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Practical Verifiable Computation
–A MapReduce Case Study
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Abstract— Public cloud vendors have been offering a variety
of big data computing services on their clouds. However, runtime
integrity is one of the major security concerns that hinder the
wide adoption of those services. In this paper, we focus on
MapReduce, a popular big data computing framework, and
propose the runtime integrity audition (RIA), a solution that
remotely verifies the runtime integrity of MapReduce applica-
tions. RIA records the runtime variable values of the MapRe-
duce application on the public cloud and checks those values
against the application’s code on the private cloud. By doing so,
RIA protects the runtime integrity of MapReduce applications.
Based on the idea of RIA, we developed a prototype system,
called MR Auditor, and tested its applicability and performance
with several Hadoop applications. Our experimental results
showed that MR Auditor is a general tool that can efficiently
audit the runtime integrity of all the MapReduce applications
that we tested. In addition, MR Auditor incurs a moderate
performance overhead. For example, when verifying the Word
Count application, a proper parameter setting of MR Auditor
incurs 1% of extra execution time on the public cloud and
14% of extra execution time on the private cloud.

Index Terms— Runtime integrity, remote verification, cloud
computing, mapreduce.

I. INTRODUCTION

MAPREDUCE applications usually will be executed on
the cluster consisting of a number of hosts. For many

users who cannot afford a dedicated cluster, public clouds offer
a viable solution, in which users can rent clusters on demand
and only pay for the rented resources. However, security
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breaches [1] and vulnerabilities [2], [3] frequently reported
by mass media and researchers keep on reminding us that
protecting the security of public cloud is not so easy. Among
multiple security problems, runtime integrity is one of the most
critical issues that hinder the wide adoption of public clouds.
For MapReduce applications, when the computation job is out-
sourced to the untrusted public cloud, ensuring the computa-
tion correctness is still a challenge that needs to be addressed.

Existing works either do not offer data integrity guar-
antees or incur high performance overheads. For instance,
program anomaly detection systems build models on the
program control flow [4]–[6] or system call parameter values
patterns [7], [8]. They can protect the control flow integrity
of remote computation by remotely checking the execution
trace against the built model. However, this class of work
cannot detect the tampering of variables that are not involved
in the control flow, thus cannot protect the integrity of data
computation. Task assignment-based solutions [9]–[11] lever-
age task replication, task verification and trust management
to achieve the optimal trade-off between the result integrity
and the performance overhead. Such a class of works needs
to perform case-by-case system modifications and is effective
only when the number of tasks is large. Proof-based verifiable
computation [12]–[14] enable programs to generate proofs
while they are executed on the remote host. By employing
cryptographic schemes and computing complexity theorems,
the local host is able to verify the correctness of the remote
computation. Such a class of works checks the execution of
each statement, thus providing a thorough integrity protection.
However, as of this writing, existing works still incur a
significant performance overhead.

Under such a situation, a practical solution is needed to pro-
tect the result integrity of big data computations performed on
the public cloud. In this paper, we use MapReduce as a study
case and propose runtime integrity audition, (or RIA for short),
a hybrid clouds-based remote verification method. RIA can be
used to verify the runtime integrity of MapReduce applications
executed on the untrusted public cloud. RIA transforms the
MapReduce program by inserting logging statements, so that
while the program is executed on the public cloud, execution
logs are generated to reflect runtime variable values. On the
private cloud, by performing the integrity audition based on the
execution logs, RIA is able to verify the runtime integrity of
each MapReduce phase. As a result, RIA protects the runtime
integrity of MapReduce applications.

The integrity audition includes the input audition and the
execution audition. In each phase, the input audition verifies
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the input integrity. The execution audition verifies the integrity
of task executions. In the input audition, a CBF-based set
compare technique is proposed to speed up the input data com-
parison. In the execution audition, we introduce the function
execution audition (FEA) technique to audit the integrity of
each function execution. FEA removes the cohesion between
the function caller and the function callee, thus enabling
users to audition function executions in a sampling manner.
To support the sampling-based FEA, RIA introduces the log
retrieve protocol to keep all the execution logs on the public
cloud, and enable the private cloud to safely retrieve the
execution logs on demand.

On top of the basic solution, we proposed extended solutions
to address two related security problems, namely, how to
protect the the integrity audition on the untrusted private cloud,
and how to protect the data confidentiality on the public cloud.

Based on the design of RIA, we implemented a prototype
system, called MR Auditor, to protect the result integrity
of Hadoop applications. The experimental results showed
that MR Auditor is a generalized tool to protect Hadoop
applications. During the program execution and audition,
it introduced a modest performance overhead, however
incurred non-neglectable storage and transmission loads of
execution logs. For example, to process 1GB of texts with
Word Count application, the transformed program introduced
1% of extra execution time but generated 22 GB of uncom-
pressed execution logs on the public cloud. During the audition
of the above application, MR Auditor introduced 14% of
extra execution time on the private cloud and 3.6 GB of logs
transmitted between clouds with a proper parameter setting.
(see Section VI-A3)

Compared to the program anomaly detection solu-
tions [4]–[8], RIA can detect not only the control flow
tampering, but also the data tampering. Compared to the
task assignment-based solution [9]–[11], RIA does not have
restrictions on the task number and is more general. Com-
pared to the proof-based verification computation [12]–[14],
RIA has shown a much smaller performance overhead
(see Section VI-C).

We denote that the contribution of RIA is not only restricted
to MapReduce computations. The execution log insertion
and the execution audition proposed in Section III-C and
Section III-E are applicable to general computations.

The paper is organized as follows. We introduce the pre-
liminary knowledge of MapReduce and describe the security
model in Section II. We introduce the design details of RIA
in Section III. We perform the security analysis of RIA in
Section IV. We discuss two extended solutions to address
two related security problems in Section V. We present the
experiments and evaluation results in Section VI. We discuss
the related works in Section VII. We conclude the paper and
discuss the future work in Section VIII.

II. PRELIMINARIES AND SECURITY MODEL

A. MapReduce

MapReduce [15] is a parallel programming model for large-
scale dataset processing. It usually has been implemented as
a distributed system deployed on a cluster. In MapReduce,

Listing 1. The PWL code of the sample map function.

each computation request issued by the user is called a
job. Each job is usually broken down into multiple tasks.
The traditional architecture of MapReduce consists of one
master and multiple workers. The master controls the entire
computation, while workers contribute computation resources
to execute tasks assigned by the master.

Each MapReduce job consists of three consecutive phases:
the map phase, the shuffle phase and the reduce phase. In each
phase, data are stored and processed in records, where each
record is in the format of <key, value> pairs. The computation
infrastructure is managed by the MapReduce framework. The
developer only needs to implement the map, reduce, and
partition function. The MapReduce framework will gen-
erate the map and the reduce tasks based on the implemented
functions. Listing 1 shows the typical processing routine of a
MapReduce function: read the data in the format of <key,
value> pair, process the data, and output the data in the
format of <key, value> pair. The types of key and
value can be any object instead of only being integers.
Notice in Listing 1, the original map function does not include
the code in highlights. The highlighted code is the logging
statement inserted by RIA (see Section III-C).

B. Security Model

In our paper, we focus on protecting the result integrity of
the MapReduce applications. For a MapReduce application,
the result integrity is preserved if and only if its result is
correct.

In the hybrid clouds architecture that is employed in this
paper, we assume the public cloud is not trusted. Malicious
public cloud employees or hackers who compromise the public
cloud might want to gain profits by injecting errors into
application results. For instance, when a recommendation
system is outsourced to the public cloud, a malicious company
might want to increase the recommendation frequency of its
product by compromising the program. Different from the
lazy cheater model, where the malicious public cloud commits
cheats only to save computation energy, in this paper, we use a
stronger adversary model, in which the malicious public cloud
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is willing to perform extra computations if this can help to pass
the check. For example, a compromised public cloud can first
compute a job faithfully. After sending the correct execution
logs to the integrity audition, it will tamper the job results and
feed the tampered results as the input to the next job.

In our basic solution, we assume that the private cloud is
trusted, given the fact that private clouds are usually deployed
in the user’s organization, or on a dedicated infrastructure
protected by large cloud vendors. For the cases that the
private cloud can be compromised, we propose two alternative
solutions (in Section V-A) to protect the integrity audition
performed on the private cloud.

III. SYSTEM DESIGN

In this section, we discuss the design of RIA. We firstly
define the MapReduce model and introduce our design moti-
vation. After that, we give a design overview, followed by the
detailed description.

A. The MapReduce Model and the Design Intuition

Without losing generality, a MapReduce application consists
of a sequence of map or reduce phases, executed in an
interleaved sequence. Since our method can be directly applied
to both the map task and the reduce task, we do not distinguish
the map and the reduce phase in the following discussions.
We define the MapReduce application model as follows. The
application input I is originally stored on the private cloud and
then transmitted to the public cloud. A MapReduce application
consists of n phases, marked as p1, p2,…, pn, respectively.
For each phase pi , it consists of qi tasks, marked as ti1, ti2,…,
tiqi . The input and the output of task ti j are Ii j and Oij ,
respectively. The output of the last job is the output of the
entire application, marked as O. O will be sent back to the
private cloud after the entire application completes.

The high level idea of RIA is as follows. For a MapReduce
application consisting of n phases, if we have the input data
set, the execution logs and the output data set of each phase,
we can audit the result integrity of that application in a chain.
Since the application input I is maintained in the private cloud,
by using it as a trusted anchor, we can check the integrity of the
input set in phase 1. When the input set in phase 1 passes the
check, we can use it to verify the execution integrity of
the tasks in phase 1. When the execution integrity of phase 1
passes the check, we can use the output of phase 1 to check
the input set in phase 2, and so on... By auditing the runtime
integrity of each phase sequentially, we are able to verify the
integrity of the last phase’s output set, i.e., O. If the audition
fails at any point in the chain, we simply reject O; otherwise,
O is accepted.

B. System Overview

1) System Architecture: The runtime integrity audition
(RIA) is performed on a hybrid clouds environment, where
the private cloud is trusted and the public cloud is untrusted
(extended solutions are provided in Section V-A to address
the scenario where the private cloud is untrusted). As shown
in Fig. 1, on the private cloud, RIA transforms the origi-
nal programs by inserting logging statements. The resulting

Fig. 1. The architecture of Runtime Integrity Audition.

Algorithm 1 Integrity Audition
Require: The application model is defined in Section III-A.

ti j : task j in phase i . Li j : the execution log of task ti j .
1: input BaseLine← I
2: for i = 1 to n do
3: for j = 1 to qi do
4: Li j ← retrieveExecutionLog(ti j )
5: end for
6: phaseInput ← extract Input ({Li1, . . . , Liqi })
7: input Audi tion(phaseInput, input BaseLine)
8: for j = 1 to qi do
9: execution Audi tion(Li j)

10: end for
11: input Baseline ← extract Output ({Li1, . . . , Liqi })
12: end for
13: input Audi tion(O, input Baseline)

program is called the Program with Log, or PWL for short
(in step 1). The PWLs are then sent to the public cloud
to execute (in step 2). During the execution, the PWLs
generate execution logs, which reflect the statements execution
sequence and the runtime variable values of the program.
When the execution completes, the execution logs will be
transferred back to the private cloud. On the private cloud,
integrity audition is performed based on the execution logs
and the original program. (in step 3). The integrity audition
is performed on a MapReduce phase basis. In each phase,
it performs the input audition and the execution audition.

The integrity audition is described in Algorithm 1. The
algorithm uses the application input I as the trusted anchor
and audits the integrity of the phase inputs and task executions
phase by phase. If a phase passes the audition, its output
becomes the baseline and will be used to audit the integrity of
its succeeding phase. If the output of the last phase passes the
audition, it will be used to audit the application’s output O.
During the execution of the algorithm, any inconsistency
indicates a violation of the runtime integrity.

C. The Execution Log Generation

We transform the MapReduce application by inserting log-
ging statements to its original program, so that the execution
logs will be generated while the program is executed on the
public cloud. We generate four types of logs: the input log,
the output log, the branch log and the invoke log.

The input log records the input data read from the program.
In MapReduce, task input is read in as the parameters
of the map or reduce function, in the format



WANG et al.: PRACTICAL VERIFIABLE COMPUTATION–A MAPREDUCE CASE STUDY 1379

TABLE I

THE EXECUTION LOGS OF EXECUTING Map(3, 5, Context)

of <key, value> pair. Therefore, the logging statements
are inserted at the beginning of the map or reduce
function, recording values of the <key, value> pairs.
The output log records the data written to the DFS or the
local storage. In MapReduce, task output is written with an
invocation of context.write(outKey, outValue),
where <outKey, outValue> is one record of the task
output. Therefore, the values of <outKey, outValue>
in function map or reduce will be logged. The branch
log records the variable values involved in the condition of
the branch statement. The invoke log records the parameters
and the return value of each function call. For each function
call, statements are inserted before and after it, respectively.
The one inserted before the function invocation is called the
pre-invoke log, which records the values of parameters in
the function invocation. The one inserted after the function
invocation is called the post-invoke log, which records the
return value.1

Listing 1 indicates a PWL program of a map function.
The code in highlights is the logging statement inserted by
RIA. Note that Listing 1 only shows the equivalent code after
the transformation. In the real implementation, the program
code is analyzed and transformed with Jimple, a three-address
intermediate representation introduced in Soot framework.
In each phase, the input and output logs are stored in an input
log file and an output log file, respectively; the branch logs
reflecting the execution of the same function are stored in the
same branch log file; the invoke logs for invoking the same
function are stored in the same invoke log file. As a concrete
example, Table I shows the execution logs when executing
map(3, 5, context).

The execution logs will be sent to the private cloud to
perform the integrity audition, including the input audition and
the execution audition, which are elaborated next.

D. The Input Audition

1) The Basic Algorithm: For each phase i , the input audition
constructs the input data set Ii from the input log of phase i
and the output data set Oi−1 from the output log of phase i−1
(or the application input I , if i = 0). Since the output records
of a task in phase i − 1 can be distributed to multiple tasks in
phase i , Ii should contain the input records from all the tasks
in phase i , and Oi−1 should contain the output records from
all the tasks in phase i − 1. After that, the audition compares
Ii against Oi−1. The input integrity of phase i is assured when

1Our implementation targets on Java language. The parameters of the
function call are always unchanged after the function call. Therefore we do
not log the parameter values after the invocation.

the following tests are passed.

|Ii | = |Oi−1| (1)

∀e ∈ Oi−1, C OU NT (e, Ii ) = C OU NT (e, Oi−1) (2)

The function C OU NT (e, S) returns the number of e in
set S. Test (1) ensures that the sizes of Ii and Oi−1 are
equivalent. Test (2) ensures that if any record e appears in
Oi−1, the number of its occurrence in Oi−1 is equal to its
counterpart in Ii . The fulfillment of the two tests ensures that
Oi−1 = Ii .

2) Probabilistic Input Audition: The number of input/output
records in each phase is usually significantly large. We intro-
duce the Counting Bloom Filter (CBF) based set compare
to speed up the input audition. Specifically, we construct a
Counting Bloom Filter C B F Ii based on Ii and a Counting
Bloom Filter C B FOi−1 based on Oi−1. While constructing
C B F Ii and C B FOi−1, we test the equality of |Ii | and |Oi−1|,
i.e., the test (1). If test (1) is passed, we perform test (2). For
each record r from set Oi−1, with a certain probability tr ,
we query C B F Ii and C B FOi−1 for the occurrence of records
with the same value and test their equality. The inequality
occurred on any selected record indicates the violation of the
input data integrity in phase i . We call the probability tr as
the CBF test probability. We defer the security analysis of the
probabilistic input audition in Section IV-A.

E. The Execution Audition

Having verified the correctness of the input log for a phase,
the next step is to check whether the tasks in that phase
are executed faithfully. To achieve this goal, we introduce
the function execution audition (FEA) algorithm to audit
the execution integrity of a given function invocation. The
functions to be audited include the map and reduce func-
tion and other functions invoked direct or indirectly by the
map or reduce function. The FEA algorithm removes the
function invocation nesting, making sure that the audition of
one function execution will not be interrupted by another
function call invoked inside of that execution. As a result,
each function execution can be audited independently. Directly
applying the FEA algorithm on each function will incur a
significant performance overhead. In addition, it requires all
the execution logs to be transmitted from the public cloud to
the private cloud. Such a cost would be significantly higher
than executing the application on the private cloud directly.
To avoid such a case, we introduce the log retrieve protocol,
which enables the private cloud to safely retrieve the execution
logs on demand. With the support of the log retrieve protocol,
we introduce the probabilistic execution audition to perform
the FEA in a sampling manner.

1) The Function Execution Audition: In the function exe-
cution audition algorithm, we generate the control flow
graph (CFG) of that function and simulate the execution
based on its CFG and its execution logs. With the branch
log, the simulation can derive which branch was taken while
executed on the public cloud, and thus can reproduce the
runtime control flow. During the simulation, the mathematical
relationships among runtime variable values can be derived
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based on the semantics of each simulated statement. The
derived mathematical relationships are stored in a constraint
set, marked as C . The runtime variable values in the execution
log will be checked against C during the simulation. Any
violation of the constraints indicates the runtime integrity is
violated on the public cloud.

During the simulation, for each statement s that is traversed,
C will be updated based on the semantics of s. If s has a
corresponding log record r , it either will be used to update
C or will be checked against C , depending on the semantics
of s. The FEA technique is shown in Algorithm 2. We explain
the algorithm as follows case by case:

Case 1: If s is an input statement, i.e., the entry point of
a map or reduce function, its corresponding log record r is
an input log record. The integrity of r is verified by the input
audition of the current phase, we therefore trust it and use it
in the constraint set. Thus, r is converted into a constraint and
added to C .

Case 2: If s is an output statement, i.e., it is an invocation of
the function context.write, its corresponding log record
r is an output log record. We need to verify the integrity of
such a log record. Thus, r is checked against the current C .

Case 3: If s is a branch statement, i.e., it is in a form of
if(condition), its corresponding log record r is a branch
log record. We first verify the integrity of the log record r by
converting r to a constraint and check it against the current C .
After that, the condition is evaluated according to the values
in r , deciding the runtime branch that is simulated. Based
on the condition and its decided branch, we generate a new
constraint and add it to C . Since r is verified, the runtime
branch in the simulation should be consistent to the execution
on the public cloud.

Case 4: If s is a function invocation statement, and rpre

and rpost are a pre-invoke and a post-invoke log record
corresponding to the function invocation, we first check rpre

against C to ensure the integrity of the parameters passed
to the function. Then, we convert rpost into a constraint and
add it into C . The idea of this design is that, we temporarily
trust the integrity of rpost and use it to verify the integrity
of the execution after the invocation statement. We defer the
verification of rpost to the time when the invoked function
execution is audited. To achieve that, we need to maintain
a connection between the caller and the callee, which is
described in case 5 and 6.

Case 5: If s is the entry point of a function that is neither
map nor reduce, rpre is the corresponding pre-invoke log
record, we initialize C as an empty set, convert rpre into a
constraint and add it to C . Since rpre is verified in case 4),
we can trust its integrity and use it to audit the current function
execution.

Case 6: If s is a return statement of a function that is neither
map nor reduce, rpost is its corresponding post-invoke log
record, we check rpost against C . Checking the integrity of
rpost makes its caller function ensured that the post-invoke log
is trusted. It can be used to audit the integrity of the remaining
executions of the caller function.

Case 7: If s is an assignment statement where the right
hand side is primitive operations on variables, no log record

Algorithm 2 Function_Execution_Audition (Function f,
ExecutionLog log)
Require: f is the function to be audited, log contains the

execution logs corresponding to the execution of function
f .

1: C ← {∅}
2: s ← f.next Statement ()
3: while s! = End_O f _Function do
4: switch (s)
5: case 1:
6: (s is the entry point of function map/reduce)
7: r ← log.get Input Log Record()
8: C ← C ∪ r.toConstraint ()
9: case 2:

10: (s is an invocation of function context.write)
11: r ← log.get Output Log Record()
12: Check(C, r.toConstraint ())
13: case 3:
14: (s is a branch statement)
15: r ← log.get BranchLog Record()
16: check(C, r.toConstraint ())
17: branch← evaluate(s, r)
18: c← s.getCondi tion(branch)
19: C ← C ∪ c.toConstraint ()
20: case 4:
21: (s is an invocation of other functions)
22: rpre ← log.get PreInvokeLog Record()
23: rpost ← log.get Post InvokeLog Record()
24: check(C, rpre.toConstraint ())
25: C ← C ∪ rpost .toConstraint ()
26: case 5:
27: (s is the entry point of a non-map/reduce function)
28: rpre ← log.get PreInvokeLog Record()
29: C ← C ∪ rpre .toConstraint ()
30: case 6:
31: (s is a return statement of a non-map/reduce func-

tion)
32: rpost ← log.get Post InvokeLog Record()
33: check(C, rpost .toConstraint ()
34: case 7:
35: (s is an assignment statement)
36: if s ∼ y = λ(X), y /∈ X then # case 7(a)
37: Defy ← C.get Def ini tion(y)
38: C ← C − {y = Defy}
39: C ← C ∪ s.toConstraint ()
40: else if s ∼ y = λ(X, y) then # case 7(b)
41: yold ← λ−1

y (X, y)
42: C.replace(y, yold)
43: end if
44: end switch
45: s ← f.next Statement ()
46: end while

corresponds to such a statement. However, C has to be updated
due to the possible change of variable values.

(a) If s is in the format of y = λ(· · · ), where λ is primitive
operations on variables that do not include y, the value
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TABLE II

THE EXECUTION AUDITION DETAILS OF INVOKING Map(3, 5, Context)

of y will be changed after the execution of s. Therefore,
any constraints in C pertaining to y will not hold. Thus
the algorithm replaces those constraints with the equality
constraints generated from the statement s.

(b) If s is in the format of y = λ(· · · , y), where the
value of y is updated after s is executed, the algorithm will
first solve the “reverse expression of y”, i.e., the expression
that represents the LHS y with the RHS y. Then, it will
replace all the y in C with the reverse expression of y. For
instance, if s is y=y+x, for each constraint containing y in C ,
it will replace y with y − x . It is because at this moment,
the old y is not available. The existing relations containing old
y needs to be replaced with an expression using new y. If the
operation λ on y is irreversible, we only remove constraints
that contain y from the constraint Set .

As a concrete example, Table II shows the details of the
FEA on executing map(3, 5, context). The implemen-
tation of function map is shown in Listing 1. The execution
log is listed in Table I. The second column in the table tracks

the statement to be simulated (started with stmt), along with
the corresponding log records, including input logs (in), output
logs (out), invoke logs (invoke), branch logs (bra), etc. Based
on the input, the audition determines the case that applies
and performs the corresponding actions, shown in the third
column. The fourth column indicates the resulting constraints
after the action.

2) The Log Retrieve Protocol: Our study showed that,
in the four types of logs generated on the public cloud,
the invoke log and the branch log took the majority por-
tion. For instance, in the 22 GB of logs generated in the
Word Count application in Table V, the invoke logs took
16 GB and the branch logs took 3.4 GB. We introduce
the Log Retrieve Protocol, a commitment-based protocol, to
enable the private cloud safely retrieving parts of logs on
demand. The protocol guarantees that the retrieved logs are
consistent to the previous commitment made by the pub-
lic cloud, thus are untampered. The protocol proceeds as
follows.
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TABLE III

PARAMETERS USED IN MODELING THE SYSTEM SECURITY

a) The commitment step: According to Section III-C,
the execution logs for the same function in the same task
are stored in the same invoke/branch log file. Execution logs
of different functions are stored in different files. We mark
all the invoke log files as Fv = {v1, . . . , vn}, and mark all
the branch log files as Fb = {b1, . . . , bn}, where vi and bi

corresponds to function i . Based on Fv and Fb, we build a
Merkle trees T [16] consisting of n leaves, where each leaf
Li corresponds to the {vi , bi } pair. The value of leaf Li is
defined as �(Li ) = hash(i ||hash(vi )||hash(bi)), where ||
is the concatenation and hash is the Hash one-way function.
Following the definition of Merkle tree, the value of each inter-
nal node Z is defined as �(Z) = hash(�(Zle f t )||�(Zright )),
where Zle f t and Zright are the left and right child of Z .
Recursively, the value of the root node R is defined as �(R) =
hash(�(Rle f t )||�(Rright )). According to the definition of the
Merkle tree, for each leaf node Li in T , there exists a proving
path, marked as λi = {λi1, . . . , λik }, where k = log(n), such
that �(�(Li ), λi ) = hash(· · · hash(�(Li ), λi1), . . . , λik ) =
�(R). As a commitment, the public cloud submits �(R) and
n to the private cloud.

b) The challenge and verify step: If the private cloud
needs to verify the execution of function j , it will send j
to the public cloud as a challenge. The public cloud, upon
receiving j , will return the private cloud the corresponding file
v j and b j , as well as the proving path λ j . To verify, the pri-
vate cloud computes �(hash( j ||hash(v j )||hash(b j )), λ j )
and checks the result against �(R). If the result is the same
as �(R), it will accept v j and b j .

Due to the property of the Merkle tree, if the
invoke or branch log file received from the public cloud is
different from the one used in the commitment step, it is
computational infeasible for the public cloud to generate a
valid proving path. As a result, the invoke log file and branch
log file received during the challenge step are the same as they
were committed. Therefore, the invoke log files and branch log
files can be stored on the public cloud. The private cloud can
request the logs on demand safely.

3) Probabilistic Execution Audition: With the support of the
log retrieve protocol, we propose the probabilistic execution
audition so that the private cloud can perform the FEA
in a sampling manner. To perform the execution audition,
the private cloud first performs the commitment step of the log
retrieve protocol, receiving �(R) and n. For each function j ,
with the function audition probability t f , the private cloud

retrieves its invoke log file v j and the branch log file b j by
going through the challenge and verify step of the log retrieve
protocol. For the passed function j , the private cloud performs
the FEA to audit its integrity. The security analysis of the
execution audition is performed in Section IV-B.

IV. SECURITY ANALYSIS

In this section, we first perform security analysis on the
input audition and the execution audition. After that, we dis-
cuss the security guarantee of the entire MapReduce appli-
cation. To facilitate the discussion, we list all the parameters
used in our analysis in Table III.

A. Security of the Input Audition

For a MapReduce phase k, we need to perform input
audition on the phase input Ik , using phase output Ok−1 as
the baseline. Since the CBF-based set compare is performed
on each record with probability tr , the malicious worker does
not know which record will be tested. Therefore, we model
the malicious worker’s behavior as randomly choosing records
in Ik to tamper with their values. We define the probability of
detecting tampered records in a phase as the input tampering
detection rate, marked as Pin . We mark the input tampering
detection rate as Pin (M) when the malicious worker randomly
chooses M input records to tamper with.

Theorem 1 (Phase Input Integrity Under Probabilistic Input
Audition): Suppose the CBF test probability is tr , the CBF
false positive rate is fb, and the number of records tampered
by the malicious worker is Mr , the input tampering detection
rate in a phase is

Pin(Mr ) = 1− (1− tr + tr fb)
Mr

Mr ! (3)

Proof: Suppose the number of input records in a phase
is N . If the malicious worker randomly chooses one record to
tamper with, the probability of not detecting this tampering is
1− tr + tr fb . If a malicious worker randomly chooses M out
of N records to tamper with, in this case, the probability that
the input audition does not detect the tampering is

P(one case) =
M−1∏

i=0

( 1

N − i
(1− tr + tr fb)

)

= (1− tr + tr fb)
Mr · (Nr − Mr )!

Nr !
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Fig. 2. Theoretical simulations. a) A simulation of the input tampering
detection rates with different tampered record numbers and different CBF
test probabilities. b) A simulation of the output tampering detection rates
with different tampered function execution numbers and different function
audition probabilities.

The number of combinations for the malicious worker to
choose Mr out of Nr records is

(Nr
Mr

)
. Thus in the current

phase, the total probability for the malicious worker to avoid
the detection of the input audition is

P(avoid detect ion) =
(

Nr

Mr

)
· P(one case) = (1− tr + tr fb)

Mr

Mr !
Therefore, if the malicious worker tampers with Mr records,

the input tampering detection rate is

Pin(Mr ) = 1− P(avoid detect ion) = 1− (1− tr + tr fb)
Mr

Mr !
�

We simulate the input tampering detection rate Pin(Mr )
with different tampered record numbers Mr , shown in Fig. 2a).
In the simulation, we set the CBF false positive rate fb

as 0.01. As the figure shows, when more than five records are
tampered, a very low CBF test probability tr (such as 0.001)
would result in a very high input tampering detection rate
(close to 1.0). In other words, the input audition can limit the
number of tampered records to a very small value. However,
a smaller value of tr would results in a low Pin(Mr ) if the
tampered record number is less than five. For example, when
only one record is tampered, setting tr to 0.001 would make the
detection rate Pin(Mr ) drop to 0.001. In this case, increasing
tr can result in a higher phase input integrity. According to
the figure, setting tr as 0.1, 0.5 and 0.9, respectively, would
obtain a detection rate of 0.1, 0.5 and 0.9, respectively, even
if only one record is tampered, with a cost of an increased
performance overhead.

B. Security of the Execution Audition

The malicious worker can tamper with the values of vari-
ables in function executions to undermine the integrity. For
each function execution, the possible targets to be tampered
can be any variable in that function. We first discuss the
security property of the function execution audition. After that,
we reason about the integrity of each phase by considering the
probabilistic execution audition introduced.

1) Security of the Function Execution Audition:
Theorem 2 (Function Execution Integrity): Suppose the

function execution audition (FEA) is performed on an
execution of a map/reduce function and the functions
directly or indirectly invoked by that map/reduce function.
If the audition is passed, the statement simulation sequence
of each function execution is consistent to the program’s
control flow, and the constraint set C during each FEA always
reflects (i.e., contains and only contains) the correct runtime
mathematical relationships among variables.

Due to the space limit, we informally discuss the proof of
Theorem 2. The rigorous proofs will be provided upon request.
Since all the execution auditions have passed the FEA, we can
imagine that the sequence of the simulated statements in all
FEAs is the same as they were executed on the public cloud.
This will not affect the audition effect. With such a sequence,
we can prove the correctness of the control flow and the
constraint set by induction. At the beginning of the simulation,
the correctness of the control flow and the constraint set C
is trivially true. At any point of the simulation, the previous
checks performed in the FEA ensure that the existing runtime
control flow and the already generated constraint set C are
consistent to the original program. We can prove that, for
each case in algorithm 2, after simulating the next statement,
the runtime control flow and C will still be consistent to the
original program. By induction, the runtime control flow and
the constraint set always reflects the original program.

Corollary 1 (Result Integrity): Suppose l is an output log
record. Any tampering that results in a change of value
in l will be detected by the function execution audition
algorithm (FEA).

Proof: According to theorem 2, when statement s is
simulated in the FEA algorithm, the corresponding constraint
C will reflect the correct runtime mathematical relationships.
According to case 2 of algorithm 2, the output log record l will
be checked against the constraint set C when s is simulated.
Thus tampering variables that results in a change of output
log record l will fail the audition. �

Corollary 2 (Phase Output Log Integrity): Suppose the
input log of a phase preserves the computation integrity.
If function execution auditions (FEA) are performed on each
function execution of that phase, the output log of that phase
preserves the computation integrity if all the FEAs are passed.

Proof: The computation in a phase consists of multiple
function executions. Suppose the input log in a phase is cor-
rect, according to Corollary 1, passing the function execution
audition of each function execution indicates correct output
logs. �

If a malicious worker tampers with the output records in
phase i , but keeps the output logs corresponding to those
records correct, the tampered output records will be used as the
input for phase i+1, which will generate tampered input logs.
The input audition in phase i +1 will detect the inconsistency
between the tampered input logs in phase i+1 and the correct
output logs of phase i , thus detecting the tampering.

2) Security of Probabilistic Execution Audition: We define
the probability of detecting the tampered output logs in a
MapReduce phase as the output tampering detection rate,
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marked as Pout . We mark the output tampering detection rate
as Pout (M f ) when the malicious worker randomly chooses
M f function executions to tamper.

Theorem 3 (Phase Output Integrity Under Probabilistic
Execution Audition): Suppose the function audition probability
is t f , and the number of function executions tampered by the
malicious worker is M f , the output tampering detection rate
is

Pout (M f ) = 1− (1− t f )
M f

M f ! (4)

The proof of Theorem 3 is similar to that of Theorem 1.
We therefore omit its proof. We simulate the output tampering
detection rate Pout (M f ) with different tampered function
execution numbers M f , shown in Fig. 2b). In the simulation,
we set the function audition probability t f as 0.001, 0.1,
0.5, and 0.9, respectively, and increase the value of M f . The
simulation result is similar to that of the phase input integrity
(Fig. 2a)): setting the function audition probability t f as low as
0.001 can detect more than five function execution tampering
with a very high probability (close to 1.0). When M f is less
than five, the detection rate would be very low. However,
increasing t f to 0.1, 0.5 or 0.9, respectively, can detect even
one function execution tampering with a detection rate of 0.1,
0.5 or 0.9, respectively. Yet a higher value of t f would incur
a higher performance overhead.

C. Security of the MapReduce Application

In this section, we analyze the security of an entire MapRe-
duce application when using RIA.

1) Using Basic Input Audition and Execution Audition:
Theorem 4 (Application Output Integrity): Suppose the

basic input audition and the basic execution audition are
employed. If all the auditions performed on each phase have
passed, the application output will be correct.

Theorem 4 can be proved by induction. We skip its proof
due to space limit.

2) Using Probabilistic Input Audition and Probabilistic Exe-
cution Audition:

Theorem 5 (Application Output Integrity under Probabilis-
tic Checks): Suppose a MapReduce application consists of n
phases. In a phase i (1 ≤ i ≤ n), if the tampered input records
number is Mri , the tampered function executions number is
M fi , the CBF test probability in the input audition is tri ,
the CBF false positive rate is fbi and the function audition
probability is t fi , the probability of detecting the output error
in the entire application is

Papp = 1−
n∏

i=1

( (1− tri + tri fbi )
Mri

Mri !
· (1− t fi )

M fi

M fi !
)

(5)

Theorem 5 can be derived through a straightforward prob-
abilistic analysis, we skip its proof due to the space limit.

V. DISCUSSIONS

In this section, we discuss the extended solutions to address
two related security problems, namely the private cloud secu-
rity and the data confidentiality.

A. Protecting Integrity on the Private Cloud

In the case where the private cloud is not trusted, extended
solutions are needed to protect the integrity of the integrity
audition performed on the private cloud. To achieve this goal,
we redefine the system architecture by introducing the trusted
user host. In this architecture, we assume that both the private
cloud and the public cloud are untrusted. We assume the user
host is trusted. However, it has a smaller computing capacity
compared to the private cloud. Based on this architecture,
we propose two alternative solutions, the hardware-based
solution and the sampling-based solution.

1) The SGX Based Solution: Our first solution is based
on Intel SGX, a Trust Execution Environment (TEE) tech-
nology supported since the 6th generation of Intel CPU.
Intel SGX [17], [18] allows application to set up protected
execution environments (called enclaves) without requiring
trust in anything but the processor. Enclaves are protected
by the processor: the processor controls access to enclave
memory. Instructions that attempt to read or write the memory
of a running enclave from the outside of the enclave will fail.
SGX supports remote attestation. It enables a remote system to
verify cryptographically that the specific application has been
loaded within an enclave. If the enclave passes the remote
attestation, a shared secret will be established, allowing the
remote system to bootstrap an end-to-end encrypted channel
with the enclave.

Based on Intel SGX technique, we introduce the Verification
Protocol to ensure that the integrity audition is faithfully
performed and the input/output of the audition is untampered.
The protocol, shown in Fig. 3, works as follows.

Step 0: (the preparation step): After the original program P
was transformed to PW L and executed on the public cloud,
the execution logs L were generated. The public cloud gen-
erates a public key pair, K pr and K pu , and publishes K pu .
The private cloud creates an enclave, called the Audition
Enclave (AE), and loads the audition program, i.e., the pro-
gram of the input audition and the execution audition, in to AE.

Step 1: The user host executes the SGX Remote Attesta-
tion (RA) protocol to verify the authenticity of the audition
program loaded in the AE. The protocol is defined in SGX
specification [19]. At the end of the remote attestation, a shared
key SK between the user host and the AE will be generated.
At this time, the user host assures that the AE is loading the
correct audition program, and SK is securely shared between
the user host and the AE.

Step 2: The user host sends the program message
P||M ACS K (P) to the AE. M ACS K (P) is the message
authentication code of P , using key SK .

Step 3: The AE, upon receiving the program message, ver-
ifies the integrity of the message using SK . If the verification
fails, the AE knows that program P is tampered and terminates
the protocol; otherwise, continue.

Step 4: The public cloud sends the log message
L||SI GK pr (L), to AE, where L is the execution log and
SI GK pr (L) is the digital signature of L, signed with the
private key K pr .

Step 5: The AE, upon receiving the log message, verifies the
integrity of L using K pu . If the verification fails, the AE knows
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Fig. 3. The verification protocol.

that L is tampered and terminates the protocol; otherwise,
continue.

Step 6: The AE executes the audition program with received
P and L, and generates the Runtime Integrity Result R.

Step 7: The AE sends the result message R||M ACS K (R),
to the user host. The user host verifies the integrity of the result
message. If the verification is passed, the user host accepts the
result.

In the verification protocol, the remote attestation assures
that the audition program loaded by the AE is untampered. The
SGX technology ensures that the memory of the audition pro-
gram is protected and cannot be tampered by outside attackers.
The integrities of the original program P , the execution log L,
and the output R are protected by the MAC or the digital
signature. As a result, the integrity of the integrity audition is
protected.

2) The Commit-and-Sampling Based Solution: For the pri-
vate cloud that does not support SGX technology, we further
extend the log retrieve protocol introduced in Section III-E2,
and propose the commit-and-sampling protocol to verify the
integrity audition performed on the private cloud.

The protocol is shown in Fig. 4. As MapReduce phase i
is executed on the public cloud, the public cloud constructs
the Merkle tree T (L) based on the generated invoke logs and
the branch logs (Step 0). Similar to the definition of the log
retrieve protocol, in T (L), a leaf node Lk is the hash value
of all the invoke logs vk and branch logs bk related to the
execution of function k. The root value of T (L) is marked as
R(T (L)) and the proving path for Lk is marked as λk . After
completing the phase execution, the user host downloads the
input and output logs and performs the input audition to ensure
the input log of phase i is consistent to the output log of phase
i − 1 (Step 1 and 2). After that, the public cloud commits the
leaf node number N and the root value R(T (L)) of T (L) to
the user host (Step 3).

The user host now can perform multiple rounds of chal-
lenges and verifies the responded logs. Specifically, for each
round of challenge, the user host randomly selects k ∈ [1, N]
and sends it to the private cloud (Step 4). The private cloud
thus performs the execution audition on function k and returns
the audition result to the user host (Step 5 and 6). Upon
receiving the audition result of function k, the user host sends
the sampling request with a certain probability to verify the

execution audition performed on the private cloud (Step 7).
The private cloud, upon receiving the sampling request, sends
the branch logs bk and invoke logs vk to the user host,
along with the proving path of Lk , namely λk (Step 8).
After receiving the response, the user host first validates the
integrity of bk and vk by regenerating R(T (L)) (Step 9). If the
generated R(T (L)) is the same as the previously committed
value, the user host believes that bk and vk are untampered
since its commitment in Step 3. Then, the user host performs
the execution audition on bk and vk to determine whether
the audition of k on the private cloud is performed faithfully
(Step 10).

Notice the challenge process (Step 4 to Step 10) needs to be
performed for multiple times. During the protocol execution,
failing to pass any check in Step 9 or Step 10 indicates that
the audition result returned in Step 6 is incorrect. When the
private cloud responds the challenges with incorrect audition
results, the probability for the user host detecting the cheating
is similar to the output tampering detection rate specified in
Theorem 3: suppose the private cloud returns M incorrect
audition results, if the user host samples the audition result
with probability p, the probability of detecting the cheating is
Psampling(M) = 1− (1−p)M

M ! . The simulation of Psampling(M)
is similar to Fig. 2b). We skip the discussion due to the page
limit. When the result sampling probability (step 7) is set
to p, the workload ratio of the user host to the private cloud
is p.

B. Protecting Data Confidentiality on the Public Cloud

The solutions discussed so far only address computation
integrity. A related but important problem is to protect the
confidentiality of sensitive data processed in MapReduce.
While the program is executed on the public cloud, the con-
fidentiality of all the sensitive data should be protected. The
sensitive data not only includes the sensitive input marked
by the programer or user, but also the variables processing
the sensitive input and the output generated based on the
sensitive input. Constructing the privacy preserving program in
untrusted public cloud setting requires non-trivial work. In this
section, we only discuss the general solution of construct-
ing privacy preserving programs. Our main focus is how to
integrate such a solution into RIA so that confidentiality and
integrity can be protected together.
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Fig. 4. The commit-and-sampling protocol.

To protect data confidentiality on MapReduce programs,
we can transform the program into a privacy preserving
format where sensitive variables are computed in ciphertexts.
Which encryption scheme is used for each variable depends
on the operation the variable will perform. For instance,
variables involved in equality tests can be encrypted with
DET (deterministic) [20]; variables involved in comparisons
can be encrypted with O P (order-preserving) [21], [22];
variables involved in additions can be encrypted with AH
(additive homomorphic) [23], etc. With this idea, we can
re-write the program by defining encrypted variables and
replacing statements with certain operations with invocations
of encryption functions.

As a concrete example, we show how to transform the Word
Count application (the first application in Table IV) into the
privacy preserving format. The code of Word Count is shown
in Listing 2. The comments in the code indicates the encryp-
tion and transformation plan. In this application, we assume
each word in the input and its count are sensitive. Thus,
in the map function, each token in the parameter values
is encrypted with DET. To protect the count, we encrypt the
constant 1 with AH (line 5). Encrypting each word with DET
ensures that, in the sort and shuffle phase, counts for the
same word will be grouped together. In the reduce function,
we encrypt the variables related to the count in AH, including
variable sum, and elements in values. In line 13, we replace
the add operation with sum=AH_add(sum, values[i]),
where function AH_add adds two parameters in AH cipher-
texts. As a result, each word is protected in DET and its count
is protected in AH.

Automatically transforming a MapReduce program to the
privacy preserving form is out of the scope of this paper.
Readers can refer to existing solutions, such as [24] and [25].
In this paper, we mainly focus on how RIA can be applied to
audit such a program. To generate the execution logs, we use
the same method to insert logging statements, as introduced
in Section III-C. Since sensitive variables are in ciphertexts,
the execution logs record the ciphertexts of those variables.
During the audition, the input audition and the execution
audition can be performed on the execution logs without any
change. One improvement is that we do not have to audit

Listing 2. The code of Word Count. Comments indicate the encryption and
transformation plan.

the executions of encryption functions. When the encryption
functions, such as sum = AH_add(sum, values[i]),
are executed on the public cloud, we only generate the
invocation logs for the function calls, and do not generate the
branch logs and invoke logs inside of the encryption function.
To audit the executions of encryption functions, we simply
execute those functions and compare the function return values
against the post-invoke log.

Combining encryption schemes with RIA is a valid resort in
protecting both program integrity and confidentiality. However,
it is still necessary to point out that, compared to its original
version, the privacy preserving version of a program will
introduce non-trivial execution overhead in addition to the
overhead incurred by RIA. In Section VI-A, we showed the
performance details of RIA when it is used to protect the
privacy preserving MapReduce application.

VI. EXPERIMENTS AND EVALUATION

We have developed a prototype system, called MR Auditor,
to perform integrity audition on Apache Hadoop (a mainstream
MapReduce implementation) applications. Our experiments
showed that MR Auditor can be applied to Hadoop appli-
cations directly.

We implemented MR Auditor, with Soot, an open source
Java-based compiler tool, to perform program analysis and
transformation. We used Symja, a computer algebra system,
to generate constraints and verify the integrity. MR Auditor
consists of two parts. The first part, Log Inserter, directly
analyzes original program’s .class files and generates the PWL
with the .class format. The second part, Integrity Checker,
performs the input audition and the execution audition based
on the original program’s .class file and the execution logs
retrieved from the public cloud.

A. Experiments

We performed a set of experiments on Apache Hadoop 1.0.4
to evaluate MR Auditor. The evaluation was measured with
two groups of metrics to evaluate the Log Inserter and the
Integrity Checker, respectively.
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TABLE IV

SPECIFICATIONS OF HADOOP APPLICATIONS

TABLE V

THE EXECUTION TIME AND THE EXECUTION LOG SIZE OF EACH APPLICATION

1) Experiment Setup: In the experiment, we used the
Dragon Stack, a cloud server hosted in Xidian University as
the public cloud. It was responsible for executing the Hadoop
applications (the PWL) and collecting the execution logs. The
cloud server was set up with two Intel Xeon E5 CPU (6 cores
on each CPU), 128 GB of memory and 6 TB of hard disk
storage. We chose XenServer 6.2 as the cloud hypervisor.
On this server, we deployed a Hadoop cluster consisting of
five Linux virtual machines. Each virtual machine used Ubuntu
14.04.1 and was configured with one core of CPU, 2 GB of
memory and 128 GB of storage. We also set up a private
cloud to perform the execution audition. The private cloud
server was set up with two Intel Xeon E5 CPU (8 cores on
each CPU), 128 GB of memory and 3 TB of hard disk storage.
We chose KVM 2.0.0 as the cloud hypervisor. On the private
cloud, we set up one Linux virtual machine, configured as
8 cores of CPU, 8 GB of memory and 512 GB of storage.

We selected five Hadoop applications, listed in Table IV,
to evaluate MR Auditor. The first three applications were
selected from the Hadoop 1.0.4 release package. The fourth
application was selected from the Hadoop benchmark suite
HiBench 3.0.0 [26]. The last application is the privacy preserv-
ing version of Word Count (the first application), as introduced
in Section V-B.

2) The Evaluation of the Log Inserter: We transformed
each original application program into the PWL with the
Log Inserter. For each Hadoop application, we measured
the execution time of the original application and the PWL,
as well as the size of execution logs generated by Log Inserter,
as shown in Table V.

Table V showed that when processing a relatively large
Hadoop application where the map/reduce task number is
significantly large (e.g., more than 1,000 map task) and the
computing logic is fairly complex (e.g., the Pi and the Page
Rank application), the performance overheads for the tested
applications are moderate (ranging from 0.18% to 34.48%).
However, the size of the execution logs is fairly large (rang-
ing from 3.4 GB to 56 GB), introducing a large storage
overhead.

In this set of experiments, PPWC processes the same data
as Word Count application. However, data are processed
in ciphertexts. Due to the repeated execution of encryption
function (such as AH_add in Listing 2), the execution time of
original PPWC is 2.54 times of Word Count. When the PWL
of PPWC was executed on the public cloud, it incurred 34.34%
of performance overhead compared to the original PPWC, and
generates 46.3 GB of logs, in which 14 GB are the invocation
logs for the encryption functions.

The size of the generated execution logs can be further
reduced. For instance, compressing the log files generated in
Word Count application can reduce the log size from 22 GB
to 4.23 GB, obtaining 81% of size reduction. In addition,
as shown in Section VI-A3, the log retrieve protocol will
significantly reduce the size of logs transmitted between
clouds.

Since the execution of each PWL is executed independently,
the execution time on the public cloud will grow linearly
with the number of computation requests, if the computation
loads of all requests are the same. However, one potential
bottleneck of Log Inserter is the storage capacity. Notice
that each application in our experiments generated several
Gigabytes of data even after the compression, when more
applications are executed on the public cloud, the space to
store the execution logs will be very high, which could affect
the scalability.

3) The Evaluation of the Integrity Checker: We evaluated
the performance of the Integrity Checker with two applica-
tions, Word Count and PPWC. The performance about Word
Count is listed in Table IV. Specifically, we performed the
input audition and the execution audition on the execution
logs generated by the Word Count application and recorded
their execution times.

When evaluating the input audition, we recorded the exe-
cution time of the input audition under different CBF test
probability tr . We listed the execution times under each tr
in Table VI.

The result indicated that the efficiency of the input audition
was fairly high. For instance, when tr is set to 100%, the
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TABLE VI

THE INPUT AUDITION TIME FOR WORD COUNT

TABLE VII

THE EXECUTION AUDITION DETAILS FOR WORD COUNT

audition speed is 95792543/384≈ 249 k/s. We also observed
that the execution time of the input audition increases as
the test probability tr increases. The data shown in Table VI
indicates that, compared to the execution time (i.e., 239 sec-
onds) when tr is 1%, when tr increases from 50% to 100%,
the increased execution times are 70 seconds and 145 seconds,
respectively. The increase rate of the execution time is 107%,
which is close to the increase rate of tr (i.e., 102%).

We further evaluated the performance of the execution
audition and listed the details in Table VII. We changed the
function audition probability t f to measure the time of the
execution audition, listed on the second column. We also
counted the number of function executions audited in each
setting of t f , listed on the third column. In the last column,
we listed the size of execution log files retrieved from the
public cloud.

Data in Table VII indicates that the audition time is gener-
ally proportional to the audited function number. On average,
the number of function execution auditions performed in
each second is 29.98/s. The sizes of the retrieved branch and
invoke log files are very small compared to the execution log
size in Table V. They are in general proportional to t f .

When t f was set to 0.1% (as the first row of Table VII),
the execution audition can be completed in 192 seconds,
retrieving 4.5 MB of invoke and branch log files and 3.6 GB
of input and output log files (In this experiment, the size of
the input and output logs are 3.6 GB. In our design, all the
input and output log files has to be retrieved from the public
cloud.). The first row of Table VI indicates that, when setting tr
as 1%, the input audition can be completed in 239 seconds.
Thus, the entire verification can be completed in 431 seconds.
Combining Table VII, Table V and Table VI, we summarize
that, to verify the Word Count application (setting tr as 1%
and t f as 0.1%), RIA incurs 431/3100 = 14% of extra
time of execution on the private cloud, 1% of extra time of
execution on the public cloud, an extra 22 GB of data stored
on the public cloud and 3.6 GB of data transmitted from the
public cloud to the private cloud. Comparing with the data
in Table V, only 16% of generated logs are transmitted across
the cloud. The size of the transmitted logs can be further
reduced with optimizations. For instance, simply compressing

TABLE VIII

THE EXECUTION AUDITION DETAILS FOR PPWC

the transmitted log can reduce the size from 3.6 GB to
712 MB, further obtaining 81% of size reduction.

Table VIII listed the performance of Integrity Checker when
auditing PPWC. When the function audition probability t f

is set as 0.1%, the audition time is 463 seconds, which is
2.4 times of Word Count (the first row of Table VII). The extra
audition time is caused by the extra audited function execu-
tions, including 106,292 encryption functions and 3,494 non-
encryption functions. We also observed that compared to
auditing the non-encryption functions, auditing the encryption
function is much faster. According to the last two columns of
the table, when only auditing encryption functions, auditing
an extra 958, 723 encryption functions only took 34 seconds,
the function audition efficiency is 28k/s.

The integrity audition is performed phase by phase. Thus
the audition time will grow linearly with the phase number.
In each phase, the private cloud needs to download the entire
input and output logs and parts of the branch and invoke
logs from the public cloud. The log transmission between
the clouds may become a bottleneck. For instance, processing
1 GB of data with Word Count requires to transmit 712 MB
of compressed logs. When the size of the processed data
increases, the transmission time would increase and may affect
the scalability.

B. Financial Evaluation

RIA is useful only when the financial cost of using RIA to
be cheaper than directly executing applications on the private
cloud. In this section, we evaluate the financial costs. Based
on the costs, we derive the feasibility condition in which
employing RIA is economically cheaper than directly using
the private cloud. Specifically, we build two models for the
two cases above. The parameters used in the models are listed
in Table IX.

Assuming the computing capacity on the private could and
the public cloud is the same, we obtain the cost for running
the application directly on the private cloud as Cprivate =
Tapp · Pprv and the cost for using RIA as CRI A = Tpub ·
Ppub + Tprv · Pprv + Sproof · Pnet .

To better facilitate the understanding, we give a concrete
value for each parameter so that we can obtain the real cost
for Cprivate and CRI A . For the application execution time,
the public execution time, the private execution time and the
proof size, we use the data in the Word Count experiment,
where tr and t f are set as 1% and 0.1%, respectively.
We normalize the computing capacity for both the public
cloud and the private cloud, according to the configurations
depicted in Section VI-A1. For instance, the public cloud
consisting of five instances of one-core CPU and 2GB memory
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TABLE IX

PARAMETERS FOR FINANCIAL EVALUATION MODEL

is considered as five instances. The private cloud consisting
of one instance of eight-core CPU and 8GB of memory is
considered as 8 instances. For the public cloud price and the
network price, we referred to the Amazon AWS public cloud
pricing webpage [27] and selected the price of the t2.small
instance, which has the same configuration as the public cloud
instance in our experiment. The private cloud price is not
available on the Internet. However, we can derive a feasible
private cloud price by solving the inequality Cprivate > CRI A .
As a result, we have

Pprv > (Tpub · Ppub + Sproo f · Pnet )/(Tapp − Tprv ) (6)

Replacing the parameters with values in Table IX, we have
Pprv > $0.13/hour/ instance. In other words, using the
values listed in Table IX, RIA will incur less cost than directly
using the private cloud if the private cloud price is greater than
$0.13/hour/ instance.

C. Compare With Proof-Based Verifiable Computation

Proof-based verifiable computation [28] is a class of solu-
tions that verifies the integrity of the remote computation.
In this class of works, the verifier (the private cloud in our
setting) will generate a set of constraints C about the runtime
values of variables in the program. During the execution,
the prover (the public cloud in our setting) will generate the
proof of the computation π based on the runtime value of
variables. The verifier then will perform a set of tests on the
proof π based on C . If the program was executed faithfully,
the test will pass; otherwise, the test will fail, except for a very
small probability. Systems following this direction include
Pepper [29], Buffet [14], TinyRAM [30], etc. Compared to
RIA, this class of works has strong limitation in terms of
language expressiveness, performance, and flexibility.

In this set of solutions, Buffet [14] achieves the best mix
of performance and generality in the literature. Even for
Buffet, it can support only a subset of C language (disallowing
function pointer and goto statement). TinyRAM [30] can
support all the C language. But it incurs an expensive overhead
in both the verifier and the prover. As of this writing, existing
solutions in this direction can only support simple programs.
In contrast, RIA supports real Java language and can be used
on the real applications, such as Hadoop MapReduce.

TABLE X

PERFORMANCE COMPARISON BETWEEN PANTRY AND RIA ON

THE MAP PHASE OF Dot Product TEST CASE (M = 20K)

From the performance’s perspective, such a class of solution
usually has a significant performance overhead on the prover
and in the set up phase of the verifier. Since Pantry [12] is the
only system claiming to support MapReduce, we compared
RIA with Pantry. Our comparison chose the dot product test
case used in [12, Fig. 10]. The MapReduce applications in
Pantry is implemented in C language with Open-MPI. Since
RIA only supports Java, we implemented the same algorithm
in Hadoop MapReduce and applied RIA on the implemented
program. In RIA, we set both tr and t f as 100%. In this test,
we executed the application on a cluster consisting only one
virtual machine instead of five. The configuration of the virtual
machine on the private cloud is the same as our previous
experiment. Since the data in [12, Fig. 10] only reflects the
map phase, our experiment also only focused on the map
phase. The comparison data is listed in Table X.

The Pantry column lists the data appeared in [12, Fig. 10].
The constraint size is calculated by assuming 12 constraints
constitute one byte (according to [12, Sec.8.1]). The prover’s
cost is the total time required for the prover to complete the
map phase of one job. The verifier’s cost is the total time
required for the verifier to setup and to verify the map phase of
one job. The RIA column lists the fact of the map phase of one
dot product job. Since Hadoop is a full-fledged MapReduce
framework implemented in Java, it takes a longer time (51s)
to complete the map phase. The constraint size is the size
of the execution log. The Prover’s cost is the execution time
of all the PWL map tasks executed on the public cloud. The
verifier’s cost is the time took for the integrity audition. The
figures indicate that RIA has a much better performance than
Pantry, however incurs a higher constraint size. Compared to
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the baseline, RIA only incurs 29% of overhead on the prover
and 118% of overhead on the verifier. In contrast, the execution
times of Pantry on the prover and on the verifier are both 104

time higher than the baseline.
In addition to the expressiveness and the performance

advantages, RIA is able to check the execution logs with a
probabilistic manner. Such a feature enables the audition of
scaled-up computation, making RIA a practical solution.

VII. RELATED WORKS

Secure co-processor [31] provided a hardware-based solu-
tion towards the trusted outsourced computing. The Trusted
Platform Modules (TPMs) protects the result correctness
by verifying whether the worker’s environment complies
to the specification. Such a solution has a strict require-
ment on worker’s environment, thus lacks the flexibility.
The Trusted Execution Environment technology, such as Intel
SGX [17], [18] offers an alternative option, which allows
trusted software to be executed in a trusted environment. Using
such a technology, Schuster proposed VC3 [32] to protect the
execution integrity of MapReduce. This solution still depends
on a specific hardware configuration. In addition, the trusting
base of such a system usually is carefully tailored, which
makes this method difficult to be generalized.

Anomaly detection-based solution works on the code level.
By statically modeling the program, collecting the program
execution trace, and comparing the consistency between the
model and the program execution trace, this type of method
can verify the runtime integrity. Previous works, such as [4]
and [5], focus on the integrity of the program’s control flow
while ignoring the integrity of its data flow. [7] and [8]
proposed methods to cover the data flow integrity of the system
call parameters. However, they cannot protect the tampering of
variables that are not involved in system calls. Shu et al. [6]
proposed to combine dynamic tracing and machine learning
to detect abnormal assemble language instruction sequence.
However, such a method has certain false positive and false
negative rate.

Practical solutions towards such a problem fall to the
direction of computing replication [33], [34], computing ver-
ification [35], trust management [36], and the combined
method [11]. The main challenge in this direction is to
achieve security guarantee while minimizing the cost. Such
a class of works covers various environment settings, includ-
ing grid computing [37], Cloud Computing [9], [10], [38],
Fog Computing [39], etc.

Proof-based verifiable computation [28] searches for theo-
retical solutions, utilizing cryptography and computing com-
plexity theorem. The framework of this direction is similar
to our work. Despite a few systems are proposed to realize
such a framework, including Pantry [12], Pinocchio [13], and
Buffet [14], they are not practical due to the lack of program
expressiveness, performance, and flexibility. The detailed dis-
cussion can be found in Section VI-C.

An orthogonal research direction is the control flow
integrity [40], [41]. Such a class of works transforms the
binary code to enforce control flow checks during the exe-
cution. This direction, only focusing on local control flow

hijackings, cannot be applied to the remote computation. Even
for the local control flow hijacking, existing works only raises
the bar for such an attack, and cannot defeat complicated
attacks, such as Control-Flow Bending [42] and Conti et al.’s
work [43].

The earlier research outcomes of this paper have been
published in [44]. This paper has improved the previous work
from multiple aspects, which includes reducing the log size,
improving security from different aspects, performing more
thorough evaluations, etc.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we propose the Runtime Integrity Audition
(RIA) technique, a method to remotely verify the runtime
integrity of MapReduce applications. We developed a proto-
type system called MR Auditor based on the idea of RIA,
and tested its applicability and the performance with several
Hadoop applications. Our experimental results showed that our
tool is compatible with all the applications that we tested and
incurs a moderate performance overhead.

RIA has shown a promising prospect. However, we believe
that refining the design will further improve the integrity
guarantee and reduce the performance overhead. From the
integrity’s perspective, detecting a small number of tampering
with the sampling-based solution would be an interesting
topic to work on. From the performance’s perspective, further
reducing the execution log size on the public cloud and
during the cross-cloud transmission would further reduce the
performance overhead.
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