
IEEE Communications Magazine • September 201786 0163-6804/17/$25.00 © 2017 IEEE

AbstrAct

The Internet of Things has been widely
deployed in various areas of daily life through
heterogeneous communications protocols. Each
unstandardized protocol focuses on a specific IoT
communication pattern. Inspired by the Internet
architecture over which divergent devices can
easily be accessed and a considerable number
of applications can be run, we propose a generic
architecture for IoT. This architecture supports
two DIY areas: network DIY for data aggregation
and application DIY for service cooperation. To
connect these two DIYs, a centralized control-
ler has been designed to provide standardized
interfaces for data acquisition, organization, and
storage, and to support elastic and supportive
computing. With these properties, divergent
devices can coexist in a uniform microworld, and
rich services can be developed and provided on
demand to interoperate with physical devices.
This article discusses the background, design
principles, and advantages of the proposed archi-
tecture, as well as open problems and our initial
solution, which substantiates a novel IoT architec-
ture and new research ground.

IntroductIon
Currently, the Internet of Things (IoT) has been
widely adopted in various crucial systems such as
city sensing, highway transportation, smart com-
munities, and green farming. IoT aims to enable
data exchange and smart communication among
everyday objects, from watches, cookers, and
bicycles, even to humans, plants, and animals [1].
Things can see, hear, and perceive the real-world
environment to achieve more comfortable and
safer living conditions. For instance, London has
deployed all sorts of sensors to improve urban
services: traffic prediction, weather forecasts,
waste management, and water quality monitoring
[2]. In addition to dedicated IoT platforms, mobile
devices (e.g., smartphones, wearables, and vehi-
cles) are also utilized as sensing resources.

Sensors in different IoT systems communicate
through divergent protocols and standards. These
protocols include Message Queuing Telemetry
Transport (MQTT), Extensible Messaging and
Presence Protocol (XMPP), Constrained Applica-
tion Protocol (CoAP), Data Distribution Service

(DDS), Advanced Message Queuing Protocol
(AMQT), and others. The lack of ubiquitous sen-
sor access has resulted in a fragmented IoT eco-
system, which brings about the following two
problems. On one hand, IoT services are built on
top of application-level message protocols. The
design, deployment, and adoption of vendor-de-
pendent IoT elements (sensors, acurators, gate-
ways, etc.) is customized with regard to specific
application requirements, making them difficult
for an amateur to access or operate, let alone to
organize them for customer-oriented application.
On the other hand, as devices are controlled by
dedicated platforms, the system logics tend to be
ossified and hardly meet requirement changes.
The differences from one platform to another lead
to data disunity and redundancy, which also make
it difficult to utilize data from different platforms.

The development of the IoT system is still in
its infancy. However, the Internet has exerted sig-
nificant influence on our lifestyles for a long time.
From the hardware perspective, devices are con-
nected to the Internet through unified interfaces,
that is, we can communicate with cyberspace via
an inexpensive home router after some configura-
tions in wizard webpages. From the software per-
spective, rich and varied applications flourish on
the Internet to satisfy consumers’ specific tastes.
Service-oriented architecture (SOA) and HTML5
further enrich the web-based application resourc-
es through a standardized interface. The design of
future IoT should be flexible enough to satisfy the
requirements of complex networks and various
applications.

There is no doubt that it is necessary to build
an adaptive and scalable architecture for sustain-
able IoT developments, just as the Internet pro-
vides today. Some platforms, such as the Eclipse
IoT project, Intel IoT framework, and Baidu IoT
framework, have been proposed to enable het-
erogeneous integration with different communica-
tion technologies and application protocols. These
solutions mainly focus on the design of enhanced
protocols or smart gateways for the conversion of
multiple baseline protocols. However, as they are
strongly coupled with the supported protocols,
different platforms may not be compatible with
each other. In addition, users have to be familiar
with the specifications of each platform, leading
to a steep learning curve for the non-expert.

MicroThings: A Generic IoT Architecture for
Flexible Data Aggregation and
Scalable Service Cooperation

Yulong Shen, Tao Zhang, Yongzhi Wang, Hua Wang, and Xiaohong Jiang

AdvAnces In network servIces chAIn

Inspired by the Internet
architecture over which
divergent devices can
easily be accessed and a
considerable number of
applications can be run,
the authors propose a
generic architecture for
IoT. This architecture sup-
ports two DIYs: network
DIY for data aggregation
and application DIY for
service cooperation. To
connect these two DIYs, a
centralized controller has
been designed to provide
standardized interfaces
for data acquisition,
organization, and storage,
and to support elastic and
supportive computing.

Yulong Shen, Tao Zhang and Yongzhi Wang are with Xidian University; Hua Wang is with Victoria University; Xiaohong Jiang is with Future University Hakodate.
Digital Object Identifier:
10.1109/MCOM.2017.1700104

IEEE Communications Magazine • September 2017 87

Within the contextual background, this arti-
cle proposes a generic IoT architecture, called
MicroThings, to glue all the “Things” fragments
into a uniform microworld. MicroThings integrates
the application environment and the information
aggregation environment with a logically central-
ized controller. Each of the two environments
supports heterogeneous cooperation with a set
of uniform interfaces. The controller connects
the two environments and allows interoperation
among applications and sensing devices.

Figure 1 illustrates the MicroThings architec-
ture. It implements do-it-yourself abilities (DIYs)
at two levels. One is the network DIY, which is at
the bottom of MicroThings, where multiple sens-
ing devices are accessed via compatible forward-
ing devices. Consumers are able to customize
their IoT networks for data acquisition, transmis-
sion, and interaction. The other is the application
DIY, which sits on top of the MicroThings, where
standardized application programming interfaces
(APIs) are provided for the development, deploy-
ment, and provision of new applications, as well
as the reuse and composition of existing applica-
tions. These characteristics empower MicroThings
to ubiquitously access various devices and greatly
enrich service resources.

In the rest of this article, we first analyze the
traditional three-layer IoT architecture, along with
the design directions for existing architecture. We
then introduce the proposed MicroThings archi-
tecture and potential solutions. Case studies are
provided to show the benefits of MicroThings.
Finally, we conclude the article.

Iot: chAllenges And opportunItIes

stAte of the Art

Figure 2 illustrates the traditional IoT architec-
ture. This architecture logically consists of three
layers: the perception layer, the network layer,
and the application layer. Various sensing devices
are deployed in the perception layer to collect
and aggregate data from the physical world (e.g.,
temperature and humidity). The network layer
completes a wide range of information transmis-
sion and exchange on the converged network
systems such as cellular networks — second/third/
fourth generation (2G/3G/4G), narrowband IoT
(NB-IoT), and so on — short-range communica-
tion networks (Bluetooth, Wifi, Zigbee, etc.), long-
range wireless networks (LoRa, openRF, etc.), and
remote communication networks (satellite). The
collected data are transmitted to data centers
through the network layer for further storage and
processing. The application layer processes the
collected data and interacts with people for fur-
ther analysis and decision making. This three-layer
architecture has been deployed in different areas
such as intelligent homes, smart cities, public
security, and green farming.

The general approach to developing IoT sys-
tems is to synthetically design these three layers
with respect to specific application requirements.
More specifically, engineers first select proper
sensors to collect required data from the physical
world, then design gateways and routers to trans-
mit the data to local or remote data centers, and
finally gather data to design various domain-spe-
cific applications.

problems And dIrectIons

While the domain-specific development of the
above three-layer IoT architecture seems quite
straightforward, it has several problems that hin-
der sustainable development. We summarize
these issues as follows.

Difficulty with IoT Device Networking:
Through split-level developments, the perception
layer manages the access and data transmission
of sensing devices. However, as devices are close-
ly relevant to the sensing data, frequent recon-
figurations of the perception and network layers
are needed when the collecting devices change.
For example, the improvement in the accuracy of
air quality monitoring needs redeployment and
reconfiguration of more air sensors. In addition,
with the coexistence of different physical interfac-
es and communication protocols, it is impractical
for an ordinary consumer to organize the devices,
or handle the heterogeneous security issues [3].

Figure 1. Illustration of the proposed architecture.

Data
centers

Forwarding
device

Computing centerSensor

Application Data interface Computing interface

Resources

Sensors

Application

Application
compositions

Application
provisions

Hybrid storage
Elastic computing

Application DIY
Network DIY

Information
aggregation

Interoperations

Figure 2. Three-layer Internet of Things architecture.

Gateway

…… SensorCamera Barcode RFID Reader

Adapter

LPWANCellular
networks

Satellite
networks

Intelligent home Smart city Public security Green farmingApplication layer

Network layer

Perception layer

LAN

IEEE Communications Magazine • September 201788

High Data Storage and Computing Cost:
We should build different storage and comput-
ing frameworks for different types of data, which
means high investment in the IoT application
infrastructures. For instance, the system should
establish file repositories and NoSQL databases
to store unstructured data like real-time videos,
and relational databases to store structured data.
Even for applications of similar functionality from
different stakeholders, the software, hardware,
power, and control systems must be deployed
independently, leading to a high cost for each IoT
system.

Inflexible Application Provisions: The control
logics of applications are closely coupled with
the platform configurations such as the percep-
tive sensors, the network structures, and the
storage/computing framework. In addition, the
problem of broadly reusable applications remains
unsolved. For example, existing applications can-
not be directly migrated to the new environment
without an application market. It requires applica-
tion re-development or re-configuration for some,
or even similar, IoT scenarios, which has led to
overlapping investments.

With the development of network technol-
ogy and the increasing number of applications,
industry and academia need to establish a gener-
ic architecture that can address the main issues
mentioned above. There are some trends appar-
ent in the design of IoT architecture, which we
summarize below.

Automation of the ubiquitous network: As
the capillary ends, sensors are the data sources
that supply blood to the whole IoT system. Since
multiple sensing devices provided by different
manufacturers have coexisted in the IoT system,
the design of new architecture should support the
ubiquitous access that is compatible with these
different communication protocols and standards.

For example, C. Hou et al. proposed profile-based
access for device integration with IoT-Cloud,
which groups the sensors by category and inte-
grates the sensors by the category profile to the
IoT-Cloud [4].

In addition to ubiquitous access, there is the
trend toward network automation. It should pro-
vide a configurable and programmable inter-
face with which people will need less expertise
to be involved in modern intelligent IoT activi-
ties. For instance, A. Al-Fuquha et al. proposed a
rule-based gateway for device organizations with
divergent protocols which also guaranteed the
quality of service (QoS) properties in the IoT sys-
tems [5].

The blend of flexible data storage and elas-
tic computing: Flexible data storage provides
the ability to properly manage the collected data
from multiple data sources, and elastic computing
further enhances the ability to process the mas-
sive amount data [6–8]. The blend of data stor-
age and computing creates a uniform core that
can control the IoT logics. As the linking element
between the physical world and the cyber world,
this core provides a resource pool with all kinds
of operations that can help hide the complexity
and the heterogeneity of underlying infrastruc-
tures. This trend suggests that IoT architecture
should build a control core for interoperation
between the southbound devices and the north-
bound applications.

The reuse of application programming and
composition interface means that the north-
bound environment supports the programming,
provision, and sharing of applications to differ-
ent stakeholders in a unified market [9]. Also, the
application environment should be a platform-in-
dependent model that can customize and con-
sume existing services to construct composite
ones that facilitate reuse, just as SOA) provides.

In addition to ubiqui-

tous access, there is the

trend toward network

automation. It should

provide a configurable

and programmable

interface with which

people will need less

expertise to be involved

in modern intelligent

IoT activities.

Figure 3. MicroThings architecture.

Ap
pl

ica
tio

n
en

vir
on

m
en

t

Application
development

Ce
nt

ra
liz

ed
 co

nt
ro

lle
r

 Hybrid storage component Elastic computing component

In
fo

rm
at

io
n

ag
gr

eg
at

io
n

en
vir

on
m

en
t

Sensor device manager

Unified computing interface

Interoperative
computing

Resource
visualization

Supportive
computing

Unified storage interface

Data
repository

NoSQL
database

Relational
database

IoT switches
Wi-Fi ZigBee PLC RJ-45

FF F F

…

Application
deployment

Application
provision

Application
maintenance

IEEE Communications Magazine • September 2017 89

As the reuse of applications can significantly
reduce the development and maintenance costs,
it is believed that the scalable service resources
should be one of the built-in characteristics of
modern IoT architecture.

There are many standardization opportunities
that could be implemented to make it easier for
service providers and consumers to work with
an IoT ecosystem. From the perspective of the
IPSO Alliance, the IoT is a system-of-systems, and
each system has its own standards. Therefore,
supporting interoperability of different systems
is still the major hurdle to achieving massive IoT
adoption. Standardization organizations such as
the International Telecommunication Union Tele-
communication Standardization Sector (ITU-T),
Third Generation Partnership Project (3GPP), and
International Organization for Standardization/
International Electrotechnial Commission (ISO/
IEC) are leading the IoT standardization progress.
As an ongoing standard specification, oneM2M
(M2M: machine-to-machine) is devleloping a
semantics enabler to bridge the gap between cur-
rent IoT resources. As well, SmartM2M and Light-
Weight M2M (LWM2M) have been developed to
provide network-independent services. In addition
to the aforementioned standards, some projects
such as Eclipse IoT projects, the Intel IoT platform,
the Baidu IoT platform, and the Tencent IoT plat-
form are also contributing their efforts to provide
uniform open APIs to simplify application devel-
opment over IoT devices. The general direction
is to design a cloud-based architecture to enable
intelligent data acquisition and analysis through
integrated protocols and standards, and bring uni-
form access while supporting different interac-
tions between cloud and smart devices. However,
these platforms are still excessively complicated
for the non-expert, and it is necessary to build a
generic architecture with lower entry barrier.

mIcrothIngs: ArchItecture overvIew
In this article, we propose a generic IoT architec-
ture, referred to as MicroThings, which combines
the fragmented devices, networks, and applica-
tions into a micro IoT world. As illustrated in Fig.
3, the MicroThings consists of two environments
connected with a centralized controller.

Information Aggregation Environment: This
environment supports the first DIY for operating
physical devices. The environment aggregates
data from the packages of devices, including the
resource-constraint devices and the resource-rich
equipment, and multiple multi-mode switches.
Each switch integrates a variety of wired and wire-
less communication interfaces to control the trans-
mission patterns among IoT devices. For prevalent
protocols, like MQT and, AMQP, the architec-
ture employs a conversion scheme to address the
interoperation issues. In addition, to support more
ubiquitous device access, this environment also
establishes a JSON encoded HTTP parser to sup-
port the extensive accesses of the non-TCP/IP
devices and scalable protocols. Thus, consumers
can focus only on the connecting devices without
worrying about the design specifications.

Moreover, the environment establishes a man-
ager to provide a registration mechanism for the
multi-domain connected devices. The manager
plays the roles of both virtualized gateway and

pattern recommender. The “things” can join or
leave MicroThings for public or private use. Thus,
MicroThings can recommend suitable applica-
tions to involved devices when they talk to each
other, for example, recommending smart home
applications for air quality devices. On the other
hand, devices can be shared on MicroThings for
public use, which greatly raises resource utiliza-
tion ratio and reduces the deployment cost.

Centralized Controller Environment: This
environment plays the intermediary role between
the information aggregation environment and the
application environment. The controller consists
of two parts: the hybrid storage component and
the elastic computing component. The storage
component provides standardized APIs to gather
the aggregated data from the southbound envi-
ronment, and then stores them by category in
the corresponding databases. The computing
component extracts required information from
the storage component, and then prepares the
computing resources for further processing. The
elasticity ensures that the computing resources
can be dynamically allocated to coordinate with
the dynamic changes across the entire IoT archi-
tecture.

Application Environment: This environment
supports the second DIY for the IoT control log-
ics, where applications can be developed with
respect to the published requirements. As the
underlying differences are hidden from the cen-
tralized controller, this environment creates a uni-
fied service ecosystem that supports application
provision, development, deployment, and main-
tenance.

Moreover, this environment supports the reuse
of applications, where different stakeholders can
share the provided applications. Besides, for com-
plex control logics, existing applications can be
combined to rapidly create value-added function-
alities.

desIgn prIncIples And
ImplementAtIon solutIons

The previous section presented a generic archi-
tecture, MicroThings, which supports two kinds
of DIYs coordinated with a centralized control. In
this section, we illustrate how such architecture
has been instantiated. For this purpose, a set of
design principles has been proposed as the build-
ing blocks for the architecture, and the implemen-
tation solutions are given.

InformAtIon AggregAtIon envIronment desIgn

Principle 1: Enabling ubiquitous and on-demand
network access for IoT devices: The information
aggregation environment lies in the southbound
direction of the MicroThings architecture, which
is designed to directly interact with the physi-
cal sensing devices. On the traditional Internet,
communication devices are accessed via a set
of uniform standards, such as Ethernet, to trans-
mit information from one point to another. Com-
pared to the traditional Internet, the design of an
information aggregation environment for the IoT
is much more difficult because of the heteroge-
neity of devices. Besides, the data aggregated in
MicroThings should be identifiable, manageable,
and controllable. As devices are abstracted in the

The computing compo-

nent extracts required

information from the

storage component,

and then prepares the

computing resources for

further processing. The

elasticity ensures that

the computing resourc-

es can be dynamically

allocated to coordinate

with the dynamic

changes across the

entire IoT architecture.

IEEE Communications Magazine • September 201790

data layer, end users can achieve on-demand net-
work DIY in the MicroThings architecture.

As an initial solution to the above problems, we
first designed IoT switches for data device access.
An IoT switch is a multi-mode switch consisting of
a set of front-end ports and a back-end port. The
front-end port supports different communication
protocols and standards, including Wi-Fi, ZigBee,
PLC, RJ-45, and so on, while the back-end port
connects to the sensor manager. To achieve the
first objective, an IoT switch is deployed to access
the local heterogeneous participant sensors.
Therefore, the addressable sensors can directly
communicate to our MicroThings switches via
the manufactured gateway. Other server-oriented
communications, like satellite and wired commu-
nications, can be plugged into our architecture for
data storage and processing. Moreover, different
IoT switches can be further placed at different
locations for large-scale deployments.

For the second objective, a device manager
is also used for the automatic management of
IoT switches. The information that the manager
receives contains the identifications and statuses
of the sensors. Thus, sensors are registered auto-
matically to provide abstractions when they are
active. The centralized controller also uses this
information for the abstraction of the data rather
than the physical devices.

centrAlIzed controller envIronment desIgn

The centralized controller is the connection
between the southbound environment and the
northbound environment. The design of the cen-
tralized controller should achieve two objectives:
hybrid storage and elastic computing.

Principle 2: Provide a unified framework for
heterogeneous data storage and management:
The storage component is designed to interact
with the southbound information aggregation
environment. As the volume of the aggregated
data increases rapidly, the data storage compo-
nent should store the massive data with a high
throughput capacity. Data are collected from mul-
tiple sources with different structures, and then
the storage component categorizes and organizes
them in a transparent way [10].

Jiang et al. have introduced a solution for data
storage by combining multiple databases [11].
They have also built some mapping schemes for
database operations. By providing standardized
APIs, data can be stored by category automati-
cally. In addition, since the information aggrega-
tion environment provides identifiable information
for stored data, we propose a method to decide
where the data will be stored and when the
results will be computed.

Principle 3: Provide elasticity to enable sup-
portive computing in the converged networks:
The computing component is designed to interact
with the northbound application environment.
The design of components should support elas-
ticity to enhance the ability for different heteroge-
neous data and applications [12, 13].

To achieve the objectives, MicroThings sup-
ports the following three features. First, the
visualization of computing resources provides
computing scalability, which in turn supports the
interoperations between the northbound and
southbound environments. Second, as IoT is a

converged computing platform that supports the
next generation communication technology, that
is, the fifth generation (5G) mobile network, the
edge devices with increasing computing resources
can also contribute their capabilities for support-
ive computing. Finally, the visualization resources
can be scheduled in a flexible and interoperative
way, which further allows more fine-grained con-
trol between services and devices.

ApplIcAtIon envIronment desIgn

Principle 4: Provide a whole ecosystem for IoT
application development, deployment, and pro-
vision: The application environment lies in the
northbound of the MicroThings architecture,
which is designed to provide applications for mul-
tiple stakeholders, such as device providers, soft-
ware providers, and storage providers. As more
and more devices are connected to MicroThings,
the application environment should support the
whole application production process, including
development, deployment, provision, and main-
tenance [14].

SOA is the most commonly used for service
provision via XML-based standards. Constructing
an ecosystem for service-oriented application is a
general approach to achieve these goals. On one
hand, the ecosystem provides all applications with
standard interfaces, with which the application
can control device logics and interact with other
applications. On the other hand, multiple stake-
holders can share the developed applications.
They can publish requirements to the ecosystem
and obtain applications in a pay-for-use manner.
Furthermore, the ecosystem supports value-added
application provision with model-driven develop-
ment (MDD) from the composition of existing
applications, creating a resource pool of rich and
varied applications.

cAse study And vAlIdAtIon

selected scenArIo

To further illustrate the advantages of our
MicroThings architecture, we conduct a case
study and its analysis in this section. Figure 4 illus-
trates the selected scenario in which four practi-
cal IoT systems are deployed in our MicroThings
architecture: highway transportation, safe city,
smart community, and green farming.

In the above scenario, these four systems exe-
cute the same processing flow. First, sensors are
connected to the IoT switches for data collection.
Then applications are deployed to process the
control logics of the sensors. Finally, the central
controller connects the above two parts to auto-
matically control data collection and effectively
provide computing resources.

ArchItecture vAlIdAtIon

Information Aggregation: We consider the
deployment of these systems to illustrate the net-
work DIY. The safe city system reflects the need
for city sensing. It deploys sensors to observe
street views, weather, noise, air condition, and so
on. The aggregation data may vary with the sen-
sors’ interfaces and functionalities. Consider the
following two cases for sensing data aggregation.
One is the sensor deployment in a new area. For
instance, a modernizing city usually deploys many

The addressable sensors

can directly communi-

cate to our MicroTh-

ings switches via the

manufactured gateway.

Other server-oriented

communications, like

satellite and wired

communications, can be

plugged into our archi-

tecture for data storage

and process. Moreover,

different IoT switches

can be further placed

at different locations for

large-scale deployments.

IEEE Communications Magazine • September 2017 91

cameras for a street view. Cameras from diff erent
vendors can be connected to our IoT switches
for data aggregation. Our environment provides
a wizard to register the cameras, including the
manufacturer, identification, sampling frequen-
cy, and so on. If the devices are supported, our
MicroThings automatically translates the protocols
of these devices and lists the possible commu-
nication patterns for the registered devices. The
aggregated data will be further processed by the
administrator for the city views. Otherwise, for
unsupported devices, more confi guration informa-
tion to support JSON-formatted data transmission
is required. The other case is sensor maintenance
and replacement. For environmental condition
monitoring applications, the sensors sometimes
need to be replaced for accuracy improvement,
and some of the sensors can easily be added or
removed only if they are supported by the com-
patible protocols from the IoT switches.

We then consider another system for highway
transportation, where some of the sensors are
compatible with sensors in the safe city. The high-
way transportation shares the sensors to provide
dynamic traffi c information to enhance the safe-
ty of the neighboring city. Thus, the data can be
aggregated together to share with other systems.

Hybrid Data Storage: We consider the green
farming system. In this case, the environmental
data (CO2, NO2, temperature) and video data
should be stored. The environmental data are
stored in structured databases as they are com-
posed of some determined items such as time,
value, and location. However, the video data are
massive and unstructured. We store them in the
NoSQL database. The storage provides standard
interfaces to connect with the information aggre-
gation environment and automatically categorizes
the environmental and video data. It also supports
locating data for further computing such as cool-
ing the granary when the temperature is rising.

Elastic Computing: With the development of
computation capability, CPU-controlled devic-

es can contribute their power for computation.
Through visualization, intelligent vehicles and
handheld cell phones can support computing pro-
vision. For instance, sensors on cell phones can
perceive temperature and noise data to coopera-
tively compute the local comfort degree. Similarly,
vehicles can also compute the results of traffic
fl ow for various IoT applications.

In addition, the computing component sup-
ports interactions between the physical and cyber
worlds. Consider the smart community system,
where deployed chillers can be automatical-
ly adjusted to a comfortable temperature, and
the sensors send monitored data to the applica-
tion for controlling the behavior of the chiller.
The adjustment supports interoperation between
chillers and control applications. For example,
the application can activate more sensors when
residents are quite sensitive to the change of the
temperature, or the sensors can send control
information to reduce the monitoring frequency
if the temperature stays constant for a long time.

Application Life Cycle: The application envi-
ronment supports the whole application life cycle
including application development, deployment,
and provision. It also supports some advanced
features, such as application reuse and composi-
tion.

Since environmental monitoring is the most
common IoT application, it can be shared by dif-
ferent platforms. In other words, the applications
for environmental monitoring can be shared by
multiple systems, such as safe city, smart com-
munity, and green farming. In addition, the
applications can be composed together in a drag-
and-drop way to provide value-added and various
applications. MicroThings checks the input-output
results of some typical patterns for each composi-
tion. For instance, a grain preservation application
is provided in green farming by composing envi-
ronment monitoring (for the level of O2) service
and ventilation service.

From these scenarios, we can conclude that

Figure 4. Implementation of multiple IoT systems with MicroThings.

Highway transportation Safe city Smart community Green farming

Environment condition
(safe city,

 smart community,
green farming)

Computing resourceComputing resource

Interoperation

Street view
(safe city)

Traffic management
(safe city,

highway transportation)

Temperature control
(smart community,

green farming)

Ventilation
(green farming)

IoT switches

Green farming The applications for

environmental moni-

toring can be shared

by multiple systems,

such as safe city, smart

community and green

farming. In addition,

the applications can

be composed together

using drag-and-

drop way to provide

value-added and

various applications.

MicroThings checks the

input-output results of

some typical patterns

for each composition.

IEEE Communications Magazine • September 201792

the most intuitive advantages of our proposed
architecture contain the following three aspects:
1. A unified MicroThings architecture can sup-

port multiple IoT systems.
2. Multiple novel systems can be deployed rap-

idly from existing systems to adapt to differ-
ent environments.

3. Multiple stakeholders can share the applica-
tions run on MicroThings.

performAnce evAluAtIon

We have performed simulation experiments to
evaluate the performance of our proposed
MicroThings architecture. Our MicroThings runs
on a Xen-based cloud with 2-core processors and
4 GB memory. MicroThings supports two running
modes, the performance mode and the balanced
mode, to collect data from the physical world.
The former exploits all the possible resources in
the cloud-based centralized controller to handle
the sensing requests, while the latter only uses
the configured resources. As the latter mode can
be considered as one partition of the former one,
we only conducted experiments to simulate the
requests from our physical devices in the perfor-
mance mode.

Figure 5 illustrates the results of our evaluation
on computation costs and throughput capacity. In
MicroThings, our centralized core supports elastic
computing using adaptive threads. Figure 5a reveals
that our MicroThings adaptively creates close to 200
threads to handle the requests from physical devic-
es under the experimental configuration. As our
MicroThings supports a Memcached-enabled hybrid

storage framework for ubiquitous data storage, the
hot data cached in the Memcached system can be
used for massive IoT requests. Compared to the
non-cached hybrid framework, our MicroThings can
offload 60 percent of requests to the storage system
(Fig. 5b). Therefore, the core of MicroThings is an
efficient architecture for interoperation between two
DIY environments, even for large-scale IoT deploy-
ments.

conclusIon
This article introduces a generic Internet of Things
architecture, called MicroThings, which lowers the
hurdle of IoT development. Specifically, the archi-
tecture supports network and application DIYs
with the help of the centralized controller. Within
this architecture, crowds rather than professional
designers can customize their network and appli-
cation developments. MicroThings consists of four
parts: data aggregation, storage, computing, and
processing, and provides standardized interfaces.
As a result, this architecture unifies fragmented
IoT elements into a whole ecosystem, facilitates
the control and management of physical devic-
es in the physical world, enriches the application
resources in the cyber world, and provides elastic
computing and hybrid storage for flexible interop-
erations between these two worlds.

Acknowledgment

This research was supported in part by
China NSFC Grants U1536202, 61373173,
61602365, and 61602364, Shaanxi Science &
Technology Coordination & Innovation Proj-
ect 2016KTZDGY05-07-01, and Fundamen-
tal Research Funds for the Central Universities
BDY131419.

references
[1] Y. Qin et al., “When Things Matter: A Survey on Data-Centric

Internet of Things,” J. Net. Comp. Appl., vol. 64, 2016, pp.
137–53.

[2] D. Boyle et al., “Urban Sensor Data Streams: London 2013,”
IEEE Internet Comp., vol. 17, no. 6, 2013, pp. 12–20.

[3] D Abebe et al., “Lightweight Cybersecurity Schemes Using
Elliptic Curve Cryptography in Publish-Subscribe Fog Com-
puting,” Mobile Net. Appl., vol. 22, no. 112, 2017, pp. 1–11.

[4] C. Hou et al., “Middleware for IoT-Cloud Integration Across
Application Domains,” IEEE Design & Test, vol. 31, no. 3,
2014, pp. 21–31.

[5] A. Al-Fuqaha et al., “Toward Better Horizontal Integration
among IoT Services,” IEEE Commun. Mag., vol. 53, no. 9,
Sept. 2015, pp. 72–79.

[6] X. Sun et al., “EdgeIoT: Mobile Edge Computing for the Inter-
net of Things,” IEEE Commun. Mag., vol. 54, no. 12, Dec.
2016, pp. 22–29.

[7] P. C. Brebner, “Is Your Cloud Elastic Enough? Performance
Modelling the Elasticity of Infrastructure as a Service (IaaS)
Cloud Applications,” Proc. ACM/SPEC Int’l. Conf. Perfor-
mance Engineering, 2012, pp. 263–66.

[8] F. Paraiso et al., “Managing Elasticity across Multiple Cloud
Providers,” Proc. 2013 Int’l. Wksp. Multi-Cloud Applications
and Federated Clouds, 2013, pp. 53–60.

[9] O. Krieger et al., “Enabling a Marketplace of Clouds:
VMware’s vCloud Director,” ACM SIGOPS Operating Sys-
tems Review, vol. 44, no. 4, 2010, pp. 103–14.

[10] A. Botta et al., “On the Integration of Cloud Computing
and Internet of Things,” Proc. Int’.l Conf. Future Internet of
Things and Cloud, 2014, pp. 23–30.

[11] L. Jiang et al., “An IoT-Oriented Data Storage Framework
in Cloud Computing Platform,” IEEE Trans. Ind. Info., vol. 10,
no. 2, 2014, pp. 1443–51.

[12] H. L. Truong et al., “Principles for Engineering IoT Cloud
Systems,” IEEE Cloud Comp., vol. 2, no. 2, 2015, pp. 68–76.

[13] A. Gumaste et al., “Network Hardware Virtualization for
Application Provisioning in Core Networks,” IEEE Commun.
Mag., vol. 55, no. 2, Feb. 2017, pp. 152–59.

Figure 5. Performance evaluation of MicroThings: a) throughout in perfor-
mance mode to support elastic computation; b) computation cost for
hybrid storage.

28.1

135.1

205.7 218.4

367.6

426.1 427.7
390.4 385.4

308

220.2

0

50

100

150

200

250

300

350

400

450

1 5 10 20 50 100 200 400 500 800 1000

Th
ro

ug
hp

ut

Threads

Throughput in performance mode

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 1 0

Ti
m

e
(m

s)

Request sequence

Computation cost
Memcached Standard

IEEE Communications Magazine • September 2017 93

[14] A. Bucchiarone et al., “Incremental Composition for Adap-
tive By-Design Service Based Systems,” Proc. 23rd IEEE Int’l.
Conf. Web Services, 2016, pp. 236–43.

bIogrAphIes
Yulong Shen (ylshen@mail.xidian.edu.cn) is a professor at the
School of Computer Science and Technology, Xidian University,
China. He is an associate director of the Shaanxi Key Laboratory
of Network and System Security and a member of the State
Key Laboratory of Integrated Services Networks. He has served
on the Technical Program Committees of several international
conferences, including ICEBE and INCoS. His research interests
include Internet of Things, wireless network, and cloud comput-
ing security.

Tao Zhang (taozhang@xidian.edu.cn) received his B.S degree
in computer science from Xi’an University of Post and Telecom-
munications, China, in 2008. He received his M.S. and Ph.D.
degrees in computer science from Xidian University in 2011 and
2015, respectively. Since August 2015, he has been an assistant
professor at the School of Computer Science and Technology,
Xidian University. His research interests include service-orient-
ed computing, the Internet of Things, and cloud computing
security.

YongZhi Wang (yzwang@xidian.edu.cn) received his B.S and
M.S degrees in computer science from Xidian University in 2004
and 2007, respectively. He received his Ph.D. in computer sci-
ence from Florida International University in 2015. Since August
2015, he has been an assistant professor at Xidian University.
His research interests include cloud computing security, network
security, big data, and the Internet of Things.

hua Wang (hua.wang@vu.edu.au) is a full professor at Victoria
University. He has more than 10 years of teaching and work-
ing experience in applied informatics in both private enterprise
and academia. He has expertise in electronic commerce, busi-
ness process modeling, and enterprise architecture. As Chief
Investigator, three Australian Research Council Discovery grants
have been awarded since 2006, and 155 peer reviewed scholar
papers have been published.

Xiaohong Jiang [SM] (jiang@fun.ac.jp) is currently a full profes-
sor at Future University Hakodate, Japan. His research interests
include wireless networks, optical networks, network security,
and more. He has published over 280 technical papers at pre-
mium international journals and conferences. He was the winner
of the Best Paper Award of IEEE HPCC 2014, IEEE WCNC 2012,
and the IEEE ICC 2005 Optical Networking Symposium. He is a
member of ACM and IEICE.

