previous studies of CDN security mainly focus on the availabil-

ty of the service. In the attacking side, Su et al. [11] focus on

kamai’s streaming service, describes an attack to downgrade the

treaming service quality. Triukose et al. [2] describe a method to

erform a DDoS attack to the CDN user by abusing CDN’ infrastruc-

ure. Recently, Chen et al. [12] describes a Denial-of-Service attack

hat leverages request forwarding mechanism in CDNs. Most pre-

ious attacks are focusing on the content availability. As far as we

now, we are the first to describe a covert channel-based attack.

On the defense side, Wang et al. [13] describe the defense strat-

gy applied in preventing the edge server breaks-in in order to

rovide a reliable service. Lee et al. [14] propose a hash-based

92 Y. Wang et al. / Computer Communications 99 (2017) 84–92

C

s

X

u

6

R

[
routing algorithm that evenly distributes requests to multiple CDN

edge servers to mitigate the DDoS attack. Unfortunately, the edge

server selection in this paper is still deterministic. Thus, it does not

help to defend our covert channel attack. In [15] , Jung et al.propose

the dynamic caching hierarchies to handle a high volume of re-

quest events. In this strategy, the edge server selection is dynamic.

Still, the defense is focused on the availability, the edge server to

handle the request changes only when the server is overloaded or

underloaded.

Although covert channel attacks in CDNs are rarely studied,

covert channel attacks on other network protocol have been dis-

cussed for decades. HTTP is one of the most frequently used pro-

tocols for Internet browsing and can be exploited in different ways

for covert communication. Covert data can be encoded in URL pa-

rameters [10] of HTTP requests. Advanced techniques encode infor-

mation into HTTP header field values, order of header fields, use

of lower or uppercase, presence or non-presence of optional head-

ers, use of multiple white spaces and nonstandard header fields

[16–18] . Domain Name Service (DNS) maps domain names to IP

addresses. Because DNS is one of the basic protocols on the In-

ternet, most firewalls allow DNS traffic, which opens the door of

abusing DNS for covert channels. PSUDP [19] is a tool that creates

a network-wide messaging system by piggy-backing on legitimate

network DNS traffic. In [20] , Born presents a covert DNS channel

using JavaScript with modern browsers. Heyoka [21] is a prototype

exfiltration tool which uses spoofed DNS requests to create a bidi-

rectional tunnel. Xu et al. [22] explore the feasibility of only us-

ing DNS queries to stealthily and effectively maintain large botnets.

They hide tunneling DNS query activities by piggybacking tunnel-

ing queries with legitimate DNS queries and temporally distribut-

ing DNS queries.

7. Conclusion and future work

Content Delivery Networks have received widely adoption by

most content providers. While offering convenience and higher

service quality, content delivery networks can also be abused for

illegal purpose. In this paper, we proposed a CDN-based covert

channel, through which the malicious content visitor can send se-

cret message to the malicious content provider. We constructed

such channel on a commercial CDN service, Amazon CloudFront,

and measured its transmission efficiency. Based on the proposed

attacks, we discussed possible countermeasures.

This paper only explored the basic encoding scheme of the

CDN-based covert channel. In the future, we will explore advanced

encoding schemes that can address practical problems such as the

request loss, the IP address mapping instability, etc. On the defense

side, this paper only discussed the general directions of counter-

measures. Designing and implementing a practical CDN system

that defends the covert channel attack will be another direction

in our future work.

Acknowledgment

We acknowledge the suggestions and comments from review-

ers. This paper is supported in part by the Open Fund of the

Chinese Key Laboratory of the Grain Information Processing and
ontrol (under the grant No. KFJJ-2015-202), the Fundamental Re-

earch Funds for the Central Universities (under the grant No.

JS16042, JB160312 and BDY131419), as well as the National Nat-

ral Science Foundation of China (under the grant No. U1536202 ,

1571352 , and 61373173).

eferences

[1] B.M. Maggs, R.K. Sitaraman, Algorithmic nuggets in content delivery, SIGCOMM
Comput. Commun. Rev. 45 (3) (2015) 52–66, doi: 10.1145/2805789.2805800 .

[2] S. Triukose, Z. Al-Qudah, M. Rabinovich, Content delivery networks: Protection
or threat?, in: M. Backes, P. Ning (Eds.) Computer Security ESORICS 2009, Lec-

ture Notes in Computer Science, vol. 5789, Springer Berlin Heidelberg, 2009,
pp. 371–389, doi: 10.1007/978- 3- 642- 04 4 4 4-1 _ 23 .

[3] D. Fifield, G. Nakibly, D. Boneh, Oss: using online scanning services for cen-
sorship circumvention, in: E. De Cristofaro, M. Wright (Eds.), Privacy Enhanc-

ing Technologies, Lecture Notes in Computer Science, vol. 7981, Springer Berlin

Heidelberg, 2013, pp. 185–204, doi: 10.1007/978- 3- 642- 39077- 7 _ 10 .
[4] K. Xu, P. Butler, S. Saha, D. Yao, Dns for massive-scale command and control,

Dependable Secure Comput. IEEE Trans. 10 (3) (2013) 143–153, doi: 10.1109/
TDSC.2013.10 .

[5] K. Singh, A. Srivastava, J. Giffin, W. Lee, Evaluating email’s feasibility for botnet
command and control, in: Dependable Systems and Networks With FTCS and

DCC, 20 08. DSN 20 08. IEEE International Conference on, 20 08, pp. 376–385,

doi: 10.1109/DSN.2008.4630106 .
[6] B. Carbunar, R. Potharaju, M. Pearce, V. Vasudevan, M. Needham, A framework

for network aware caching for video on demand systems, ACM Trans. Multi-
media Comput. Commun. Appl. 9 (4) (2013) 30:1–30:22, doi: 10.1145/2501643.

2501652 .
[7] F.A.P petitcolas , R.J Anderson , M.G Kuhn , Information hiding-a survey, Proc.

IEEE 87 (7) (1999) 1062–1078 .

[8] Locations and ip address ranges of CloudFront edge servers,
(http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/

LocationsOfEdgeServers.html) . Accessed: 2015-12-11.
[9] R. Roth , Introduction to Coding Theory, Cambridge University Press, New York,

NY, USA, 2006 .
[10] L. Bowyer , Firewall bypass via protocol steganography, Netw. Penetration

(2002) .

[11] A .-J. Su , A . Kuzmanovic , Thinning akamai, in: Proceedings of the 8th ACM SIG-
COMM conference on Internet measurement, ACM, 2008, pp. 29–42 .

[12] J. Chen , J. Jiang , X. Zheng , H. Duan , J. Liang , K. Li , T. Wan , V. Paxson , Forward-
ing-loop attacks in content delivery networks, NDSS, 2016 .

[13] L. Wang , K. Park , R. Pang , V.S. Pai , L.L. Peterson , Reliability and security in the
codeen content distribution network., in: USENIX Annual Technical Conference,

General Track, 2004, pp. 171–184 .

[14] K.-W. Lee, S. Chari, A. Shaikh, S. Sahu, P.-C. Cheng, Improving the resilience
of content distribution networks to large scale distributed denial of service

attacks, Comput. Netw. 51 (10) (2007) 2753–2770. http://dx.doi.org/10.1016/j.
comnet.2006.11.025 .

[15] J. Jung , B. Krishnamurthy , M. Rabinovich , Flash crowds and denial of service
attacks: Characterization and implications for cdns and web sites, in: Proceed-

ings of the 11th international conference on World Wide Web, ACM, 2002,

pp. 293–304 .
[16] A. Dyatlov, S. Castro, Exploitation of data streams authorized by a network ac-

cess control system for arbitrary data transfers: tunneling and covert channels
over the http protocol. Grayworld, USA, 2003 http://grayworld.net/projects/

papers/html/covert _ paper.html .
[17] Z. Kwecka , Application layer covert channel analysis and detection. Ph.D. the-

sis, Edinburgh Napier University, 2006 .
[18] M. Van Horenbeeck , Deception on the network: thinking differently about

covert channels, in: Proceedings of the 7th Australian Information Warfare and

Security Conference, 2006, pp. 174–184 .
[19] K. Born, PSUDP: a passive approach to network-wide covert commu-

nication, Black Hat USA (2010) . https://www.blackhat.com/html/bh- us- 10/
bh- us- 10- archives.html#Born .

[20] K. Born, Browser-based covert data exfiltration, 2010 . arXiv preprint arXiv:
1004.4357

[21] A. Revelli , N. Leidecker , Playing with heyoka: spoofed tunnels, undetectable

data exfiltration and more fun with dns packets, in: ShakaCon Security Con-
ference, 2009 .

22] K. Xu , P. Butler , S. Saha , D. Yao , Dns for massive-scale command and control,
Dependable Secure Comput. IEEE Trans. 10 (3) (2013) 143–153 .

http://dx.doi.org/10.13039/501100001809
http://dx.doi.org/10.1145/2805789.2805800
http://dx.doi.org/10.1007/978-3-642-04444-1_23
http://dx.doi.org/10.1007/978-3-642-39077-7_10
http://dx.doi.org/10.1109/TDSC.2013.10
http://dx.doi.org/10.1109/DSN.2008.4630106
http://dx.doi.org/10.1145/2501643.2501652
http://refhub.elsevier.com/S0140-3664(16)30270-5/sbref0007
http://refhub.elsevier.com/S0140-3664(16)30270-5/sbref0007
http://refhub.elsevier.com/S0140-3664(16)30270-5/sbref0007
http://refhub.elsevier.com/S0140-3664(16)30270-5/sbref0007
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/LocationsOfEdgeServers.html)
http://refhub.elsevier.com/S0140-3664(16)30270-5/sbref0008
http://refhub.elsevier.com/S0140-3664(16)30270-5/sbref0008
http://refhub.elsevier.com/S0140-3664(16)30270-5/sbref0009
http://refhub.elsevier.com/S0140-3664(16)30270-5/sbref0009
http://refhub.elsevier.com/S0140-3664(16)30270-5/sbref0010
http://refhub.elsevier.com/S0140-3664(16)30270-5/sbref0010
http://refhub.elsevier.com/S0140-3664(16)30270-5/sbref0010
http://refhub.elsevier.com/S0140-3664(16)30270-5/sbref0011
http://refhub.elsevier.com/S0140-3664(16)30270-5/sbref0011
http://refhub.elsevier.com/S0140-3664(16)30270-5/sbref0011
http://refhub.elsevier.com/S0140-3664(16)30270-5/sbref0011
http://refhub.elsevier.com/S0140-3664(16)30270-5/sbref0011
http://refhub.elsevier.com/S0140-3664(16)30270-5/sbref0011
http://refhub.elsevier.com/S0140-3664(16)30270-5/sbref0011
http://refhub.elsevier.com/S0140-3664(16)30270-5/sbref0011
http://refhub.elsevier.com/S0140-3664(16)30270-5/sbref0011
http://refhub.elsevier.com/S0140-3664(16)30270-5/sbref0012
http://refhub.elsevier.com/S0140-3664(16)30270-5/sbref0012
http://refhub.elsevier.com/S0140-3664(16)30270-5/sbref0012
http://refhub.elsevier.com/S0140-3664(16)30270-5/sbref0012
http://refhub.elsevier.com/S0140-3664(16)30270-5/sbref0012
http://refhub.elsevier.com/S0140-3664(16)30270-5/sbref0012
http://dx.doi.org/10.1016/j.comnet.2006.11.025
http://refhub.elsevier.com/S0140-3664(16)30270-5/sbref0014
http://refhub.elsevier.com/S0140-3664(16)30270-5/sbref0014
http://refhub.elsevier.com/S0140-3664(16)30270-5/sbref0014
http://refhub.elsevier.com/S0140-3664(16)30270-5/sbref0014
http://grayworld.net/projects/papers/html/covert_paper.html
http://refhub.elsevier.com/S0140-3664(16)30270-5/sbref0016
http://refhub.elsevier.com/S0140-3664(16)30270-5/sbref0016
http://refhub.elsevier.com/S0140-3664(16)30270-5/sbref0017
http://refhub.elsevier.com/S0140-3664(16)30270-5/sbref0017
https://www.blackhat.com/html/bh-us-10/bh-us-10-archives.html#Born
http://arxiv.org/abs/1004.4357
http://refhub.elsevier.com/S0140-3664(16)30270-5/sbref0020
http://refhub.elsevier.com/S0140-3664(16)30270-5/sbref0020
http://refhub.elsevier.com/S0140-3664(16)30270-5/sbref0020
http://refhub.elsevier.com/S0140-3664(16)30270-5/sbref0021
http://refhub.elsevier.com/S0140-3664(16)30270-5/sbref0021
http://refhub.elsevier.com/S0140-3664(16)30270-5/sbref0021
http://refhub.elsevier.com/S0140-3664(16)30270-5/sbref0021
http://refhub.elsevier.com/S0140-3664(16)30270-5/sbref0021

	Exploiting Content Delivery Networks for covert channel communications
	1 Introduction
	2 Research motivations, the system model and the attacker model
	2.1 Research motivations
	2.2 The system model
	2.3 The attacker model

	3 Attack design
	3.1 Architecture
	3.2 Channel construction details
	3.2.1 Setting up the MCP server
	3.2.2 Collecting IP address information
	3.2.3 Secret message encoding scheme

	3.3 HTTP-based covert channel attacks through CDN

	4 Experiments
	4.1 Environment setup
	4.2 IP information collection
	4.3 Secret message transmission

	5 Countermeasures
	6 Related works
	7 Conclusion and future work
	 Acknowledgment
	 References

