
IEEE Communications Magazine • September 201786 0163-6804/17/$25.00 © 2017 IEEE

AbstrAct

The Internet of Things has been widely 
deployed in various areas of daily life through 
heterogeneous communications protocols. Each 
unstandardized protocol focuses on a specific IoT 
communication pattern. Inspired by the Internet 
architecture over which divergent devices can 
easily be accessed and a considerable number 
of applications can be run, we propose a generic 
architecture for IoT. This architecture supports 
two DIY areas: network DIY for data aggregation 
and application DIY for service cooperation. To 
connect these two DIYs, a centralized control-
ler has been designed to provide standardized 
interfaces for data acquisition, organization, and 
storage, and to support elastic and supportive 
computing. With these properties, divergent 
devices can coexist in a uniform microworld, and 
rich services can be developed and provided on 
demand to interoperate with physical devices. 
This article discusses the background, design 
principles, and advantages of the proposed archi-
tecture, as well as open problems and our initial 
solution, which substantiates a novel IoT architec-
ture and new research ground.

IntroductIon
Currently, the Internet of Things (IoT) has been 
widely adopted in various crucial systems such as 
city sensing, highway transportation, smart com-
munities, and green farming. IoT aims to enable 
data exchange and smart communication among 
everyday objects, from watches, cookers, and 
bicycles, even to humans, plants, and animals [1]. 
Things can see, hear, and perceive the real-world 
environment to achieve more comfortable and 
safer living conditions. For instance, London has 
deployed all sorts of sensors to improve urban 
services: traffic prediction, weather forecasts, 
waste management, and water quality monitoring 
[2]. In addition to dedicated IoT platforms, mobile 
devices (e.g., smartphones, wearables, and vehi-
cles) are also utilized as sensing resources.

Sensors in different IoT systems communicate 
through divergent protocols and standards. These 
protocols include Message Queuing Telemetry 
Transport (MQTT), Extensible Messaging and 
Presence Protocol (XMPP), Constrained Applica-
tion Protocol (CoAP), Data Distribution Service 

(DDS), Advanced Message Queuing Protocol 
(AMQT), and others. The lack of ubiquitous sen-
sor access has resulted in a fragmented IoT eco-
system, which brings about the following two 
problems. On one hand, IoT services are built on 
top of application-level message protocols. The 
design, deployment, and adoption of vendor-de-
pendent IoT elements (sensors, acurators, gate-
ways, etc.) is customized with regard to specific 
application requirements, making them difficult 
for an amateur to access or operate, let alone to 
organize them for customer-oriented application. 
On the other hand, as devices are controlled by 
dedicated platforms, the system logics tend to be 
ossified and hardly meet requirement changes. 
The differences from one platform to another lead 
to data disunity and redundancy, which also make 
it difficult to utilize data from different platforms. 

The development of the IoT system is still in 
its infancy. However, the Internet has exerted sig-
nificant influence on our lifestyles for a long time. 
From the hardware perspective, devices are con-
nected to the Internet through unified interfaces, 
that is, we can communicate with cyberspace via 
an inexpensive home router after some configura-
tions in wizard webpages. From the software per-
spective, rich and varied applications flourish on 
the Internet to satisfy consumers’ specific tastes. 
Service-oriented architecture (SOA) and HTML5 
further enrich the web-based application resourc-
es through a standardized interface. The design of 
future IoT should be flexible enough to satisfy the 
requirements of complex networks and various 
applications.

There is no doubt that it is necessary to build 
an adaptive and scalable architecture for sustain-
able IoT developments, just as the Internet pro-
vides today. Some platforms, such as the Eclipse 
IoT project, Intel IoT framework, and Baidu IoT 
framework, have been proposed to enable het-
erogeneous integration with different communica-
tion technologies and application protocols. These 
solutions mainly focus on the design of enhanced 
protocols or smart gateways for the conversion of 
multiple baseline protocols. However, as they are 
strongly coupled with the supported protocols, 
different platforms may not be compatible with 
each other. In addition, users have to be familiar 
with the specifications of each platform, leading 
to a steep learning curve for the non-expert.
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Within the contextual background, this arti-
cle proposes a generic IoT architecture, called 
MicroThings, to glue all the “Things” fragments 
into a uniform microworld. MicroThings integrates 
the application environment and the information 
aggregation environment with a logically central-
ized controller. Each of the two environments 
supports heterogeneous cooperation with a set 
of uniform interfaces. The controller connects 
the two environments and allows interoperation 
among applications and sensing devices. 

Figure 1 illustrates the MicroThings architec-
ture. It implements do-it-yourself abilities (DIYs) 
at two levels. One is the network DIY, which is at 
the bottom of MicroThings, where multiple sens-
ing devices are accessed via compatible forward-
ing devices. Consumers are able to customize 
their IoT networks for data acquisition, transmis-
sion, and interaction. The other is the application 
DIY, which sits on top of the MicroThings, where 
standardized application programming interfaces 
(APIs) are provided for the development, deploy-
ment, and provision of new applications, as well 
as the reuse and composition of existing applica-
tions. These characteristics empower MicroThings 
to ubiquitously access various devices and greatly 
enrich service resources.

In the rest of this article, we first analyze the 
traditional three-layer IoT architecture, along with 
the design directions for existing architecture. We 
then introduce the proposed MicroThings archi-
tecture and potential solutions. Case studies are 
provided to show the benefits of MicroThings. 
Finally, we conclude the article.

Iot: chAllenges And opportunItIes

stAte of the Art

Figure 2 illustrates the traditional IoT architec-
ture. This architecture logically consists of three 
layers: the perception layer, the network layer, 
and the application layer. Various sensing devices 
are deployed in the perception layer to collect 
and aggregate data from the physical world (e.g., 
temperature and humidity). The network layer 
completes a wide range of information transmis-
sion and exchange on the converged network 
systems such as cellular networks — second/third/
fourth generation (2G/3G/4G), narrowband IoT 
(NB-IoT), and so on — short-range communica-
tion networks (Bluetooth, Wifi, Zigbee, etc.), long-
range wireless networks (LoRa, openRF, etc.), and 
remote communication networks (satellite). The 
collected data are transmitted to data centers 
through the network layer for further storage and 
processing. The application layer processes the 
collected data and interacts with people for fur-
ther analysis and decision making. This three-layer 
architecture has been deployed in different areas 
such as intelligent homes, smart cities, public 
security, and green farming.

The general approach to developing IoT sys-
tems is to synthetically design these three layers 
with respect to specific application requirements. 
More specifically, engineers first select proper 
sensors to collect required data from the physical 
world, then design gateways and routers to trans-
mit the data to local or remote data centers, and 
finally gather data to design various domain-spe-
cific applications. 

problems And dIrectIons

While the domain-specific development of the 
above three-layer IoT architecture seems quite 
straightforward, it has several problems that hin-
der sustainable development. We summarize 
these issues as follows.

Difficulty with IoT Device Networking: 
Through split-level developments, the perception 
layer manages the access and data transmission 
of sensing devices. However, as devices are close-
ly relevant to the sensing data, frequent recon-
figurations of the perception and network layers 
are needed when the collecting devices change. 
For example, the improvement in the accuracy of 
air quality monitoring needs redeployment and 
reconfiguration of more air sensors. In addition, 
with the coexistence of different physical interfac-
es and communication protocols, it is impractical 
for an ordinary consumer to organize the devices, 
or handle the heterogeneous security issues [3]. 

Figure 1. Illustration of the proposed architecture.
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High Data Storage and Computing Cost: 
We should build different storage and comput-
ing frameworks for different types of data, which 
means high investment in the IoT application 
infrastructures. For instance, the system should 
establish file repositories and NoSQL databases 
to store unstructured data like real-time videos, 
and relational databases to store structured data. 
Even for applications of similar functionality from 
different stakeholders, the software, hardware, 
power, and control systems must be deployed 
independently, leading to a high cost for each IoT 
system.

Inflexible Application Provisions: The control 
logics of applications are closely coupled with 
the platform configurations such as the percep-
tive sensors, the network structures, and the 
storage/computing framework. In addition, the 
problem of broadly reusable applications remains 
unsolved. For example, existing applications can-
not be directly migrated to the new environment 
without an application market. It requires applica-
tion re-development or re-configuration for some, 
or even similar, IoT scenarios, which has led to 
overlapping investments.

With the development of network technol-
ogy and the increasing number of applications, 
industry and academia need to establish a gener-
ic architecture that can address the main issues 
mentioned above. There are some trends appar-
ent in the design of IoT architecture, which we 
summarize below.

Automation of the ubiquitous network: As 
the capillary ends, sensors are the data sources 
that supply blood to the whole IoT system. Since 
multiple sensing devices provided by different 
manufacturers have coexisted in the IoT system, 
the design of new architecture should support the 
ubiquitous access that is compatible with these 
different communication protocols and standards. 

For example, C. Hou et al. proposed profile-based 
access for device integration with IoT-Cloud, 
which groups the sensors by category and inte-
grates the sensors by the category profile to the 
IoT-Cloud [4].

In addition to ubiquitous access, there is the 
trend toward network automation. It should pro-
vide a configurable and programmable inter-
face with which people will need less expertise 
to be involved in modern intelligent IoT activi-
ties. For instance, A. Al-Fuquha et al. proposed a 
rule-based gateway for device organizations with 
divergent protocols which also guaranteed the 
quality of service (QoS) properties in the IoT sys-
tems [5].

The blend of flexible data storage and elas-
tic computing: Flexible data storage provides 
the ability to properly manage the collected data 
from multiple data sources, and elastic computing 
further enhances the ability to process the mas-
sive amount data [6–8]. The blend of data stor-
age and computing creates a uniform core that 
can control the IoT logics. As the linking element 
between the physical world and the cyber world, 
this core provides a resource pool with all kinds 
of operations that can help hide the complexity 
and the heterogeneity of underlying infrastruc-
tures. This trend suggests that IoT architecture 
should build a control core for interoperation 
between the southbound devices and the north-
bound applications.

The reuse of application programming and 
composition interface means that the north-
bound environment supports the programming, 
provision, and sharing of applications to differ-
ent stakeholders in a unified market [9]. Also, the 
application environment should be a platform-in-
dependent model that can customize and con-
sume existing services to construct composite 
ones that facilitate reuse, just as SOA) provides. 
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Figure 3. MicroThings architecture.
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As the reuse of applications can significantly 
reduce the development and maintenance costs, 
it is believed that the scalable service resources 
should be one of the built-in characteristics of 
modern IoT architecture. 

There are many standardization opportunities 
that could be implemented to make it easier for 
service providers and consumers to work with 
an IoT ecosystem. From the perspective of the 
IPSO Alliance, the IoT is a system-of-systems, and 
each system has its own standards. Therefore, 
supporting interoperability of different systems 
is still the major hurdle to achieving massive IoT 
adoption. Standardization organizations such as 
the International Telecommunication Union Tele-
communication Standardization Sector (ITU-T), 
Third Generation Partnership Project (3GPP), and 
International Organization for Standardization/
International Electrotechnial Commission (ISO/
IEC) are leading the IoT standardization progress. 
As an ongoing standard specification, oneM2M 
(M2M: machine-to-machine) is devleloping a 
semantics enabler to bridge the gap between cur-
rent IoT resources. As well, SmartM2M and Light-
Weight M2M (LWM2M) have been developed to 
provide network-independent services. In addition 
to the aforementioned standards, some projects 
such as Eclipse IoT projects, the Intel IoT platform, 
the Baidu IoT platform, and the Tencent IoT plat-
form are also contributing their efforts to provide 
uniform open APIs to simplify application devel-
opment over IoT devices. The general direction 
is to design a cloud-based architecture to enable 
intelligent data acquisition and analysis through 
integrated protocols and standards, and bring uni-
form access while supporting different interac-
tions between cloud and smart devices. However, 
these platforms are still excessively complicated 
for the non-expert, and it is necessary to build a 
generic architecture with lower entry barrier. 

mIcrothIngs: ArchItecture overvIew
In this article, we propose a generic IoT architec-
ture, referred to as MicroThings, which combines 
the fragmented devices, networks, and applica-
tions into a micro IoT world. As illustrated in Fig. 
3, the MicroThings consists of two environments 
connected with a centralized controller.

Information Aggregation Environment: This 
environment supports the first DIY for operating 
physical devices. The environment aggregates 
data from the packages of devices, including the 
resource-constraint devices and the resource-rich 
equipment, and multiple multi-mode switches. 
Each switch integrates a variety of wired and wire-
less communication interfaces to control the trans-
mission patterns among IoT devices. For prevalent 
protocols, like MQT and, AMQP, the architec-
ture employs a conversion scheme to address the 
interoperation issues. In addition, to support more 
ubiquitous device access, this environment also 
establishes a JSON encoded HTTP parser to sup-
port the extensive accesses of the non-TCP/IP 
devices and scalable protocols. Thus, consumers 
can focus only on the connecting devices without 
worrying about the design specifications. 

Moreover, the environment establishes a man-
ager to provide a registration mechanism for the 
multi-domain connected devices. The manager 
plays the roles of both virtualized gateway and 

pattern recommender. The “things” can join or 
leave MicroThings for public or private use. Thus, 
MicroThings can recommend suitable applica-
tions to involved devices when they talk to each 
other, for example, recommending smart home 
applications for air quality devices. On the other 
hand, devices can be shared on MicroThings for 
public use, which greatly raises resource utiliza-
tion ratio and reduces the deployment cost. 

Centralized Controller Environment: This 
environment plays the intermediary role between 
the information aggregation environment and the 
application environment. The controller consists 
of two parts: the hybrid storage component and 
the elastic computing component. The storage 
component provides standardized APIs to gather 
the aggregated data from the southbound envi-
ronment, and then stores them by category in 
the corresponding databases. The computing 
component extracts required information from 
the storage component, and then prepares the 
computing resources for further processing. The 
elasticity ensures that the computing resources 
can be dynamically allocated to coordinate with 
the dynamic changes across the entire IoT archi-
tecture.

Application Environment: This environment 
supports the second DIY for the IoT control log-
ics, where applications can be developed with 
respect to the published requirements. As the 
underlying differences are hidden from the  cen-
tralized controller, this environment creates a uni-
fied service ecosystem that supports application 
provision, development, deployment, and main-
tenance. 

Moreover, this environment supports the reuse 
of applications, where different stakeholders can 
share the provided applications. Besides, for com-
plex control logics, existing applications can be 
combined to rapidly create value-added function-
alities. 

desIgn prIncIples And 
ImplementAtIon solutIons

The previous section presented a generic archi-
tecture, MicroThings, which supports two kinds 
of DIYs coordinated with a centralized control. In 
this section, we illustrate how such architecture 
has been instantiated. For this purpose, a set of 
design principles has been proposed as the build-
ing blocks for the architecture, and the implemen-
tation solutions are given. 

InformAtIon AggregAtIon envIronment desIgn

Principle 1: Enabling ubiquitous and on-demand 
network access for IoT devices: The information 
aggregation environment lies in the southbound 
direction of the MicroThings architecture, which 
is designed to directly interact with the physi-
cal sensing devices. On the traditional Internet, 
communication devices are accessed via a set 
of uniform standards, such as Ethernet, to trans-
mit information from one point to another. Com-
pared to the traditional Internet, the design of an 
information aggregation environment for the IoT 
is much more difficult because of the heteroge-
neity of devices. Besides, the data aggregated in 
MicroThings should be identifiable, manageable, 
and controllable. As devices are abstracted in the 

The computing compo-

nent extracts required 

information from the 

storage component, 

and then prepares the 

computing resources for 

further processing. The 

elasticity ensures that 

the computing resourc-

es can be dynamically 

allocated to coordinate 

with the dynamic 

changes across the 

entire IoT architecture.



IEEE Communications Magazine • September 201790

data layer, end users can achieve on-demand net-
work DIY in the MicroThings architecture.

As an initial solution to the above problems, we 
first designed IoT switches for data device access. 
An IoT switch is a multi-mode switch consisting of 
a set of front-end ports and a back-end port. The 
front-end port supports different communication 
protocols and standards, including Wi-Fi, ZigBee, 
PLC, RJ-45, and so on, while the back-end port 
connects to the sensor manager. To achieve the 
first objective, an IoT switch is deployed to access 
the local heterogeneous participant sensors. 
Therefore, the addressable sensors can directly 
communicate to our MicroThings switches via 
the manufactured gateway. Other server-oriented 
communications, like satellite and wired commu-
nications, can be plugged into our architecture for 
data storage and processing. Moreover, different 
IoT switches can be further placed at different 
locations for large-scale deployments. 

For the second objective, a device manager 
is also used for the automatic management of 
IoT switches. The information that the manager 
receives contains the identifications and statuses 
of the sensors. Thus, sensors are registered auto-
matically to provide abstractions when they are 
active. The centralized controller also uses this 
information for the abstraction of the data rather 
than the physical devices.

centrAlIzed controller envIronment desIgn

The centralized controller is the connection 
between the southbound environment and the 
northbound environment. The design of the cen-
tralized controller should achieve two objectives: 
hybrid storage and elastic computing.

Principle 2: Provide a unified framework for 
heterogeneous data storage and management: 
The storage component is designed to interact 
with the southbound information aggregation 
environment. As the volume of the aggregated 
data increases rapidly, the data storage compo-
nent should store the massive data with a high 
throughput capacity. Data are collected from mul-
tiple sources with different structures, and then 
the storage component categorizes and organizes 
them in a transparent way [10]. 

Jiang et al. have introduced a solution for data 
storage by combining multiple databases [11]. 
They have also built some mapping schemes for 
database operations. By providing standardized 
APIs, data can be stored by category automati-
cally. In addition, since the information aggrega-
tion environment provides identifiable information 
for stored data, we propose a method to decide 
where the data will be stored and when the 
results will be computed.

Principle 3: Provide elasticity to enable sup-
portive computing in the converged networks: 
The computing component is designed to interact 
with the northbound application environment. 
The design of components should support elas-
ticity to enhance the ability for different heteroge-
neous data and applications [12, 13]. 

To achieve the objectives, MicroThings sup-
ports the following three features. First, the 
visualization of computing resources provides 
computing scalability, which in turn supports the 
interoperations between the northbound and 
southbound environments. Second, as IoT is a 

converged computing platform that supports the 
next generation communication technology, that 
is, the fifth generation (5G) mobile network, the 
edge devices with increasing computing resources 
can also contribute their capabilities for support-
ive computing. Finally, the visualization resources 
can be scheduled in a flexible and interoperative 
way, which further allows more fine-grained con-
trol between services and devices. 

ApplIcAtIon envIronment desIgn

Principle 4: Provide a whole ecosystem for IoT 
application development, deployment, and pro-
vision: The application environment lies in the 
northbound of the MicroThings architecture, 
which is designed to provide applications for mul-
tiple stakeholders, such as device providers, soft-
ware providers, and storage providers. As more 
and more devices are connected to MicroThings, 
the application environment should support the 
whole application production process, including 
development, deployment, provision, and main-
tenance [14]. 

SOA is the most commonly used for service 
provision via XML-based standards. Constructing 
an ecosystem for service-oriented application is a 
general approach to achieve these goals. On one 
hand, the ecosystem provides all applications with 
standard interfaces, with which the application 
can control device logics and interact with other 
applications. On the other hand, multiple stake-
holders can share the developed applications. 
They can publish requirements to the ecosystem 
and obtain applications in a pay-for-use manner. 
Furthermore, the ecosystem supports value-added 
application provision with model-driven develop-
ment (MDD) from the composition of existing 
applications, creating a resource pool of rich and 
varied applications. 

cAse study And vAlIdAtIon

selected scenArIo

To further illustrate the advantages of our 
MicroThings architecture, we conduct a case 
study and its analysis in this section. Figure 4 illus-
trates the selected scenario in which four practi-
cal IoT systems are deployed in our MicroThings 
architecture: highway transportation, safe city, 
smart community, and green farming. 

In the above scenario, these four systems exe-
cute the same processing flow. First, sensors are 
connected to the IoT switches for data collection. 
Then applications are deployed to process the 
control logics of the sensors. Finally, the central 
controller connects the above two parts to auto-
matically control data collection and effectively 
provide computing resources.

ArchItecture vAlIdAtIon

Information Aggregation: We consider the 
deployment of these systems to illustrate the net-
work DIY. The safe city system reflects the need 
for city sensing. It deploys sensors to observe 
street views, weather, noise, air condition, and so 
on. The aggregation data may vary with the sen-
sors’ interfaces and functionalities. Consider the 
following two cases for sensing data aggregation. 
One is the sensor deployment in a new area. For 
instance, a modernizing city usually deploys many 
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cameras for a street view. Cameras from diff erent 
vendors can be connected to our IoT switches 
for data aggregation. Our environment provides 
a wizard to register the cameras, including the 
manufacturer, identification, sampling frequen-
cy, and so on. If the devices are supported, our 
MicroThings automatically translates the protocols 
of these devices and lists the possible commu-
nication patterns for the registered devices. The 
aggregated data will be further processed by the 
administrator for the city views. Otherwise, for 
unsupported devices, more confi guration informa-
tion to support JSON-formatted data transmission 
is required. The other case is sensor maintenance 
and replacement. For environmental condition 
monitoring applications, the sensors sometimes 
need to be replaced for accuracy improvement, 
and some of the sensors can easily be added or 
removed only if they are supported by the com-
patible protocols from the IoT switches.

We then consider another system for highway 
transportation, where some of the sensors are 
compatible with sensors in the safe city. The high-
way transportation shares the sensors to provide 
dynamic traffi  c information to enhance the safe-
ty of the neighboring city. Thus, the data can be 
aggregated together to share with other systems.

Hybrid Data Storage: We consider the green 
farming system. In this case, the environmental 
data (CO2, NO2, temperature) and video data 
should be stored. The environmental data are 
stored in structured databases as they are com-
posed of some determined items such as time, 
value, and location. However, the video data are 
massive and unstructured. We store them in the 
NoSQL database. The storage provides standard 
interfaces to connect with the information aggre-
gation environment and automatically categorizes 
the environmental and video data. It also supports 
locating data for further computing such as cool-
ing the granary when the temperature is rising. 

Elastic Computing: With the development of 
computation capability, CPU-controlled devic-

es can contribute their power for computation. 
Through visualization, intelligent vehicles and 
handheld cell phones can support computing pro-
vision. For instance, sensors on cell phones can 
perceive temperature and noise data to coopera-
tively compute the local comfort degree. Similarly, 
vehicles can also compute the results of traffic 
fl ow for various IoT applications. 

In addition, the computing component sup-
ports interactions between the physical and cyber 
worlds. Consider the smart community system, 
where deployed chillers can be automatical-
ly adjusted to a comfortable temperature, and 
the sensors send monitored data to the applica-
tion for controlling the behavior of the chiller. 
The adjustment supports interoperation between 
chillers and control applications. For example, 
the application can activate more sensors when 
residents are quite sensitive to the change of the 
temperature, or the sensors can send control 
information to reduce the monitoring frequency 
if the temperature stays constant for a long time.

Application Life Cycle: The application envi-
ronment supports the whole application life cycle 
including application development, deployment, 
and provision. It also supports some advanced 
features, such as application reuse and composi-
tion.

Since environmental monitoring is the most 
common IoT application, it can be shared by dif-
ferent platforms. In other words, the applications 
for environmental monitoring can be shared by 
multiple systems, such as safe city, smart com-
munity, and green farming. In addition, the 
applications can be composed together in a drag-
and-drop way to provide value-added and various 
applications. MicroThings checks the input-output 
results of some typical patterns for each composi-
tion. For instance, a grain preservation application 
is provided in green farming by composing envi-
ronment monitoring (for the level of O2) service 
and ventilation service.

From these scenarios, we can conclude that 

Figure 4. Implementation of multiple IoT systems with MicroThings.
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the most intuitive advantages of our proposed 
architecture contain the following three aspects:
1. A unified MicroThings architecture can sup-

port multiple IoT systems.
2. Multiple novel systems can be deployed rap-

idly from existing systems to adapt to differ-
ent environments.

3. Multiple stakeholders can share the applica-
tions run on MicroThings.

performAnce evAluAtIon

We have performed simulation experiments to 
evaluate the performance of our proposed 
MicroThings architecture. Our MicroThings runs 
on a Xen-based cloud with 2-core processors and 
4 GB memory. MicroThings supports two running 
modes, the performance mode and the balanced 
mode, to collect data from the physical world. 
The former exploits all the possible resources in 
the cloud-based centralized controller to handle 
the sensing requests, while the latter only uses 
the configured resources. As the latter mode can 
be considered as one partition of the former one, 
we only conducted experiments to simulate the 
requests from our physical devices in the perfor-
mance mode. 

Figure 5 illustrates the results of our evaluation 
on computation costs and throughput capacity. In 
MicroThings, our centralized core supports elastic 
computing using adaptive threads. Figure 5a reveals 
that our MicroThings adaptively creates close to 200 
threads to handle the requests from physical devic-
es under the experimental configuration. As our 
MicroThings supports a Memcached-enabled hybrid 

storage framework for ubiquitous data storage, the 
hot data cached in the Memcached system can be 
used for massive IoT requests. Compared to the 
non-cached hybrid framework, our MicroThings can 
offload 60 percent of requests to the storage system 
(Fig. 5b). Therefore, the core of MicroThings is an 
efficient architecture for interoperation between two 
DIY environments, even for large-scale IoT deploy-
ments.

conclusIon
This article introduces a generic Internet of Things 
architecture, called MicroThings, which lowers the 
hurdle of IoT development. Specifically, the archi-
tecture supports network and application DIYs 
with the help of the centralized controller. Within 
this architecture, crowds rather than professional 
designers can customize their network and appli-
cation developments. MicroThings consists of four 
parts: data aggregation, storage, computing, and 
processing, and provides standardized interfaces. 
As a result, this architecture unifies fragmented 
IoT elements into a whole ecosystem, facilitates 
the control and management of physical devic-
es in the physical world, enriches the application 
resources in the cyber world, and provides elastic 
computing and hybrid storage for flexible interop-
erations between these two worlds.
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