
IEE
E P

ro
of

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS 1

Cutting Long-Tail Latency of Routing Response in
Software Defined Networks

Junjie Xie, Deke Guo, Xiaozhou Li, Yulong Shen, and Xiaohong Jiang

Abstract— To enable the network softwarization, network func-1

tion virtualization (NFV) and software defined networking (SDN)2

are integrated to jointly manage and utilize the network resource3

and virtualized network functions (VNFs). For a network flow4

resulting from any NFV application, an associated switch would5

send a routing request to the controller in SDN. The controller6

then generates and configures a routing path to dynamically steer7

the flow across appropriate VNFs or service function chains.8

This process, however, exhibits a skew distribution of response9

latency with a long tail. Cutting the long-tail latency of response10

is critical to enable the network softwarization, yet difficult to11

achieve due to many factors, such as the limited capacities and12

the load imbalance among controllers. In this paper, we reveal13

that such flow requests still experience the long-tail response14

latency, even using the up-to-date controller-to-switch assignment15

mechanism. To tackle this essential problem, we first propose a16

light-weight and load-aware switch-to-controller selection scheme17

to cut the long-tail response latency under the simple scenario18

of homogeneous controllers, and then design a general delay-19

aware switch-to-controller selection scheme to fundamentally20

cut the long-tail response latency for the more complicated21

heterogeneous controller scenario with performance fluctuations.22

The comprehensive evaluations indicate that our two new switch-23

to-controller selection schemes can significantly reduce the long-24

tail latency and provide higher system throughput.25

Index Terms— Network softwarization, software defined26

networks, controller selection, long-tail latency.27

Manuscript received September 30, 2017; revised February 5, 2018;
accepted February 27, 2018. This work was supported in part by the National
Natural Science Foundation for Outstanding Excellent Young Scholars of
China under Grant 61422214, in part by the National Natural Science Foun-
dation of China under Grant 61772544 and Grant U1536202, in part by the
National Basic Research Program (973 program) under Grant 2014CB347800,
in part by the Hunan Provincial Natural Science Fund for Distinguished
Young Scholars under Grant 2016JJ1002, and in part by the Guangxi
Cooperative Innovation Center of cloud computing and Big Data under
Grant YD16507 and Grant YD17X11. (Corresponding authors: Deke Guo;
Yulong Shen.)

J. Xie is with the Science and Technology on Information Systems Engi-
neering Laboratory, National University of Defense Technology, Changsha
410073, China (e-mail: xiejunjie06@gmail.com).

D. Guo is with the College of System Engineering, National University of
Defense Technology, Changsha 410073, China. He is also with the School of
Computer Science and Technology, Tianjin University, Tianjin 300072, China
(e-mail: guodeke@gmail.com).

X. Li is with the Department of Computer Science, Princeton University,
Princeton, NJ 08544 USA (e-mail: xl@cs.princeton.edu).

Y. Shen is with the School of Computer Science and Technology, Xidian
University, Xi’an 710071, China (e-mail: ylshen@mail.xidian.edu.cn).

X. Jiang is with the School of Systems Information Science, Future
University Hakodate, Hokkaido 041-8655, Japan (e-mail: jiang@fun.ac.jp).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSAC.2018.2815358

I. INTRODUCTION 28

NETWORK softwarization is a transformation trend for 29

designing, implementing, and managing the next gener- 30

ation networks. It exploits the benefits of software to enable 31

the redesign of network and service architectures, optimize 32

the expenditure and operational costs, and bring added val- 33

ues. The key enablers consist of the network function vir- 34

tualization (NFV), software-defined networking (SDN) and 35

cloud computing, etc [1]. Moreover, 5G systems will also 36

rely on these technologies to attain system’s flexibility and 37

true elasticity [2], [3]. Network functions (NFs) are crucial 38

for improving network security by examining and modifying 39

network flows using special-purpose hardware. Recently, NFV 40

has been proposed to execute virtual network functions (VNFs) 41

on generic compute resources [4], such as commodity servers 42

and VMs. Normally, a flow goes through specific VNFs in 43

a particular order to meet its required processing, following 44

the service function chain (SFC) [5], [6] along a routing 45

path. 46

Additionally, SDN offers the freedom to refactor the control 47

plane and flexibly enables the network softwarization [7]. 48

More precisely, NFV and SDN can jointly manage the network 49

resource and VNFs, and dynamically steer network flows 50

across appropriate VNFs or SFCs. SDN centralizes the net- 51

work control plane to a programmable software component, 52

i.e., a controller running on a generic server, such as NOX [8]. 53

The controller maintains a global network view and optimizes 54

the forwarding decisions of network flows. For a flow from any 55

NFV application, an associated switch would send a routing 56

request to the controller. It is the controller that generates and 57

configures a routing path to a specific VNF instance or to 58

traverse a SFC on demand. The above process between a 59

pair of switch and controller brings the response latency. 60

Many factors would skew the tail of the latency distribution. 61

For example, a single controller that lacks sufficient capacity 62

to tackle received routing requests quickly and inevitably 63

becomes a performance bottleneck [9]. Thus, such routing 64

requests experience long-tail latency of response, as evaluated 65

in Section II. Cutting the long-tail latency of routing response 66

is critical to enable the network softwarization, yet difficult to 67

achieve due to many factors. 68

To improve the scalability of SDN, the distributed control 69

plane consisting of multiple controllers has been proposed 70

recently [10], such as ONOS and OpenDaylight. To reduce 71

the long-tail latency of response, they resort to the controller- 72

to-switch assignment mechanism. That is, the control plane 73

0733-8716 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

IEE
E P

ro
of

2 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS

proactively assigns a controller to each switch such that each74

controller manages the same amount of switches. In reality,75

the quantities of routing requests coming from switches per76

unit time are different and dynamic. Consequently, controllers77

still differ in the amount of received routing requests per time78

unit. This load imbalance among controllers leads to the long-79

tail latency of response. Additionally, the controller-to-switch80

assignment requires coordination among controllers, which81

further aggravates the loads of controllers.82

In this paper, to cut the long-tail latency of response and83

lighten the load of controllers, we propose conducting the84

selection of controllers at the side of each switch instead of the85

controller-to-switch assignment. This means that each switch86

actively chooses one controller from multiple available ones,87

decoupling the static binding between switches and controllers.88

More precisely, each switch prefers to adaptively select the89

controller with low response latency for routing requests. This90

would move the partial intelligences of the network to switches91

and efficiently reduces the loads of controllers.92

Despite those potential benefits, the selection of controllers93

still faces many challenges. First, the switches need to probe94

the state of controllers via the secure channel between them.95

The secure channel is one kind of rare resource and affects the96

performance of the whole network. To save the bandwidth of97

the secure channel, the selection process of controllers should98

be light-weight and use a few of the feedbacks from the99

controllers. Second, the selection scheme needs to be scalable,100

irrespective of the network size and the number of controllers.101

Third, the selection scheme needs to accommodate the bursty102

and skew routing requests from switches. Last, the selection103

scheme should adapt to the heterogeneous controllers and the104

performance fluctuation across controllers.105

To tackle such challenges, we design a load-aware selec-106

tion scheme of controllers, which is simple but effective to107

achieve the load balance among controllers. The load of a108

controller refers to the number of routing requests waited109

to be processed. The basic idea of our scheme is that each110

switch sends routing requests to the controller with the lowest111

load. In this way, all controllers process the similar number112

of routing requests per time slot. This is very helpful to cut113

the long-tail latency of routing response, when all controllers114

have the same processing capabilities. This method alone,115

however, is insufficient to deal with more general settings116

of heterogenous controllers and the performance fluctuation.117

Those controllers with lower processing capabilities still incur118

the long-tail latency of response for routing requests, when all119

controllers achieve the load balance. For this reason, we further120

present a general delay-aware selection scheme of controllers121

to fundamentally cut the long-tail latency of routing response.122

Our delay-aware selection scheme includes two key com-123

ponents. The first one is the controller selection model of each124

switch, which uses simple and inexpensive probing feedbacks125

from a few controllers. It is still effective if each switch just126

randomly probes two controllers and sends upcoming routing127

requests to the controller with the shorter response delay. This128

model is scalable and light-weight since it is not affected by129

the network scale and the number of controllers. The second130

component is the queue management mechanism of each131

controller. It could estimate the response delay of a routing 132

request and hence improve the performance predictability of 133

controllers. The evaluation results reveal that our delay-aware 134

selection scheme can efficiently reduce the long-tail latency of 135

routing responses and improve the system throughput. 136

In summary, the major contributions of this paper are as 137

follows. 138

1) We reveal that routing requests experience the long-tail 139

response latency, even using the up-to-date controller- 140

to-switch assignment mechanism in SDN. Therefore, 141

we propose an adaptive selection mechanism of con- 142

trollers for switches to cut the long-tail latency. 143

2) We first design an efficient load-aware selection method 144

of homogeneous controllers for each switch. For more 145

general scenarios, we further propose a general delay- 146

aware selection method, which is adaptive to the bursty 147

routing requests, the heterogenous controllers and the 148

performance fluctuations. Our two methods are light- 149

weight as they limit the additional overhead caused by 150

probing two controllers. 151

3) We further develop a queue management mechanism 152

for each controller, which can efficiently manage the 153

queue length and estimate the response delay of routing 154

requests. The evaluation results reveal that our controller 155

selection methods can accommodate system environ- 156

ment variations and efficiently reduce long-tail latency 157

of routing response. 158

The paper is organized as follows. In Section II, we present 159

the observation of long-tail latency of routing response. 160

Section III depicts the framework of our controller selection 161

mechanism and the load-aware selection scheme of controllers. 162

We present the delay-aware selection scheme of controllers in 163

Section IV. We conduct massive experiments to evaluate the 164

performance of our controller selection schemes under various 165

system environment in Section V. Section VI introduces the 166

related work. In Section VII, we conclude this paper. 167

II. LONG TAIL OF RESPONSE LATENCIES 168

In a SDN, when a switch receives a new flow, the switch 169

sends a routing request to its controller. The controller then 170

computes a route for the flow and inserts flow rules to related 171

switches in the route. Thus, the new flow would be forwarded 172

according to the flow rules in switches [11], [12]. Such an 173

interaction between the switch and the controller causes the 174

response latency. For a routing request, the latency of routing 175

response denotes the time interval from sending the routing 176

request to receiving the flow rules generated by the controller. 177

A. Long-Tail Observations of Response Latencies 178

Fig. 1(a) plots an observation about the long-tail distribu- 179

tion under a single instance of ONOS controller. We build 180

a SDN testbed with one controller, running in a virtual 181

machine with 2 CPU cores and 2G RAM. Note that the 182

testbed forms a typical Fat-tree datacenter topology [13]. 183

We record the response latencies of 12,000 routing requests. 184

As shown in Fig. 1(a), the response latencies of 50% of routing 185

requests are lower than 5ms, and 90% of routing requests are 186

IEE
E P

ro
of

XIE et al.: CUTTING LONG-TAIL LATENCY OF ROUTING RESPONSE IN SOFTWARE DEFINED NETWORKS 3

Fig. 1. Long-tail distributions of routing responses under a single controller
as well as multiple controllers.

served within 30ms. However, there still exist some routing187

requests whose response latencies are more than 50ms. That188

is, the response latencies exhibit a long-tail distribution.189

Furthermore, we observe the response latencies of rout-190

ing requests under multiple controllers [14]. We employ191

300 switches and 40 controllers where each controller192

manages 7 or 8 switches. Each switch generates routing193

requests according to a Poisson arrival process with λ = 0.5194

during 1ms. The processing time of each request in each195

controller is drawn from an exponential distribution where196

μ−1 = 2ms. Each controller can process 10 requests in197

parallel. We run the system 1000ms and record the response198

latencies of routing requests. The number of arrival routing199

requests is about 150, 000. In Fig. 1(b), 89% of routing200

requests can be served in 5ms, and the response latencies201

of 96% of routing requests are lower than 10ms. However,202

some response latencies are still larger than 20ms. That is,203

Fig. 1(b) shows that there still exists a long-tail distribution204

under multiple ONOS controllers.205

B. Analysis About the Long-Tail Latencies206

Fig. 1(a) results from that the network only employs one207

controller. Due to the limited capability of the single controller,208

a large amount of requests have to queue in the controller.209

Therefore, there is a long-tail latency of routig response caused210

by the long queueing delays. In Fig. 1(b), the number of211

routing requests that each switch generates is different, even212

though they obey the same Poisson distribution. The skew-213

flow requests will make that some controllers are overload, but214

other controllers would be underutilized. As a consequence,215

there will be a long-tail latency. We illustrate the problem216

in Fig. 2. Two controllers are assigned to four switches and217

have the same processing time of 4ms. Assume swi tch1 and218

swi tch2 receive 4 requests each and that swi tch3 and swi tch4219

receive 2 requests each. The requests received by swi tch1220

and swi tch2 can only be processed by controller1, which is221

assigned to manage them. This leads to a maximum latency of222

32ms, but a load-aware selection obtains a maximum latency223

of 24ms. Fig. 2 shows that a quantity-based assignment strat-224

egy leads to long-tail latencies because it fails to accommodate225

the skew-flow requests.226

Quantity-based allocation strategy is commonly employed227

by many controllers to balance the loads of controllers, such as228

Fig. 2. The performances of quantity-based controller allocation and load-
aware controller selection.

ONOS [14]. That is a controller-to-switch assignment mech- 229

anism, which is abbreviated as the assignment mechanism 230

of controllers. In this case, controllers coordinate to manage 231

switches, and each controller manages an approximately equal 232

quantity of switches. When deploying multiple instances of 233

ONOS in a SDN, the bursty flows from a switch are sent to the 234

same controller. Consequentially, a large number of requests 235

have to queue in the controller. These queueing requests tend 236

to incur long response latencies. However, those controllers, 237

which do not receive bursty routing requests, may even be 238

underloaded. In conclusion, the assignment mechanism fails 239

to efficiently reduce the tail latencies of responses. 240

III. FRAMEWORK OF CONTROLLER 241

SELECTION MECHANISM 242

To overcome the drawback of assignment mechanism, 243

we design a switch-to-controller selection scheme, which 244

is abbreviated as the selection scheme of controllers. The 245

selection scheme moves partial intelligences of the network 246

to switches and relieves the loads of controllers. Meanwhile, 247

the selection scheme can efficiently reduce tail latencies of 248

responses. 249

A. Overview of Controller Selection Mechanism 250

For existing designs of control plane, the assignment mech- 251

anism of controllers is a static binding between switches and 252

controllers, which fails to deal with the bursty and skew 253

routing requests, and further incurs long response delays. 254

To reduce the tail latencies of responses, routing requests from 255

the same switch need to be processed by appropriate con- 256

trollers. This means that the static binding between switches 257

and controllers needs to be decoupled. A better mechanism is 258

to enable switches to select controllers for routing requests. 259

For the assignment mechanism, the load balance among 260

controllers means that each controller manages the same 261

amount of switches. The load is denoted by the number 262

of switches. Moreover, the load balance among controllers 263

requires the coordination of controllers. The coordination 264

will further aggravate the computing and communication 265

overhead. However, in this paper, the selection scheme of 266

controllers achieves the mapping between switches and con- 267

trollers through switches conduct simple and actively probing. 268

IEE
E P

ro
of

4 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS

Therefore, the selection scheme relieves the overhead of269

coordination and assignment in controllers.270

In SDN, the controller periodically probes the switch state,271

and switches would respond to those probes and forward any272

switch notifications (e.g., link failures or recovery) to all live273

controllers [15]. When a switch suffers a failure scenario,274

it fails to respond to the probe. After that, the controller275

promptly updates its local topology state and replicates that276

update to all other controllers in the cluster. In addition, there277

have been lots of researches on how to achieve the consistency278

among distributed controllers [15]. These techniques are com-279

plementary to our approach.280

We design the controller selection mechanism keeping in281

mind these four goals:282

1) Light-weight: A light-weight probing method is needed283

to save the bandwidth of the secure channel. The probing284

for the controller selection uses the secure channel,285

which is the communication channel between the control286

plane and the data plane. The bandwidth of the channel287

can affect the performance of the whole network.288

2) Scalable: The selection scheme of controllers should be289

irrelevant to the increasing number of controllers. The290

expansion of network size is common. The method of291

probing controller should accommodate the increase of292

deployed controllers and avoid to incur the communica-293

tion overhead and the computing overhead.294

3) Burst-immunity: The selection scheme should be burst-295

immune. There are bursty and skew-flow requests, which296

can lead to long response delays. To shorten the tail297

latency of responses, the selection scheme needs to298

accommodate the bursty and skew-flow requests.299

4) Adaptive: The selection scheme of controllers should be300

adaptive. The capabilities of controllers may be hetero-301

geneous and time-varying. To deal with the general situ-302

ation, the selection scheme must cope and quickly react303

to heterogeneous and time-varying processing capabili-304

ties across controllers.305

B. Load-Aware Selection Scheme of Controllers306

Accommodating skew-flow requests across controllers307

necessitates a selection strategy of controllers. The strategy308

can make switches select faster controllers for routing requests.309

The controller with fewer unfinished requests can respond to310

routing requests faster when controllers have the same process-311

ing capability. In this paper, we first present a load-aware312

selection scheme. To realize this framework, the selection313

strategy needs to take into account the loads across multiple314

controllers in the network. The load means the number of315

unfinished requests. Our load-aware selection scheme is to316

select a controller with the fewest unfinished requests for317

newly generated requests.318

Under the load-aware selection scheme of controllers,319

the switch needs to send a probing request to each controller320

after a switch receives a new flow. When the controller receives321

the probing request, it will return the number of unfinished322

requests to the switch. After the switch receives all probing323

results, it then sends the new routing request to the controller324

with the lightest load since that controller can respond the 325

routing request fastest. The load-aware selection scheme aims 326

to reduce tail latencies of responses by selecting the controller 327

with the lightest load. 328

In Fig. 2, the load-aware selection scheme will work as 329

follows. When a switch receives a new flow, it first probes the 330

loads of controllers A and B. Based on the loads of controllers 331

A and B, the switch sends the routing request to the controller 332

with lightest load. This scheme can balance the loads of 333

controllers A and B and can achieve better selection. When the 334

controller finishes processing the routing request, it inserts the 335

flow rules to related switches. Lastly, those switches will deal 336

with the flow according to the actions of matched flow rules. 337

In addition, the new arrival routing requests need to queue in 338

controllers, when controllers are busy. However, the infinite 339

length of queue will incur infinite response delays of routing 340

requests. To cut the tail latency of response, it is necessary to 341

ensure that the length of queue is finite in each controller. 342

C. The Condition to Finite Queue Length 343

We give the condition to achieve that the expected number 344

of requests in per controller remains finite for all time. Con- 345

sider the following model: requests arrive as a Poisson stream 346

of rate λ at each switch. Requests are processed according 347

to the first-in first-out (FIFO) protocol by controllers. The 348

processing time for a request is exponentially distributed with 349

mean μ. When there are m switches and n controllers in a 350

network, requests arrive as a Poisson stream of rate λm
n at 351

each controller. We obtain the following theorem. Note that 352

λm
n < μ, and then the system will be stable, which means that 353

the expected number of requests per controller remains finite 354

in equilibrium. Theorem 1 shows that the system is stable for 355

every λm
μn < 1; that is, the expected number of requests in each 356

controller remains finite for all time. 357

Theorem 1: The system is stable for every λm
μn < 1; that 358

is, the expected number of requests in each controller remains 359

finite for all time. 360

Proof: When we treat all controllers as a whole and 361

all switches as a whole, then the system can be seen as 362

a M/M/1 system with Poisson arrival rate λm and average 363

service rate μn. Let Pk(t) denote the probability of that there 364

are k requests in the whole system in time t . Accordingly, 365

Pk+1(t) denotes the probability where k + 1 requests exist in 366

the system in time t , and Pk(t+�t) denotes the probability of 367

that there are k requests in the whole system in time t +�t . 368

Now we consider the evolution of the system. In the time 369

[t, t + �t], the process of evolution has some attributes just 370

as follows: 371

• One request comes with the probability λm�t , and the 372

probability of no request comes is 1− λm�t . 373

• One request departures with the probability μn�t , and 374

the probability of no request departure is 1− μn�t . 375

• The situation of more than one request comes and depar- 376

tures in �t is a small probability event, and it can be 377

ignored. 378

There are 4 types of evolution process, and we list them 379

in Table I. Take type B for an example. Since k is the number 380

IEE
E P

ro
of

XIE et al.: CUTTING LONG-TAIL LATENCY OF ROUTING RESPONSE IN SOFTWARE DEFINED NETWORKS 5

TABLE I

FOUR TYPES OF EVOLUTION PROCESS

of requests in the whole system, so k + 1 means that there381

are k + 1 requests in the system in time t . After that, when382

a request departs during �t , there would be k requests in383

the system in time t + �t . Accordingly, we can get the384

possibility of type A is Pk(t)(1−λm�t)(1−μn�t), possibility385

of type B is Pk+1(t)(1 − λm�t)μn�t , possibility of type386

C is Pk−1(t)λm�t (1 − μn�t) and possibility of type D is387

Pk(t)λm�tμn�t . Then, Pk(t +�t) should be the sum of all388

4 types, shown in Equation (1).389

Pk(t +�t) = Pk(t)(1− λm�t − μn�t)390

+ Pk+1(t)μn�t + Pk−1(t)λm�t + o(�t) (1)391

And let �t → 0, we can get a differential equation, shown392

in Equation (2).393

d Pk(t)

dt
= λm Pk−1(t)+ μn Pk+1(t)394

− (λm + μn)Pk(t) k = 1, 2, . . . (2)395

Noted that if k = 0, there will exist only type A and type B,396

shown in Equations (3) and (4).397

P0(t +�t = P0(t)(1−λm�t)+ P1(t)(1−λm�t)μn�t (3)398

d P0(t)

dt
= −λm P0(t)+ μn P1(t) (4)399

We just have interest in the equilibrium point, and the400

derivative is 0 in fixed point. Thus, we get Equation (5).401 {
−λm P0 + μn P1 = 0

λm Pk−1 + μn Pk+1 − (λm + μn)Pk = 0 k ≥ 1
(5)402

Resolve equation (5), we can get Pk = (λm/μn)k P0.403

If λm
μn < 1, then the sequence Pk will be decrease. And we404

know probability is non-negative, that means Pk ≥ 0. If a405

sequence is bounded and monotone, it converges [16]. So there406

exist K , when k > K , Pk = 0. Then the expected total number407

of requests in all controllers remains finite.408

Theorem 1 shows that the expected total number of requests409

in each controller remains finite, when λm
μn < 1. Therefore,410

to achieve the finite queue length, it is essential to ensure that411

λm
μn < 1. When the network size m increases, if λm

μn ≥ 1, it is412

necessary to increase the number of deployed controllers n,413

otherwise, the queue length of some controllers will be infinite,414

and that will incur infinite response delays. Another method415

to limit the queue length of controllers is to drop some routing416

requests, which can limit the value of λ and achieve λm
μn < 1.417

D. Limitations of Load-Aware Selection Scheme418

Fig. 3 shows the Cumulative Distribution Function (CDF) of419

response latencies of routing requests under different schemes.420

Fig. 3. Response latencies of routing requests under different schemes.

Fig. 4. Distinct selection schemes incur different response latencies.

In Fig. 3, the response latencies of 94% of routing requests 421

are lower than 5ms after adopting the load-aware selection 422

scheme. However, for the quantity-based assignment, only 423

86% of routing requests can be responded in 5ms. In Fig. 3, 424

all routing requests can be responded in 10ms under the load- 425

aware scheme. Therefore, Fig. 3 indicates that our load-aware 426

selection scheme can reduce the tail latency of responses than 427

the prior quantity-based allocation method when controllers 428

are homogeneous and exhibit the same processing capabilities. 429

However, we can see that both curves (Quantity-based and 430

Load-aware) are very close to each other, which means that 431

the load-aware selection strategy narrowly reduce the long- 432

tail latency. Furthermore, the load-aware selection scheme 433

faces three challenges. First, controllers are heterogeneous. 434

Second, the processing capabilities of controllers are dynam- 435

ically changing. Third, the cost of probing is too huge. 436

Therefore, the load-aware selection scheme is still insufficient 437

to completely cut the tail latency. 438

Fig. 4 plots an illustrative example of the limitation. For two 439

controllers, the processing time per request in controller A and 440

controller B are 5ms and 12ms, respectively. Assume all four 441

switches receive a burst of 3 requests each. Each request needs 442

to be forwarded to a single controller. If every switch selects 443

a controller using the load-aware scheme, it will result in each 444

controller receiving an equal share of the requests. This leads 445

to a maximum latency of 72ms, whereas an ideal selection in 446

this case obtains a maximum latency of 45ms. We note that 447

the load-aware scheme will prefer faster controllers over time, 448

but purely relies on the load information. Therefore, when 449

controllers are heterogeneous, the load-aware selection scheme 450

can not efficiently shorten the tail latency. 451

Controllers are commonly heterogeneous for primarily three 452

reasons. First, the hardware is heterogeneous. Controllers run 453

IEE
E P

ro
of

6 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS

in commercial servers. These servers can be heterogeneous454

due to different hardware configurations, such as CPU and455

memory. Second, the software is heterogenous. There are456

multiple different controllers developed by different organiza-457

tions [10], such as NOX, Beacon, Floodlight, Ryu, ONOS and458

OpenDaylight, etc. Those controllers themselves have different459

performances. Third, the function is heterogeneous. There460

are some management applications running in controllers for461

achieving different functions [12], [17], and these applications462

will consume some resources of controllers. Consequentially,463

controllers have different remaining capabilities for processing464

routing requests, even if the controllers run in servers with465

the same setting. In this case, queueing routing requests in466

controllers with low processing capabilities will lead to long467

response latencies.468

Additionally, the load-aware scheme probes the loads of all469

controllers, and then selects the controller that has the lightest470

load. However, this probing will incur the overhead of com-471

munication and aggravate the loads of controllers when there472

are a large number of controllers in a large-scale network. For473

example, there are m switches and n controllers in a network.474

Suppose that each switch receives λ routing requests in 1ms.475

There are 2λ×m×n times communications between switches476

and controllers during 1ms. Meanwhile, each controller needs477

to evaluate its own load λm times in 1ms. The cost of probing478

is too huge for the load-aware selection scheme.479

The load-aware controller selection scheme can only reduce480

tail latencies of responses under the homogeneous controllers.481

However, the network environment is time-varying in real482

situations, not only in the processing capabilities of controllers483

but also in the number of routing requests from switches.484

We further propose a delay-aware selection scheme of con-485

trollers, which can adapt to the variations of the network486

environment.487

IV. DELAY-AWARE SELECTION SCHEME488

OF CONTROLLERS489

We design the delay-aware selection scheme of controllers490

while keeping the design goals of controller selection mecha-491

nism in mind. We first show an overview of the delay-aware492

selection scheme. Then, we present two major components of493

the delay-aware selection scheme, the selection models of con-494

trollers and the queue management mechanism of controller.495

A. Overview of Delay-Aware Selection Scheme496

To address those problems faced by the load-aware selection497

scheme, we further design the delay-aware selection scheme of498

controllers, which is adaptive to the heterogeneous controllers499

as well as to the dynamic behaviours of flows. The delay-500

aware selection scheme needs to probe the response delays of501

controllers for routing requests and send the routing requests502

to the controller with the smallest response delay. The latency503

of routing response denotes the time interval from sending504

the routing request to receiving the flow rules generated by505

the controller and is composed of the queueing delay and506

the processing delay, as shown in Definition 1. The response507

delay is an approximate evaluation of response time. Through508

Fig. 5. Overview of controller selection scheme. CS: Controller Selection
scheduler, QM: Queue Management of controller.

probing response delays, the delay-aware selection scheme 509

can accommodate the heterogeneous controllers, while fewer 510

routing requests will be sent to the controllers with low 511

processing capabilities. 512

Definition 1: The latency of routing response denotes the 513

time interval from sending the routing request to receiving the 514

flow rules generated by the controller. 515

Furthermore, the capabilities of controllers are time-varying. 516

With the development of SDN, there are more and more 517

applications running in controllers. When switches send vast 518

requests to the controller that has fast capability of response 519

at before, a large number of requests have to queue in 520

controllers if the capabilities of controllers decrease due to 521

other applications’ overconsumption of resources. 522

Our delay-aware selection scheme includes two major com- 523

ponents, controller selection (CS) and queue management 524

(QM). Recall the design goal of the selection scheme in 525

Section III-A, CS can achieve that the selection scheme is 526

light-weight, scalable and burst-immune, and QM achieves 527

the goal of adaptivity. First, we design a selection scheme 528

of controllers, which can select the controller based on a 529

little feedback from the controllers, and thus, is light-weight. 530

Second, instead of probing all controllers, the switch randomly 531

probes d controllers where d ≥ 1. The probing is scalable 532

and independent of the network size. Third, the selection 533

scheme can make switches conduct once controller selection 534

for each flow or a batch of flows. It can make those requests 535

be processed by different controllers, and thus can avoid the 536

influence of the bursty and skew-flow requests. Last, through 537

estimating response delays of routing requests, switches can 538

send routing requests to the controller that has the smallest 539

response delay. Based on this estimation, the selection of 540

controllers can be adapted to the heterogeneous and time- 541

varying processing capabilities. 542

Fig. 5 depicts the framework of the adaptive switch-to- 543

controller selection scheme. When a request is issued at a 544

switch, the switch will work based on Algorithm 1. The switch 545

randomly probes d controllers, where d ≥ 1. The d controllers 546

then estimate their response delays for the routing request 547

based on Algorithm 2 and return the response delays ψ to 548

the switch. If ψi of controller i exceeds the max response 549

delay RDmax limit, then controller i will return the response 550

delay ψi = −1. When the switch receives response delays 551

of d controllers, it will select the controller that has the 552

smallest response delay. If all response delays are lower than 0, 553

the switch will reselect a controller whose queue length does 554

IEE
E P

ro
of

XIE et al.: CUTTING LONG-TAIL LATENCY OF ROUTING RESPONSE IN SOFTWARE DEFINED NETWORKS 7

Algorithm 1 The Selection of Controllers
Require: Controller set C , d .
1: randomly probe d controllers from C;
2: send estimating request to the d controllers;
3: ψ ← response delays of d controllers;
4: if there exists ψx ≥ 0 then
5: id ← arg min{ψx ≥ 0};
6: else
7: for i = 1 to C .length do
8: send estimating request to controllers C[i];
9: ψ0 ← response time of C[i];

10: if ψ0 >= 0 then
11: id = i ;
12: break;
13: send the routing request to controller C[id].

Algorithm 2 Queue Management of Controller
Require: the max response delay, RDmax .
1: receive an estimating request from switch s;
2: calculate the average processing time of requests ν̄;
3: if ri < γi then
4: ψi ← ri

γi
ν̄;

5: else
6: ψi ← C[qi modγi] + (�qi/γi� + 1)× ν̄;
7: if ψi > RDmax then
8: ψi = −1;
9: send ψi to switch s.

not exceed limit for the routing request. Last, the switch will555

send the request to the selected controller.556

B. The Selection Models of Controllers557

When there are only a few controllers in the network, it is558

feasible to probe all controllers. Considering that this probing559

could occupy extra bandwidth of the secure link, it is essential560

to design a per-flow light-weight probing method.561

1) Active Per-Flow Selection of Controllers: To deal with562

the skew-flow requests and reduce response tail latencies,563

the switches need to select controllers for each flow. Instead564

of the controller-to-switch assignment, the active per-flow565

selection of controllers makes that the routing requests from566

the same switch can be processed by different controllers.567

This selection scheme can fully exploit the capabilities of568

controllers and efficiently reduce response tail latencies.569

To reduce the bandwidth consumption of probing con-570

trollers, one method is to reduce the number of probed571

controllers. There is a tradeoff between response tail latencies572

and the number of probed controllers. Probing more controllers573

can achieve fewer response tail latencies. However, that also574

means more bandwidth consumption and computing overhead575

in controllers. The number of controllers increases as the576

network scale grows. In this case, checking all controllers has577

a huge cost. To achieve the light-weight probing, we randomly578

probe d controllers instead of checking all controllers, where579

d ≥ 1. Furthermore, Azar et al. [18] have shown that having580

just two random choices (i.e., d = 2) yields a large reduction 581

in the maximum load over having one choice. This method 582

has been widely studied and applied [19]. Inspired by this fact, 583

our active per-flow selection is to probe two controllers and 584

is thus scalable. Meanwhile, the active per-flow selection of 585

controllers can efficiently reduce the bandwidth consumption 586

of the secure link and the computing load of controllers. 587

Instead of probing the loads of the controllers, probing 588

response delays of controllers can better reduce response tail 589

latencies. The probing of response delays requires that these 590

controllers evaluate their own response delays for routing 591

requests. Since the selection of controllers only needs to get a 592

numerical value of response delay, the selection of controllers 593

is light-weight. Moreover, the heterogeneous and time-varying 594

processing capabilities of controllers increase the complexity 595

of evaluation for response delays of controllers. The response 596

delay estimate model will be introduced in Section IV-C. 597

2) Active Selection of Controllers for a Batch of Flows: 598

When switches meet bursty-flow requests or when the arrival 599

of routing requests is frequent, conducting a controller selec- 600

tion for each request still aggravates the bandwidth consump- 601

tion and the loads of controllers even if only two controllers 602

need to be probed in one controller selection. Conducting the 603

controller selection for a batch of arrival routing requests is 604

needed to increase the scalability of the controller selection 605

mechanism, when switches suffer bursty flows. 606

For active selection of controllers for a batch of flows, 607

the switch conducts one controller selection after it receives 608

the first flow request. When we set the batch size as δ, 609

it means that the following δ − 1 requests will be sent to 610

the same controller with the first request. That is, the result 611

of controller selection for the first request will be shared by δ 612

requests. In addition, the batch selection is irrelevant to the 613

rate of requests because δ denotes the number of requests. 614

Therefore, although there would be the high rate of requests 615

in the beginning when the switch changes its controller, those 616

requests would not be sent to the same controller. Given that 617

the request arrival process at each switch is a Poisson process 618

with rate λ, the arrival duration for a flow is exponentially 619

distributed with mean 1/λ. Therefore, the arrival duration of δ 620

flows is also exponentially distributed with mean δ/λ. 621

There is a tradeoff between the rounds of controller selec- 622

tion and the performance of controller selection. If δ is too 623

small, it is obvious that controller selection should be fre- 624

quently conducted. However, it will decrease the performance 625

of controller selection when δ is too large. It is worth noting 626

that it is unnecessary to adopt the batch selection when the 627

arrival of flows is scattered. 628

C. Queue Management Mechanism of Controller 629

The queue management of controller makes it so that the 630

selection of controllers can cope and quickly react to heteroge- 631

neous and time-varying processing time across controllers. Our 632

queue management mechanism of controller includes response 633

delay estimate and queue length bound. 634

1) Response Delay Estimate Model: As depicted in 635

Section III-D, the load-aware selection scheme of controllers 636

IEE
E P

ro
of

8 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS

can not accommodate the heterogeneity of controller. To effi-637

ciently reduce the long-tail latency of routing response,638

switches should select controllers with lower response delays639

for each routing request.640

Request response time consists of the queueing time and641

the processing time. Furthermore, the queueing time is related642

to the length of queue, which is equal to the number of643

queueing requests. Meanwhile, to estimate the queueing time,644

it is essential to estimate the processing time of each request.645

In our design, the controller records ν j , which is the processing646

time of the latest responded j th requests. Given the number647

of the latest finished requests s, we calculate ν̄, which denotes648

the average processing time of s requests in controller i . Thus,649

ν̄ = 1
s

∑s
j=1 ν j . We use ν̄ to estimate the processing time of650

requests.651

Consider that the controller can process multiple routing652

requests simultaneously. We use γi to denote the number of653

requests that controlleri can simultaneously process. qi and ri654

are the number of queueing and running requests in con-655

troller i , respectively. To improve the system utilization,656

the controller that has idle running slots should have a lower657

estimated response delay. Therefore, the estimated response658

delay ψi = ri
γi
ν̄ when ri < γi . When there are requests659

queueing in a controller, the controller records the running660

duration A[k] of the running request in the kth slot where661

1 ≤ k ≤ γi . The controller then estimates that the queueing662

request will run in which slot. To achieve this goal, we use663

B[k] = |ν̄− A[k]| and then sort B[k] as non-decreasing order.664

Then, the controller estimates that the request will run in665

[(qi mod γi) + 1]th slot. We can get the queueing time666

wti = B[(qi mod γi)+1]+(�qi/γi�)×ν̄. At last, ψi = wti+ν̄667

when ri = γi .668

In summary, controlleri uses the following estimation669

function for response delay:670

ψi =
{

B[(qimodγi)+ 1] + (�qi/γi� + 1)× ν̄ ri = γi
ri
γi
ν̄ ri < γi

(6)671

When a switch sends an estimating request to controlleri ,672

the controlleri adopts the formula (6) to estimate the response673

delay. In general, γi = 1 means that the controller only can674

process one request once. In this case, ψi = B[1]+(qi+1)×ν̄.675

We suppose that the controller is empty at the beginning. After676

that, ν̄ is equal to the average processing time of finished677

requests when the number of finished messages is lower than678

the given threshold s.679

2) Cutting Tail Latencies: Since switches conduct con-680

troller selection simultaneously, there may be “herd behav-681

iors,” wherein multiple switches are coaxed to direct requests682

towards the best controller. There are many requests queueing683

in a controller under herd behavior that could leads to long-tail684

latencies of routing responses. Moreover, it is possible that the685

probed controllers all have low processing capabilities or long686

queues. In this case, it is not suitable to select a controller687

from those probed controllers.688

To cut long-tail latencies and reduce the influence of herd689

behavior, the controller necessitates to bound its queue length.690

Determining the length of queues at controllers is crucial.691

Queues that are too short lead to lower controller utilization, 692

as resources may remain idle between allocations. Queues that 693

are too long may incur excessive queuing delays. 694

When fewer requests are sent to a controller, this may incur 695

under-utilization of its resources, whereas significant delays 696

may occur when requests need longer processing time. Hence, 697

after estimating request response delay, we further design 698

a delay-aware bounding mechanism to bound queue length, 699

which can accommodate the heterogeneous and time-varying 700

capabilities of controllers. Meanwhile, bounding queue length 701

can efficiently weaken the influence of herd behaviors. At one 702

point, a controller receives a burst of flows, and that exceeds 703

the limit of queue length. After that, the following flows will 704

not queue in the controller until the queue length is lower than 705

the limit. This delay-aware bounding mechanism relies on the 706

response delay estimation of request, which is reported by the 707

controller. 708

In particular, we specify the maximum response delay 709

RDmax that a request is allowed to wait in a queue. When 710

we are about to place a request at the queue of controlleri , 711

we first check the estimated response delay ψi reported by 712

controlleri . Only if ψi < RDmax is the request queued at 713

that controller. We sample d controllers while conducting the 714

controller selection. If the d selected controllers all do not sat- 715

isfy the maximum response delay constraint. The switch needs 716

to reselect a new controller. Using this method, the number of 717

requests in each controller gets dynamically adapted based on 718

the current capability of the controller. 719

RDmax is set to make requests prefer faster controllers. 720

Furthermore, RDmax can be dynamically regulated to fit the 721

variation of controllers’ capabilities. For controllers that have 722

low processing capabilities, RDmax can limit the number 723

of queueing requests in these controllers. After that, these 724

requests can be sent to faster controllers. However, if RDmax 725

is too small, most of controllers refuse to receive new requests 726

because their response delays exceed the limit of RDmax . 727

In this case, it is necessary to extend the value of RDmax . 728

V. PERFORMANCE EVALUATION 729

We start with the evaluation methodology and scenarios. 730

In this section, we evaluate the selection schemes of controller 731

and the assignment mechanism of controller under the gen- 732

eral settings of controllers, the queue length bound RDmax , 733

the heavy request-skews, the time-varying service rates and 734

the batch selection. 735

A. Experimental Setup 736

We build a discrete-event simulator wherein workload 737

generators create flow requests at a set of switches. These 738

switches then employ the controller selection scheme to select 739

a controller for each request. Unless otherwise specified, 740

the network consists of 300 switches and 40 controllers. 741

However, when a large amount of flow requests emerges, 742

we need to employ more controllers to deal with the burstly 743

flows. The workload generators create flow requests according 744

to a Poisson arrival process to mimic arrival of user requests 745

at web servers [20]. Unless otherwise specified, the Poisson 746

IEE
E P

ro
of

XIE et al.: CUTTING LONG-TAIL LATENCY OF ROUTING RESPONSE IN SOFTWARE DEFINED NETWORKS 9

arrival process is with λ = 0.5 during 1ms. At the beginning,747

the system is empty, and there are no requests. With the system748

running, the switches start to produce flow requests and select749

controllers for flow requests. We run the system 1000ms,750

and the number of arrival flow requests is about 150, 000.751

Each controller maintains a FIFO request queue. Moreover,752

in the settings of controllers, each controller can service a753

tunable number of requests in parallel (10 in our settings).754

The processing time each request experiences is drawn from755

an exponential distribution (as in [21]) with a mean processing756

time μ−1 = 2ms. Furthermore, we incorporate controller757

heterogeneity into the network as follows: each controller,758

independently and with a uniform probability, sets its service759

rate to a different μ, where μ = 0.5 or μ = 0.1 in our settings.760

To estimate the response delay of each request, we set s = 100,761

That is, ν̄ denotes the average processing time of the latest762

finished 100 requests. We repeat every experiment 20 times763

using different random seeds, and then get the average result.764

We compare our design against three strategies:765

1) Quantity-based allocation: Controllers achieve load766

balance through balancing the number of switches,767

which each controller manages. Currently, ONOS con-768

troller utilizes this strategy to balance the loads of769

distributed controllers.770

2) Load-aware selection: The switch probes two con-771

trollers for each request and sends the request to the772

controller with fewer number of requests because prob-773

ing all controllers is not scalable.774

3) Delay-aware selection: The switch probes two con-775

trollers for each request and gets request response776

delays, which rely on the feedbacks of probed con-777

trollers. Then, the switch sends the request to the con-778

troller with smaller response delay.779

B. The Impact of d780

Azar et al. [18] have shown that the situation of d = 2 yields781

a large reduction in the maximum load over d = 1, while782

each additional choice beyond two decreases the maximum783

load by just a constant factor. Further, to verify the theory784

and determine the value of d , we evaluate the impact of785

d on the performance of the delay-aware selection strategy786

under heterogeneous controllers where d denotes the number787

of probed controllers. The processing time of each request788

in each controller is drawn from an exponential distribution789

where μ was randomly set as 0.5 or 0.1. Other parameters are790

the same as Section V-A.791

Fig. 6 shows the delay-aware selection strategy significantly792

reduces the mean response time as the value of d increase793

from 1 to 2. However, probing more controllers just incur a794

little bit reduction on the mean response time after d exceeds795

2. In addition, multiple switches may simultaneously select796

the same controller if each of them randomly probes more797

controllers. This would in turn aggravates the load of the798

controller. Thus, we set d = 2 in the next experiments.799

C. General Settings of Controllers800

We evaluate the performances of different schemes with801

heterogeneous controllers. We employ 60 controllers where the802

Fig. 6. The impact of d on the performance of the delay-aware selection
strategy.

Fig. 7. The performances of different schemes where controllers are
heterogeneous.

bound of maximal response delay RDmax = 20ms. The other 803

settings of experiments are consistent with that of Section V-B. 804

Fig. 7(a) shows that our delay-aware scheme can signifi- 805

cantly reduce the response tail latencies. Basically, all requests 806

can be finished in 50ms while adopting our delay-aware 807

scheme. The load-aware scheme achieves better performance 808

than the quantity-based scheme in Fig. 7(a). Over 90% of 809

requests can be processed during 150ms based on the load- 810

aware scheme. The quantity-based scheme leads to long 811

response delays, and there are over 20% of requests whose 812

response delays are more than 200ms in Fig. 7(a). This is 813

because a large of requests queue in controllers that have lower 814

processing capabilities. Meanwhile, the load-aware scheme 815

also failed to respond to requests quickly. The processing 816

delays of flow requests in different controllers are different 817

when controllers are heterogeneous. As a consequence, select- 818

ing a controller by the number of requests is not efficient. 819

Fig. 7(a) reveals that our delay-aware scheme achieved the 820

lowest response duration due to not only estimating response 821

delay but also cutting tail latencies. Fig. 7(a) also reveals that 822

our delay-aware scheme can be adapted to the system where 823

controllers have heterogeneous capabilities. 824

Fig. 7(b) shows that our delay-aware scheme can respond 825

to more requests than the load-aware scheme and the quantity- 826

based scheme can in the same time period. Meanwhile, 827

the throughput difference among schemes grows as the system 828

runs. In summary, with heterogeneous controllers, our delay- 829

aware scheme can efficiently reduce response tail latencies and 830

improve the throughput of controllers. 831

D. Impact of Queue Length Bound RDmax 832

We evaluate the impact of RDmax on the performance of 833

the delay-aware scheme. We set RDmax = 20ms, RDmax = 834

100ms and RDmax = ∞ respectively. RDmax = ∞ means 835

IEE
E P

ro
of

10 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS

Fig. 8. The impact of R Dmax on the performance and throughput of the
delay-aware scheme.

that there is no limit on the queue length of controllers. Other836

parameters are the same with Section V-C.837

Fig. 8(a) reveals that our delay-aware scheme has bet-838

ter performance when RDmax has a smaller value. Under839

RDmax = 20ms, all requests can be finished in 20ms. How-840

ever, The maximal response delay is 40ms under RDmax =841

100ms. Therefore, the performance of delay-aware scheme842

under RDmax = 20ms is better than that of RDmax = 100ms.843

Comparing with RDmax = ∞, delay-aware scheme can sig-844

nificantly reduce response tail latencies when RDmax = 20ms.845

Furthermore, we compare the throughput of controllers under846

different RDmax settings. Fig. 8(b) shows that the system can847

respond to 300 more requests under RDmax = 20ms than848

RDmax = 100ms. It was obvious that controllers have higher849

throughput when RDmax = 20ms than when RDmax = 100ms850

and RDmax = ∞. The difference of responded requests851

between RDmax = 20ms and RDmax = 100ms remains852

stable. However, the difference of responded requests between853

RDmax = 20ms and RDmax = ∞ grows as the system runs.854

Fig. 8 reveals that the setting of RDmax can make flow855

requests prefer the controllers that have faster processing856

capabilities. Additionally, it is noteworthy that RDmax can not857

be set too small, otherwise, there are no available controllers858

while conducting the controller selection.859

E. Performance Under Heavy Request-Skews860

In this section, we study the effect of heavy demand skews861

on the observed latencies where controllers are homogeneous862

with average server rate μ = 0.5. We set request-skew= 20%863

and request-skew= 50%. That is, 20% and 50% of switches864

generated 80% of the total requests towards the controllers.865

Most of parameters are inherited from Section V-A. To enable866

20% of switches to generate 80% of the total requests,867

we randomly select 60 switches and set the arrival rate of flow868

requests λ = 2. Other switches set λ = 0.125. Under request-869

skew= 50%, half of the switches set λ = 0.8, and the other870

half of the switches set λ = 0.2. We set RDmax = 150ms871

because there are too many requests in a short time and these872

requests have to queue in controllers.873

Fig. 9(a) shows that over 5% requests have response delays874

of more than 200ms for the quantity-based scheme. The875

quantity-based scheme suffers decreased performance due to876

the request-skews. However, the load-aware and delay-aware877

schemes can significantly reduce response tail latencies. Based878

Fig. 9. Request response time with different schemes under the heavy request-
skews.

Fig. 10. The performances of different schemes under the time-varying
service rates.

on the load-aware and delay-aware schemes, all requests can 879

be finished in 10ms in Fig. 9(a). Fig. 9 reveals that the load- 880

aware and delay-aware schemes achieve very similar perfor- 881

mances since controllers are homogeneous in this section. 882

Meanwhile, the quantity-based scheme suffers decreased per- 883

formance due to the request-skews. Under request-skews, 884

a part of switches generate a large number of the requests, 885

which incur long queues in some controllers for the quantity- 886

based scheme. 887

Comparing Fig. 9(a) and Fig. 9(b), we can find that the 888

quantity-based scheme under request-skew= 50% achieves a 889

lower response latency than under request-skew= 20%. It is 890

because the load balance among controllers where request- 891

skew= 50% is better than that of request-skew= 20%. 892

Moreover, Fig. 9 also reveals that our delay-aware scheme 893

can accommodate the heavy request-skews. 894

F. Impact of Time-Varying Service Rates 895

In this section, we study the effect of the service rate 896

fluctuation on the tail latency of response. We change the 897

average service rates of controllers in the system every 50ms, 898

and all controllers randomly set μ = 0.5 or μ = 0.1. Other 899

parameters are inherited from Section V-C. 900

Fig. 10(a) reveals that our delay-aware scheme can respond 901

to all requests in 60ms, the load-aware scheme can respond 902

to all requests during 80ms, and the response tail latency of 903

the quantity-based scheme is more than 200ms. Therefore, 904

our delay-aware scheme can efficiently reduce response tail 905

latencies. For the quantity-based scheme, it could not exploit 906

the feedbacks of controllers to select the controller and further 907

IEE
E P

ro
of

XIE et al.: CUTTING LONG-TAIL LATENCY OF ROUTING RESPONSE IN SOFTWARE DEFINED NETWORKS 11

Fig. 11. The performances of different schemes under the batch selection.

suffers lower system utilization. The load-based scheme also908

suffers lower performance because it fails to consider the time-909

varying service rate. Fig. 10(a) reveals that our delay-based910

scheme can accommodate time-varying service rate.911

Fig. 10(b) shows that our delay-aware scheme can respond912

to more requests than the quantity-based scheme and the load-913

aware scheme. With the increase of system running time,914

the advantage of the delay-aware scheme is more obvious915

than the quantity-based scheme in Fig. 10(b). Meanwhile,916

the difference of responded requests between the delay-917

aware scheme and the load-aware scheme cyclically fluctu-918

ates because the service rates of controllers are periodically919

changed. In summary, our delay-aware scheme can be better920

adapted to the time-varying service rate and can efficiently921

reduce tail latencies of responses.922

G. Evaluation for Batch Selection923

In this section, we evaluate the performance of different924

schemes for batch arrival requests. We set the arrival rate925

of flow requests λ = 5. There are about 300, 000 requests926

during 200ms. To deal with the burst requests, we employ927

150 controllers, and each controller can process 40 requests928

in parallel. We set the batch size δ = 10 and RDmax = 15ms,929

and other parameters are set as Section V-C.930

Fig. 11(a) reveals that our delay-aware scheme can still931

reduce tail latencies of responses under the batch selection.932

Our delay-aware scheme can respond to all requests in 40ms,933

and the load-aware scheme can respond to all requests during934

60ms. However, the response tail latency of the quantity-935

based scheme is more than 130ms. The performance of the936

quantity-based scheme is mainly affected by controllers that937

have lower processing capabilities. The tail latency of response938

under the load-aware scheme is generated because it fails939

to accommodate the heterogeneous controllers. Meanwhile,940

Fig. 11(b) shows that our delay-aware scheme can respond to941

more flow requests than either of the other two schemes. This942

means that our delay-aware scheme can not only reduce the943

tail latency, but can also improve the throughput of controllers944

under the batch selection.945

Impact of Batch Size δ: Furthermore, we evaluate the impact946

of the batch size δ on the performance of the delay-aware947

scheme. Fig. 12(a) depicts the performances of the delay-948

aware scheme under different batch sizes. Fig. 12(a) shows949

Fig. 12. The impact of the batch size δ.

that the performance of the delay-aware scheme has a modest 950

decrease with the increase of the batch size δ. When the 951

batch size δ increases, it means that more requests will be 952

sent to the same controller, even though the controller has a 953

low processing capacity. As a consequence, the delay-aware 954

scheme suffers a little of decreased performance. we can 955

find that experiments show a similar performance under the 956

different settings of δ in Fig. 12(a). Although more requests 957

would be directed to the controller with a low processing 958

capacity at some time when the value of δ is larger, after that, 959

the following requests would have less chance to select the 960

controller. Therefore, the decrease of performance is modest. 961

Furthermore, Fig. 12(b) reveals that the number of controller 962

selection operations dramatically decreases when the batch 963

size δ goes up. The fewer controller selection operations in 964

switch end will incur less bandwidth consumption in the secure 965

links between switches and controllers and less computing 966

load in controllers. In conclusion, active selection of con- 967

trollers for a batch of flows can efficiently reduce the resourse 968

consumption of communication and computing with a little bit 969

of performance reduction. 970

VI. RELATED WORK 971

A. Network Softwarization 972

Network softwarization is a transformation trend for design- 973

ing, implementing, and managing the 5G and next generation 974

networks. It exploits the benefits of software to enable the 975

redesign of network and service architectures, optimize the 976

expenditure and operational costs, and bring new values in 977

the infrastructures. The key enablers consist of the network 978

function virtualization (NFV), software-defined networking 979

(SDN) and cloud computing, etc. Meanwhile, 5G systems will 980

also rely on these technologies to attain the systems flexibility 981

and elasticity [2]. 982

Along with recent and ongoing advances in cloud com- 983

puting, it has become promising to design flexible, scalable, 984

and elastic 5G systems benefiting from advanced virtualization 985

techniques of cloud computing [1]. Taleb and Ksentini [22] 986

introduces the Follow-Me Cloud concept and proposes its 987

framework. There has been research on the possibility of 988

extending cloud computing beyond data centers toward the 989

mobile end user, providing end-to-end mobile connectivity 990

as a cloud service [23]. Software defined networking (SDN) 991

IEE
E P

ro
of

12 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS

acts as a promising enabler for network softwarization and992

plays a crucial role in the design of 5G wireless networks [1].993

SDN has been also utilized in the virtualization of mobile994

network functions [24]. Kempf et al. [25] describe an evolution995

of the mobile Evolved Packet Core (EPC) utilizing SDN996

that allows the EPC control plane to be moved into a data997

center. Taleb et al. [1] introduce the concept of “Anything998

as a Service” (ANYaaS), which relies on the reference ETSI999

NFV architecture to orchestrate and manage important ser-1000

vices. NFV aims at offering network services using network1001

functions implemented in software and deployed in an on-1002

demand and elastic manner on the cloud [26]. Medhat et al. [5]1003

introduce a service function chaining taxonomy as the basis1004

for the subsequent state-of-the-art analysis.1005

B. SDN Scalability1006

To tackle the problem of scaling SDN, Xie et al. [27]1007

resort to design the distributed controllers, such as Onix [28]1008

and ONOS [14], which try to distribute the control plane1009

while maintaining a logically centralized management. These1010

approaches balance the load of controllers based on the1011

number of switches, which can not efficiently reduce the tail1012

latencies of responses. Aissioui et al. [29] propose a two-level1013

hierarchical controller platform to address these scalability and1014

performance issues in the context of 5G mobile networks.1015

One key limitation of the distributed controllers is that1016

the mapping between a switch and a controller is statically1017

configured. The static configuration results in the uneven1018

load distribution among the controllers. Bari et al. [30]1019

propose a management framework, which periodically eval-1020

uates the current controller-to-switch assignment. After that,1021

it needs to decide whether to perform a reassignment. If a1022

reassignment is performed, the management framework also1023

changes the controller-to-switch assignment in the network.1024

Dixit et al. [31] propose ElastiCon, an elastic distributed1025

controller architecture in which the controller pool is dynam-1026

ically grown or shrunk according to traffic conditions. In this1027

case, the load is dynamically shifted across controllers, which1028

similarly relieves the static mapping between a switch and a1029

controller. Zhou et al. [32] propose a dynamic and adaptive1030

algorithm (DALB), which is running as a module of SDN1031

controller. The controllers in distributed environment can1032

cooperate with each other to keep load balancing. Overloaded1033

controller can be detected, and high-load switches mapped to1034

this controller can be smoothly migrated to the under-load1035

controllers. However, these dynamic frameworks require that1036

the control plane monitors the state of the whole network and1037

conducts the reassignments, which aggravate the computing1038

load of the control plane.1039

In contrast to these works, our approach relies on simple and1040

inexpensive feedback of controllers and efficiently relieve the1041

load of the control plane. Mao and Shen [33] use the principles1042

of SDN to achieve the server load balancing by setting the1043

SDN flow table, which does not aim to solve the load balance1044

of the distributed controllers of SDN. Palma et al. [34] develop1045

the QueuePusher, which is a queue management extension to1046

OpenFlow controllers supporting the Open vSwitch Database1047

Management Protocol (OVSDB) standard. QueuePusher can 1048

generate the appropriate queue configuration messages for 1049

switches. In addition, there have been lots of researches 1050

on how to achieve the consistency among distributed con- 1051

trollers [15]. These techniques are complementary to our 1052

approach. 1053

VII. CONCLUSION 1054

NFV and SDN can dynamically redistribute the flow across 1055

appropriate VNFs or service function chains if the controller 1056

configures a desired routing path for each network flow 1057

resulting from NFV applications. In this paper, we present 1058

the long-tail observations of the routing response latencies 1059

while using the up-to-date controller-to-switch assignment 1060

mechanism. To tackle this essential problem, we first propose 1061

a light-weight and load-aware switch-to-controller selection 1062

scheme to cut the long-tail response latency under the sim- 1063

ple scenario of homogeneous controllers, and then design 1064

a general delay-aware switch-to-controller selection scheme 1065

to fundamentally cut the long-tail response latency for the 1066

more complicated heterogeneous controller scenario with per- 1067

formance fluctuations. Through comprehensive performance 1068

evaluation, we demonstrate that our adaptive controller selec- 1069

tion schemes can efficiently reduce response long-tail latencies 1070

and accommodate various system environments including the 1071

request-skews, the fluctuation of service rates and so on. 1072

REFERENCES 1073

[1] T. Taleb, A. Ksentini, and R. Jantti, “‘Anything as a service’ for 5G 1074

mobile systems,” IEEE Netw., vol. 30, no. 6, pp. 84–91, Nov. 2016. 1075

[2] T. Taleb, S. Dutta, A. Ksentini, M. Iqbal, and H. Flinck, “Mobile edge 1076

computing potential in making cities smarter,” IEEE Commun. Mag., 1077

vol. 55, no. 3, pp. 38–43, Mar. 2017. 1078

[3] Y. Zhou, D. Zhang, and N. Xiong, “Post-cloud computing paradigms: 1079

A survey and comparison,” Tsinghua Sci. Technol., vol. 22, no. 6, 1080

pp. 714–732, 2017. 1081

[4] M. Kablan, A. Alsudais, E. Keller, and F. Le, “Stateless network 1082

functions: Breaking the tight coupling of state and processing,” in Proc. 1083

14th USENIX NSDI, Boston, MA, USA, Mar. 2017, pp. 97–112. 1084

[5] A. M. Medhat, T. Taleb, A. Elmangoush, G. A. Carella, S. Covaci, and 1085

T. Magedanz, “Service function chaining in next generation networks: 1086

State of the art and research challenges,” IEEE Commun. Mag., vol. 55, 1087

no. 2, pp. 216–223, Feb. 2017. 1088

[6] P. Zave, R. A. Ferreira, X. K. Zou, M. Morimoto, and J. Rexford, 1089

“Dynamic service chaining with dysco,” in Proc. ACM SIGCOMM, 1090

Los Angeles, CA, USA, 2017, pp. 57–70. 1091

[7] D. L. C. Dutra, M. Bagaa, T. Taleb, and K. Samdanis, “Ensuring end-to- 1092

end QoS based on multi-paths routing using SDN technology,” in Proc. 1093

IEEE Global Commun. Conf., Dec. 2017, pp. 1–6. 1094

[8] N. Gude et al., “NOX: Towards an operating system for networks,” ACM 1095

SIGCOMM Comput. Commun. Rev., vol. 38, no. 3, pp. 105–110, 2008. 1096

[9] A. Ksentini, M. Bagaa, T. Taleb, and I. Balasingham, “On using 1097

bargaining game for optimal placement of SDN controllers,” in Proc. 1098

IEEE Int. Conf. Commun. (ICC), May 2016, pp. 1–6. 1099

[10] J. Xie, D. Guo, Z. Hu, T. Qu, and P. Lv, “Control plane of software 1100

defined networks: A survey,” Comput. Commun., vol. 67, pp. 1–10, 1101

Aug. 2015. 1102

[11] D. Kreutz, F. Ramos, P. E. Veríssimo, C. E. Rothenberg, S. Azodolmolky, 1103

and S. Uhlig, “Software-defined networking: A comprehensive survey,” 1104

Proc. IEEE, vol. 103, no. 1, pp. 14–76, Jan. 2015. 1105

[12] A. Ksentini, M. Bagaa, and T. Taleb, “On using SDN in 5G: 1106

The controller placement problem,” in Proc. IEEE Global Commun. 1107

Conf. (GLOBECOM), Dec. 2016, pp. 1–6. 1108

[13] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data 1109

center network architecture,” ACM SIGCOMM Comput. Commun. Rev., 1110

vol. 38, no. 4, pp. 63–74, 2008. 1111

IEE
E P

ro
of

XIE et al.: CUTTING LONG-TAIL LATENCY OF ROUTING RESPONSE IN SOFTWARE DEFINED NETWORKS 13

[14] P. Berde et al., “ONOS: Towards an open, distributed SDN OS,” in Proc.1112

ACM HotSDN, 2014, pp. 1–6.1113

[15] A. Panda, W. Zheng, X. Hu, A. Krishnamurthy, and S. Shenker, “SCL:1114

Simplifying distributed SDN control planes,” in Proc. 14th USENIX1115

NSDI, Mar. 2017, pp. 329–345.1116

[16] D. Hugheshallett, A. M. Gleason, and W. G. Mccallum, Calculus: Single1117

and Multivariable, Student Solutions Manual, 6th ed. Hoboken, NJ,1118

USA: Wiley, 2013.1119

[17] A. Bremler-Barr, Y. Harchol, and D. Hay, “OpenBox: A software-defined1120

framework for developing, deploying, and managing network functions,”1121

in Proc. ACM SIGCOMM, Salvador, Brazil, Aug. 2016, pp. 511–524.1122

[18] Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal, “Balanced alloca-1123

tions,” SIAM J. Comput., vol. 29, no. 1, pp. 180–200, 1999.1124

[19] M. Mitzenmacher, A. W. Richa, and R. Sitaraman, “The power of two1125

random choices: A survey of techniques and results,” in Handbook of1126

Randomized Computing, vol. 11. Norwell, MA, USA: Kluwer, 2000,1127

pp. 255–312.1128

[20] R. Nishtala et al., “Scaling memcache at Facebook,” in Proc. USENIX1129

NSDI, 2013, pp. 385–398.1130

[21] A. Vulimiri, P. B. Godfrey, R. Mittal, J. Sherry, S. Ratnasamy, and1131

S. Shenker, “Low latency via redundancy,” in Proc. ACM Conf. Emerg.1132

Netw. Experim. Technol., 2013, pp. 283–294.1133

[22] T. Taleb and A. Ksentini, “Follow me cloud: Interworking federated1134

clouds and distributed mobile networks,” IEEE Netw., vol. 27, no. 5,1135

pp. 12–19, Sep./Oct. 2013.1136

[23] T. Taleb, “Toward carrier cloud: Potential, challenges, and solutions,”1137

IEEE Wireless Commun., vol. 21, no. 3, pp. 80–91, Jun. 2014.1138

[24] T. Taleb, A. Ksentini, and A. Kobbane, “Lightweight mobile core1139

networks for machine type communications,” IEEE Access, vol. 2,1140

pp. 1128–1137, 2014.1141

[25] J. Kempf, B. Johansson, S. Pettersson, H. Lüning, and T. Nilsson,1142

“Moving the mobile evolved packet core to the cloud,” in Proc. IEEE1143

8th Int. Conf. Wireless Mobile Comput., Netw. Commun. (WiMob),1144

Oct. 2012, pp. 784–791.1145

[26] T. Taleb et al., “EASE: EPC as a service to ease mobile core net-1146

work deployment over cloud,” IEEE Netw., vol. 29, no. 2, pp. 78–88,1147

Mar./Apr. 2015.1148

[27] J. Xie, D. Guo, X. Zhu, B. Ren, and H. Chen, “Minimal fault-tolerant1149

coverage of controllers in IaaS datacenters,” IEEE Trans. Services1150

Comput., to be published, doi: 10.1109/TSC.2017.2753260.1151

[28] T. Koponen et al., “Onix: A distributed control platform for large-scale1152

production networks,” in Proc. USENIX OSDI, 2010, pp. 351–364.1153

[29] A. Aissioui, A. Ksentini, A. M. Gueroui, and T. Taleb, “Toward elastic1154

distributed SDN/NFV controller for 5G mobile cloud management1155

systems,” IEEE Access, vol. 3, pp. 2055–2064, 2015.1156

[30] M. F. Bari et al., “Dynamic controller provisioning in software defined1157

networks,” in Proc. Int. Conf. Netw. Service Manage., Oct. 2013,1158

pp. 18–25.1159

[31] A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, and R. Kompella,1160

“Towards an elastic distributed SDN controller,” in Proc. ACM HotSDN,1161

Hong Kong, Aug. 2013, pp. 7–12.1162

[32] Y. Zhou et al., “A load balancing strategy of sdn controller based on1163

distributed decision,” in Proc. IEEE 13th Int. Conf. Trust, Secur. Privacy1164

Comput. Commun., Sep. 2014, pp. 851–856.1165

[33] Q. Mao and W. Shen, “A load balancing method based on SDN,” in1166

Proc. 7th Int. Conf. Meas. Technol. Mechatronics Autom., Jun. 2015,1167

pp. 18–21.1168

[34] D. Palma et al., “The queuepusher: Enabling queue management in1169

openflow,” in Proc. 3rd Eur. Workshop Softw. Defined Netw., Sep. 2014,1170

pp. 125–126.1171

Junjie Xie received the B.S. degree in computer1172

science and technology from the Beijing Institute1173

of Technology, Beijing, China, in 2013, and the1174

M.S. degree in management science and engineering1175

from the National University of Defense Technology,1176

Changsha, China, in 2015, where he is currently1177

pursuing the Ph.D. degree. He is also a joint Ph.D.1178

student with the University of California, Santa1179

Cruz (UCSC), CA, USA, from 2017. His study in1180

the UCSC is supported by the China Scholarship1181

Council. His research interests include distributed1182

systems, data-center networks, and software-defined networks.1183

Deke Guo received the B.S. degree in industry engi- 1184

neering from the Beijing University of Aeronautics 1185

and Astronautics, Beijing, China, in 2001, and the 1186

Ph.D. degree in management science and engineer- 1187

ing from the National University of Defense Tech- 1188

nology, Changsha, China, in 2008. He is currently a 1189

Professor with the College of Information System 1190

and Management, National University of Defense 1191

Technology, and a Professor with the School of 1192

Computer Science and Technology, Tianjin Uni- 1193

versity. His research interests include distributed 1194

systems, software-defined networking, data center networking, wireless and 1195

mobile systems, and interconnection networks. He is a member of the ACM. 1196

Xiaozhou Li received the Ph.D. degree in com- 1197

puter science from Princeton University in 2016. 1198

He is currently a Software Engineer with Barefoot 1199

Networks, where he is building new networking 1200

systems with fast programmable network chips. His 1201

research improves the performance, scalability, and 1202

efficiency of datacenter services, with a particular 1203

focus on combining new hardware and infrastructure 1204

capabilities with careful architectural design and 1205

algorithm engineering. 1206

Yulong Shen received the B.S. and M.S. degrees in 1207

computer science and the Ph.D. degree in cryptog- 1208

raphy from Xidian University, Xian, China, in 2002, 1209

2005, and 2008, respectively. He is currently a 1210

Professor with the School of Computer Science and 1211

Technology, Xidian University, and also an Asso- 1212

ciate Director of the Shaanxi Key Laboratory of 1213

Network and System Security. He has also served on 1214

the technical program committees of several interna- 1215

tional conferences, including the NANA, the ICEBE, 1216

the INCoS, the CIS, and the SOWN. His research 1217

interests include wireless network security and cloud computing security. 1218

Xiaohong Jiang received the B.S., M.S., and Ph.D. 1219

degrees from Xidian University, China, in 1989, 1220

1992, and 1999 respectively. From 2005 to 2010, he 1221

was an Associate professor, Tohoku University. He 1222

is currently a Full Professor with Future University 1223

Hakodate, Japan. His research interests include com- 1224

puter communications networks, mainly wireless 1225

networks and optical networks, network security, 1226

and routers/switches design. He has authored or co- 1227

authored over 300 technical papers at premium inter- 1228

national journals and conferences, which include 1229

over 70 papers published in top IEEE journals and top IEEE conferences. He 1230

was a recipient of the Best Paper Award of IEEE HPCC 2014, IEEE WCNC 1231

2012, IEEE WCNC 2008, IEEE ICC 2005-Optical Networking Symposium, 1232

and IEEE/IEICE HPSR 2002. He is a Member of IEICE. 1233

http://dx.doi.org/10.1109/TSC.2017.2753260

IEE
E P

ro
of

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS 1

Cutting Long-Tail Latency of Routing Response in
Software Defined Networks

Junjie Xie, Deke Guo, Xiaozhou Li, Yulong Shen, and Xiaohong Jiang

Abstract— To enable the network softwarization, network func-1

tion virtualization (NFV) and software defined networking (SDN)2

are integrated to jointly manage and utilize the network resource3

and virtualized network functions (VNFs). For a network flow4

resulting from any NFV application, an associated switch would5

send a routing request to the controller in SDN. The controller6

then generates and configures a routing path to dynamically steer7

the flow across appropriate VNFs or service function chains.8

This process, however, exhibits a skew distribution of response9

latency with a long tail. Cutting the long-tail latency of response10

is critical to enable the network softwarization, yet difficult to11

achieve due to many factors, such as the limited capacities and12

the load imbalance among controllers. In this paper, we reveal13

that such flow requests still experience the long-tail response14

latency, even using the up-to-date controller-to-switch assignment15

mechanism. To tackle this essential problem, we first propose a16

light-weight and load-aware switch-to-controller selection scheme17

to cut the long-tail response latency under the simple scenario18

of homogeneous controllers, and then design a general delay-19

aware switch-to-controller selection scheme to fundamentally20

cut the long-tail response latency for the more complicated21

heterogeneous controller scenario with performance fluctuations.22

The comprehensive evaluations indicate that our two new switch-23

to-controller selection schemes can significantly reduce the long-24

tail latency and provide higher system throughput.25

Index Terms— Network softwarization, software defined26

networks, controller selection, long-tail latency.27

Manuscript received September 30, 2017; revised February 5, 2018;
accepted February 27, 2018. This work was supported in part by the National
Natural Science Foundation for Outstanding Excellent Young Scholars of
China under Grant 61422214, in part by the National Natural Science Foun-
dation of China under Grant 61772544 and Grant U1536202, in part by the
National Basic Research Program (973 program) under Grant 2014CB347800,
in part by the Hunan Provincial Natural Science Fund for Distinguished
Young Scholars under Grant 2016JJ1002, and in part by the Guangxi
Cooperative Innovation Center of cloud computing and Big Data under
Grant YD16507 and Grant YD17X11. (Corresponding authors: Deke Guo;
Yulong Shen.)

J. Xie is with the Science and Technology on Information Systems Engi-
neering Laboratory, National University of Defense Technology, Changsha
410073, China (e-mail: xiejunjie06@gmail.com).

D. Guo is with the College of System Engineering, National University of
Defense Technology, Changsha 410073, China. He is also with the School of
Computer Science and Technology, Tianjin University, Tianjin 300072, China
(e-mail: guodeke@gmail.com).

X. Li is with the Department of Computer Science, Princeton University,
Princeton, NJ 08544 USA (e-mail: xl@cs.princeton.edu).

Y. Shen is with the School of Computer Science and Technology, Xidian
University, Xi’an 710071, China (e-mail: ylshen@mail.xidian.edu.cn).

X. Jiang is with the School of Systems Information Science, Future
University Hakodate, Hokkaido 041-8655, Japan (e-mail: jiang@fun.ac.jp).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSAC.2018.2815358

I. INTRODUCTION 28

NETWORK softwarization is a transformation trend for 29

designing, implementing, and managing the next gener- 30

ation networks. It exploits the benefits of software to enable 31

the redesign of network and service architectures, optimize 32

the expenditure and operational costs, and bring added val- 33

ues. The key enablers consist of the network function vir- 34

tualization (NFV), software-defined networking (SDN) and 35

cloud computing, etc [1]. Moreover, 5G systems will also 36

rely on these technologies to attain system’s flexibility and 37

true elasticity [2], [3]. Network functions (NFs) are crucial 38

for improving network security by examining and modifying 39

network flows using special-purpose hardware. Recently, NFV 40

has been proposed to execute virtual network functions (VNFs) 41

on generic compute resources [4], such as commodity servers 42

and VMs. Normally, a flow goes through specific VNFs in 43

a particular order to meet its required processing, following 44

the service function chain (SFC) [5], [6] along a routing 45

path. 46

Additionally, SDN offers the freedom to refactor the control 47

plane and flexibly enables the network softwarization [7]. 48

More precisely, NFV and SDN can jointly manage the network 49

resource and VNFs, and dynamically steer network flows 50

across appropriate VNFs or SFCs. SDN centralizes the net- 51

work control plane to a programmable software component, 52

i.e., a controller running on a generic server, such as NOX [8]. 53

The controller maintains a global network view and optimizes 54

the forwarding decisions of network flows. For a flow from any 55

NFV application, an associated switch would send a routing 56

request to the controller. It is the controller that generates and 57

configures a routing path to a specific VNF instance or to 58

traverse a SFC on demand. The above process between a 59

pair of switch and controller brings the response latency. 60

Many factors would skew the tail of the latency distribution. 61

For example, a single controller that lacks sufficient capacity 62

to tackle received routing requests quickly and inevitably 63

becomes a performance bottleneck [9]. Thus, such routing 64

requests experience long-tail latency of response, as evaluated 65

in Section II. Cutting the long-tail latency of routing response 66

is critical to enable the network softwarization, yet difficult to 67

achieve due to many factors. 68

To improve the scalability of SDN, the distributed control 69

plane consisting of multiple controllers has been proposed 70

recently [10], such as ONOS and OpenDaylight. To reduce 71

the long-tail latency of response, they resort to the controller- 72

to-switch assignment mechanism. That is, the control plane 73

0733-8716 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

IEE
E P

ro
of

2 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS

proactively assigns a controller to each switch such that each74

controller manages the same amount of switches. In reality,75

the quantities of routing requests coming from switches per76

unit time are different and dynamic. Consequently, controllers77

still differ in the amount of received routing requests per time78

unit. This load imbalance among controllers leads to the long-79

tail latency of response. Additionally, the controller-to-switch80

assignment requires coordination among controllers, which81

further aggravates the loads of controllers.82

In this paper, to cut the long-tail latency of response and83

lighten the load of controllers, we propose conducting the84

selection of controllers at the side of each switch instead of the85

controller-to-switch assignment. This means that each switch86

actively chooses one controller from multiple available ones,87

decoupling the static binding between switches and controllers.88

More precisely, each switch prefers to adaptively select the89

controller with low response latency for routing requests. This90

would move the partial intelligences of the network to switches91

and efficiently reduces the loads of controllers.92

Despite those potential benefits, the selection of controllers93

still faces many challenges. First, the switches need to probe94

the state of controllers via the secure channel between them.95

The secure channel is one kind of rare resource and affects the96

performance of the whole network. To save the bandwidth of97

the secure channel, the selection process of controllers should98

be light-weight and use a few of the feedbacks from the99

controllers. Second, the selection scheme needs to be scalable,100

irrespective of the network size and the number of controllers.101

Third, the selection scheme needs to accommodate the bursty102

and skew routing requests from switches. Last, the selection103

scheme should adapt to the heterogeneous controllers and the104

performance fluctuation across controllers.105

To tackle such challenges, we design a load-aware selec-106

tion scheme of controllers, which is simple but effective to107

achieve the load balance among controllers. The load of a108

controller refers to the number of routing requests waited109

to be processed. The basic idea of our scheme is that each110

switch sends routing requests to the controller with the lowest111

load. In this way, all controllers process the similar number112

of routing requests per time slot. This is very helpful to cut113

the long-tail latency of routing response, when all controllers114

have the same processing capabilities. This method alone,115

however, is insufficient to deal with more general settings116

of heterogenous controllers and the performance fluctuation.117

Those controllers with lower processing capabilities still incur118

the long-tail latency of response for routing requests, when all119

controllers achieve the load balance. For this reason, we further120

present a general delay-aware selection scheme of controllers121

to fundamentally cut the long-tail latency of routing response.122

Our delay-aware selection scheme includes two key com-123

ponents. The first one is the controller selection model of each124

switch, which uses simple and inexpensive probing feedbacks125

from a few controllers. It is still effective if each switch just126

randomly probes two controllers and sends upcoming routing127

requests to the controller with the shorter response delay. This128

model is scalable and light-weight since it is not affected by129

the network scale and the number of controllers. The second130

component is the queue management mechanism of each131

controller. It could estimate the response delay of a routing 132

request and hence improve the performance predictability of 133

controllers. The evaluation results reveal that our delay-aware 134

selection scheme can efficiently reduce the long-tail latency of 135

routing responses and improve the system throughput. 136

In summary, the major contributions of this paper are as 137

follows. 138

1) We reveal that routing requests experience the long-tail 139

response latency, even using the up-to-date controller- 140

to-switch assignment mechanism in SDN. Therefore, 141

we propose an adaptive selection mechanism of con- 142

trollers for switches to cut the long-tail latency. 143

2) We first design an efficient load-aware selection method 144

of homogeneous controllers for each switch. For more 145

general scenarios, we further propose a general delay- 146

aware selection method, which is adaptive to the bursty 147

routing requests, the heterogenous controllers and the 148

performance fluctuations. Our two methods are light- 149

weight as they limit the additional overhead caused by 150

probing two controllers. 151

3) We further develop a queue management mechanism 152

for each controller, which can efficiently manage the 153

queue length and estimate the response delay of routing 154

requests. The evaluation results reveal that our controller 155

selection methods can accommodate system environ- 156

ment variations and efficiently reduce long-tail latency 157

of routing response. 158

The paper is organized as follows. In Section II, we present 159

the observation of long-tail latency of routing response. 160

Section III depicts the framework of our controller selection 161

mechanism and the load-aware selection scheme of controllers. 162

We present the delay-aware selection scheme of controllers in 163

Section IV. We conduct massive experiments to evaluate the 164

performance of our controller selection schemes under various 165

system environment in Section V. Section VI introduces the 166

related work. In Section VII, we conclude this paper. 167

II. LONG TAIL OF RESPONSE LATENCIES 168

In a SDN, when a switch receives a new flow, the switch 169

sends a routing request to its controller. The controller then 170

computes a route for the flow and inserts flow rules to related 171

switches in the route. Thus, the new flow would be forwarded 172

according to the flow rules in switches [11], [12]. Such an 173

interaction between the switch and the controller causes the 174

response latency. For a routing request, the latency of routing 175

response denotes the time interval from sending the routing 176

request to receiving the flow rules generated by the controller. 177

A. Long-Tail Observations of Response Latencies 178

Fig. 1(a) plots an observation about the long-tail distribu- 179

tion under a single instance of ONOS controller. We build 180

a SDN testbed with one controller, running in a virtual 181

machine with 2 CPU cores and 2G RAM. Note that the 182

testbed forms a typical Fat-tree datacenter topology [13]. 183

We record the response latencies of 12,000 routing requests. 184

As shown in Fig. 1(a), the response latencies of 50% of routing 185

requests are lower than 5ms, and 90% of routing requests are 186

IEE
E P

ro
of

XIE et al.: CUTTING LONG-TAIL LATENCY OF ROUTING RESPONSE IN SOFTWARE DEFINED NETWORKS 3

Fig. 1. Long-tail distributions of routing responses under a single controller
as well as multiple controllers.

served within 30ms. However, there still exist some routing187

requests whose response latencies are more than 50ms. That188

is, the response latencies exhibit a long-tail distribution.189

Furthermore, we observe the response latencies of rout-190

ing requests under multiple controllers [14]. We employ191

300 switches and 40 controllers where each controller192

manages 7 or 8 switches. Each switch generates routing193

requests according to a Poisson arrival process with λ = 0.5194

during 1ms. The processing time of each request in each195

controller is drawn from an exponential distribution where196

μ−1 = 2ms. Each controller can process 10 requests in197

parallel. We run the system 1000ms and record the response198

latencies of routing requests. The number of arrival routing199

requests is about 150, 000. In Fig. 1(b), 89% of routing200

requests can be served in 5ms, and the response latencies201

of 96% of routing requests are lower than 10ms. However,202

some response latencies are still larger than 20ms. That is,203

Fig. 1(b) shows that there still exists a long-tail distribution204

under multiple ONOS controllers.205

B. Analysis About the Long-Tail Latencies206

Fig. 1(a) results from that the network only employs one207

controller. Due to the limited capability of the single controller,208

a large amount of requests have to queue in the controller.209

Therefore, there is a long-tail latency of routig response caused210

by the long queueing delays. In Fig. 1(b), the number of211

routing requests that each switch generates is different, even212

though they obey the same Poisson distribution. The skew-213

flow requests will make that some controllers are overload, but214

other controllers would be underutilized. As a consequence,215

there will be a long-tail latency. We illustrate the problem216

in Fig. 2. Two controllers are assigned to four switches and217

have the same processing time of 4ms. Assume swi tch1 and218

swi tch2 receive 4 requests each and that swi tch3 and swi tch4219

receive 2 requests each. The requests received by swi tch1220

and swi tch2 can only be processed by controller1, which is221

assigned to manage them. This leads to a maximum latency of222

32ms, but a load-aware selection obtains a maximum latency223

of 24ms. Fig. 2 shows that a quantity-based assignment strat-224

egy leads to long-tail latencies because it fails to accommodate225

the skew-flow requests.226

Quantity-based allocation strategy is commonly employed227

by many controllers to balance the loads of controllers, such as228

Fig. 2. The performances of quantity-based controller allocation and load-
aware controller selection.

ONOS [14]. That is a controller-to-switch assignment mech- 229

anism, which is abbreviated as the assignment mechanism 230

of controllers. In this case, controllers coordinate to manage 231

switches, and each controller manages an approximately equal 232

quantity of switches. When deploying multiple instances of 233

ONOS in a SDN, the bursty flows from a switch are sent to the 234

same controller. Consequentially, a large number of requests 235

have to queue in the controller. These queueing requests tend 236

to incur long response latencies. However, those controllers, 237

which do not receive bursty routing requests, may even be 238

underloaded. In conclusion, the assignment mechanism fails 239

to efficiently reduce the tail latencies of responses. 240

III. FRAMEWORK OF CONTROLLER 241

SELECTION MECHANISM 242

To overcome the drawback of assignment mechanism, 243

we design a switch-to-controller selection scheme, which 244

is abbreviated as the selection scheme of controllers. The 245

selection scheme moves partial intelligences of the network 246

to switches and relieves the loads of controllers. Meanwhile, 247

the selection scheme can efficiently reduce tail latencies of 248

responses. 249

A. Overview of Controller Selection Mechanism 250

For existing designs of control plane, the assignment mech- 251

anism of controllers is a static binding between switches and 252

controllers, which fails to deal with the bursty and skew 253

routing requests, and further incurs long response delays. 254

To reduce the tail latencies of responses, routing requests from 255

the same switch need to be processed by appropriate con- 256

trollers. This means that the static binding between switches 257

and controllers needs to be decoupled. A better mechanism is 258

to enable switches to select controllers for routing requests. 259

For the assignment mechanism, the load balance among 260

controllers means that each controller manages the same 261

amount of switches. The load is denoted by the number 262

of switches. Moreover, the load balance among controllers 263

requires the coordination of controllers. The coordination 264

will further aggravate the computing and communication 265

overhead. However, in this paper, the selection scheme of 266

controllers achieves the mapping between switches and con- 267

trollers through switches conduct simple and actively probing. 268

IEE
E P

ro
of

4 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS

Therefore, the selection scheme relieves the overhead of269

coordination and assignment in controllers.270

In SDN, the controller periodically probes the switch state,271

and switches would respond to those probes and forward any272

switch notifications (e.g., link failures or recovery) to all live273

controllers [15]. When a switch suffers a failure scenario,274

it fails to respond to the probe. After that, the controller275

promptly updates its local topology state and replicates that276

update to all other controllers in the cluster. In addition, there277

have been lots of researches on how to achieve the consistency278

among distributed controllers [15]. These techniques are com-279

plementary to our approach.280

We design the controller selection mechanism keeping in281

mind these four goals:282

1) Light-weight: A light-weight probing method is needed283

to save the bandwidth of the secure channel. The probing284

for the controller selection uses the secure channel,285

which is the communication channel between the control286

plane and the data plane. The bandwidth of the channel287

can affect the performance of the whole network.288

2) Scalable: The selection scheme of controllers should be289

irrelevant to the increasing number of controllers. The290

expansion of network size is common. The method of291

probing controller should accommodate the increase of292

deployed controllers and avoid to incur the communica-293

tion overhead and the computing overhead.294

3) Burst-immunity: The selection scheme should be burst-295

immune. There are bursty and skew-flow requests, which296

can lead to long response delays. To shorten the tail297

latency of responses, the selection scheme needs to298

accommodate the bursty and skew-flow requests.299

4) Adaptive: The selection scheme of controllers should be300

adaptive. The capabilities of controllers may be hetero-301

geneous and time-varying. To deal with the general situ-302

ation, the selection scheme must cope and quickly react303

to heterogeneous and time-varying processing capabili-304

ties across controllers.305

B. Load-Aware Selection Scheme of Controllers306

Accommodating skew-flow requests across controllers307

necessitates a selection strategy of controllers. The strategy308

can make switches select faster controllers for routing requests.309

The controller with fewer unfinished requests can respond to310

routing requests faster when controllers have the same process-311

ing capability. In this paper, we first present a load-aware312

selection scheme. To realize this framework, the selection313

strategy needs to take into account the loads across multiple314

controllers in the network. The load means the number of315

unfinished requests. Our load-aware selection scheme is to316

select a controller with the fewest unfinished requests for317

newly generated requests.318

Under the load-aware selection scheme of controllers,319

the switch needs to send a probing request to each controller320

after a switch receives a new flow. When the controller receives321

the probing request, it will return the number of unfinished322

requests to the switch. After the switch receives all probing323

results, it then sends the new routing request to the controller324

with the lightest load since that controller can respond the 325

routing request fastest. The load-aware selection scheme aims 326

to reduce tail latencies of responses by selecting the controller 327

with the lightest load. 328

In Fig. 2, the load-aware selection scheme will work as 329

follows. When a switch receives a new flow, it first probes the 330

loads of controllers A and B. Based on the loads of controllers 331

A and B, the switch sends the routing request to the controller 332

with lightest load. This scheme can balance the loads of 333

controllers A and B and can achieve better selection. When the 334

controller finishes processing the routing request, it inserts the 335

flow rules to related switches. Lastly, those switches will deal 336

with the flow according to the actions of matched flow rules. 337

In addition, the new arrival routing requests need to queue in 338

controllers, when controllers are busy. However, the infinite 339

length of queue will incur infinite response delays of routing 340

requests. To cut the tail latency of response, it is necessary to 341

ensure that the length of queue is finite in each controller. 342

C. The Condition to Finite Queue Length 343

We give the condition to achieve that the expected number 344

of requests in per controller remains finite for all time. Con- 345

sider the following model: requests arrive as a Poisson stream 346

of rate λ at each switch. Requests are processed according 347

to the first-in first-out (FIFO) protocol by controllers. The 348

processing time for a request is exponentially distributed with 349

mean μ. When there are m switches and n controllers in a 350

network, requests arrive as a Poisson stream of rate λm
n at 351

each controller. We obtain the following theorem. Note that 352

λm
n < μ, and then the system will be stable, which means that 353

the expected number of requests per controller remains finite 354

in equilibrium. Theorem 1 shows that the system is stable for 355

every λm
μn < 1; that is, the expected number of requests in each 356

controller remains finite for all time. 357

Theorem 1: The system is stable for every λm
μn < 1; that 358

is, the expected number of requests in each controller remains 359

finite for all time. 360

Proof: When we treat all controllers as a whole and 361

all switches as a whole, then the system can be seen as 362

a M/M/1 system with Poisson arrival rate λm and average 363

service rate μn. Let Pk(t) denote the probability of that there 364

are k requests in the whole system in time t . Accordingly, 365

Pk+1(t) denotes the probability where k + 1 requests exist in 366

the system in time t , and Pk(t+�t) denotes the probability of 367

that there are k requests in the whole system in time t +�t . 368

Now we consider the evolution of the system. In the time 369

[t, t + �t], the process of evolution has some attributes just 370

as follows: 371

• One request comes with the probability λm�t , and the 372

probability of no request comes is 1− λm�t . 373

• One request departures with the probability μn�t , and 374

the probability of no request departure is 1− μn�t . 375

• The situation of more than one request comes and depar- 376

tures in �t is a small probability event, and it can be 377

ignored. 378

There are 4 types of evolution process, and we list them 379

in Table I. Take type B for an example. Since k is the number 380

IEE
E P

ro
of

XIE et al.: CUTTING LONG-TAIL LATENCY OF ROUTING RESPONSE IN SOFTWARE DEFINED NETWORKS 5

TABLE I

FOUR TYPES OF EVOLUTION PROCESS

of requests in the whole system, so k + 1 means that there381

are k + 1 requests in the system in time t . After that, when382

a request departs during �t , there would be k requests in383

the system in time t + �t . Accordingly, we can get the384

possibility of type A is Pk(t)(1−λm�t)(1−μn�t), possibility385

of type B is Pk+1(t)(1 − λm�t)μn�t , possibility of type386

C is Pk−1(t)λm�t (1 − μn�t) and possibility of type D is387

Pk(t)λm�tμn�t . Then, Pk(t +�t) should be the sum of all388

4 types, shown in Equation (1).389

Pk(t +�t) = Pk(t)(1− λm�t − μn�t)390

+ Pk+1(t)μn�t + Pk−1(t)λm�t + o(�t) (1)391

And let �t → 0, we can get a differential equation, shown392

in Equation (2).393

d Pk(t)

dt
= λm Pk−1(t)+ μn Pk+1(t)394

− (λm + μn)Pk(t) k = 1, 2, . . . (2)395

Noted that if k = 0, there will exist only type A and type B,396

shown in Equations (3) and (4).397

P0(t +�t = P0(t)(1−λm�t)+ P1(t)(1−λm�t)μn�t (3)398

d P0(t)

dt
= −λm P0(t)+ μn P1(t) (4)399

We just have interest in the equilibrium point, and the400

derivative is 0 in fixed point. Thus, we get Equation (5).401 {
−λm P0 + μn P1 = 0

λm Pk−1 + μn Pk+1 − (λm + μn)Pk = 0 k ≥ 1
(5)402

Resolve equation (5), we can get Pk = (λm/μn)k P0.403

If λm
μn < 1, then the sequence Pk will be decrease. And we404

know probability is non-negative, that means Pk ≥ 0. If a405

sequence is bounded and monotone, it converges [16]. So there406

exist K , when k > K , Pk = 0. Then the expected total number407

of requests in all controllers remains finite.408

Theorem 1 shows that the expected total number of requests409

in each controller remains finite, when λm
μn < 1. Therefore,410

to achieve the finite queue length, it is essential to ensure that411

λm
μn < 1. When the network size m increases, if λm

μn ≥ 1, it is412

necessary to increase the number of deployed controllers n,413

otherwise, the queue length of some controllers will be infinite,414

and that will incur infinite response delays. Another method415

to limit the queue length of controllers is to drop some routing416

requests, which can limit the value of λ and achieve λm
μn < 1.417

D. Limitations of Load-Aware Selection Scheme418

Fig. 3 shows the Cumulative Distribution Function (CDF) of419

response latencies of routing requests under different schemes.420

Fig. 3. Response latencies of routing requests under different schemes.

Fig. 4. Distinct selection schemes incur different response latencies.

In Fig. 3, the response latencies of 94% of routing requests 421

are lower than 5ms after adopting the load-aware selection 422

scheme. However, for the quantity-based assignment, only 423

86% of routing requests can be responded in 5ms. In Fig. 3, 424

all routing requests can be responded in 10ms under the load- 425

aware scheme. Therefore, Fig. 3 indicates that our load-aware 426

selection scheme can reduce the tail latency of responses than 427

the prior quantity-based allocation method when controllers 428

are homogeneous and exhibit the same processing capabilities. 429

However, we can see that both curves (Quantity-based and 430

Load-aware) are very close to each other, which means that 431

the load-aware selection strategy narrowly reduce the long- 432

tail latency. Furthermore, the load-aware selection scheme 433

faces three challenges. First, controllers are heterogeneous. 434

Second, the processing capabilities of controllers are dynam- 435

ically changing. Third, the cost of probing is too huge. 436

Therefore, the load-aware selection scheme is still insufficient 437

to completely cut the tail latency. 438

Fig. 4 plots an illustrative example of the limitation. For two 439

controllers, the processing time per request in controller A and 440

controller B are 5ms and 12ms, respectively. Assume all four 441

switches receive a burst of 3 requests each. Each request needs 442

to be forwarded to a single controller. If every switch selects 443

a controller using the load-aware scheme, it will result in each 444

controller receiving an equal share of the requests. This leads 445

to a maximum latency of 72ms, whereas an ideal selection in 446

this case obtains a maximum latency of 45ms. We note that 447

the load-aware scheme will prefer faster controllers over time, 448

but purely relies on the load information. Therefore, when 449

controllers are heterogeneous, the load-aware selection scheme 450

can not efficiently shorten the tail latency. 451

Controllers are commonly heterogeneous for primarily three 452

reasons. First, the hardware is heterogeneous. Controllers run 453

IEE
E P

ro
of

6 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS

in commercial servers. These servers can be heterogeneous454

due to different hardware configurations, such as CPU and455

memory. Second, the software is heterogenous. There are456

multiple different controllers developed by different organiza-457

tions [10], such as NOX, Beacon, Floodlight, Ryu, ONOS and458

OpenDaylight, etc. Those controllers themselves have different459

performances. Third, the function is heterogeneous. There460

are some management applications running in controllers for461

achieving different functions [12], [17], and these applications462

will consume some resources of controllers. Consequentially,463

controllers have different remaining capabilities for processing464

routing requests, even if the controllers run in servers with465

the same setting. In this case, queueing routing requests in466

controllers with low processing capabilities will lead to long467

response latencies.468

Additionally, the load-aware scheme probes the loads of all469

controllers, and then selects the controller that has the lightest470

load. However, this probing will incur the overhead of com-471

munication and aggravate the loads of controllers when there472

are a large number of controllers in a large-scale network. For473

example, there are m switches and n controllers in a network.474

Suppose that each switch receives λ routing requests in 1ms.475

There are 2λ×m×n times communications between switches476

and controllers during 1ms. Meanwhile, each controller needs477

to evaluate its own load λm times in 1ms. The cost of probing478

is too huge for the load-aware selection scheme.479

The load-aware controller selection scheme can only reduce480

tail latencies of responses under the homogeneous controllers.481

However, the network environment is time-varying in real482

situations, not only in the processing capabilities of controllers483

but also in the number of routing requests from switches.484

We further propose a delay-aware selection scheme of con-485

trollers, which can adapt to the variations of the network486

environment.487

IV. DELAY-AWARE SELECTION SCHEME488

OF CONTROLLERS489

We design the delay-aware selection scheme of controllers490

while keeping the design goals of controller selection mecha-491

nism in mind. We first show an overview of the delay-aware492

selection scheme. Then, we present two major components of493

the delay-aware selection scheme, the selection models of con-494

trollers and the queue management mechanism of controller.495

A. Overview of Delay-Aware Selection Scheme496

To address those problems faced by the load-aware selection497

scheme, we further design the delay-aware selection scheme of498

controllers, which is adaptive to the heterogeneous controllers499

as well as to the dynamic behaviours of flows. The delay-500

aware selection scheme needs to probe the response delays of501

controllers for routing requests and send the routing requests502

to the controller with the smallest response delay. The latency503

of routing response denotes the time interval from sending504

the routing request to receiving the flow rules generated by505

the controller and is composed of the queueing delay and506

the processing delay, as shown in Definition 1. The response507

delay is an approximate evaluation of response time. Through508

Fig. 5. Overview of controller selection scheme. CS: Controller Selection
scheduler, QM: Queue Management of controller.

probing response delays, the delay-aware selection scheme 509

can accommodate the heterogeneous controllers, while fewer 510

routing requests will be sent to the controllers with low 511

processing capabilities. 512

Definition 1: The latency of routing response denotes the 513

time interval from sending the routing request to receiving the 514

flow rules generated by the controller. 515

Furthermore, the capabilities of controllers are time-varying. 516

With the development of SDN, there are more and more 517

applications running in controllers. When switches send vast 518

requests to the controller that has fast capability of response 519

at before, a large number of requests have to queue in 520

controllers if the capabilities of controllers decrease due to 521

other applications’ overconsumption of resources. 522

Our delay-aware selection scheme includes two major com- 523

ponents, controller selection (CS) and queue management 524

(QM). Recall the design goal of the selection scheme in 525

Section III-A, CS can achieve that the selection scheme is 526

light-weight, scalable and burst-immune, and QM achieves 527

the goal of adaptivity. First, we design a selection scheme 528

of controllers, which can select the controller based on a 529

little feedback from the controllers, and thus, is light-weight. 530

Second, instead of probing all controllers, the switch randomly 531

probes d controllers where d ≥ 1. The probing is scalable 532

and independent of the network size. Third, the selection 533

scheme can make switches conduct once controller selection 534

for each flow or a batch of flows. It can make those requests 535

be processed by different controllers, and thus can avoid the 536

influence of the bursty and skew-flow requests. Last, through 537

estimating response delays of routing requests, switches can 538

send routing requests to the controller that has the smallest 539

response delay. Based on this estimation, the selection of 540

controllers can be adapted to the heterogeneous and time- 541

varying processing capabilities. 542

Fig. 5 depicts the framework of the adaptive switch-to- 543

controller selection scheme. When a request is issued at a 544

switch, the switch will work based on Algorithm 1. The switch 545

randomly probes d controllers, where d ≥ 1. The d controllers 546

then estimate their response delays for the routing request 547

based on Algorithm 2 and return the response delays ψ to 548

the switch. If ψi of controller i exceeds the max response 549

delay RDmax limit, then controller i will return the response 550

delay ψi = −1. When the switch receives response delays 551

of d controllers, it will select the controller that has the 552

smallest response delay. If all response delays are lower than 0, 553

the switch will reselect a controller whose queue length does 554

IEE
E P

ro
of

XIE et al.: CUTTING LONG-TAIL LATENCY OF ROUTING RESPONSE IN SOFTWARE DEFINED NETWORKS 7

Algorithm 1 The Selection of Controllers
Require: Controller set C , d .
1: randomly probe d controllers from C;
2: send estimating request to the d controllers;
3: ψ ← response delays of d controllers;
4: if there exists ψx ≥ 0 then
5: id ← arg min{ψx ≥ 0};
6: else
7: for i = 1 to C .length do
8: send estimating request to controllers C[i];
9: ψ0 ← response time of C[i];

10: if ψ0 >= 0 then
11: id = i ;
12: break;
13: send the routing request to controller C[id].

Algorithm 2 Queue Management of Controller
Require: the max response delay, RDmax .
1: receive an estimating request from switch s;
2: calculate the average processing time of requests ν̄;
3: if ri < γi then
4: ψi ← ri

γi
ν̄;

5: else
6: ψi ← C[qi modγi] + (�qi/γi� + 1)× ν̄;
7: if ψi > RDmax then
8: ψi = −1;
9: send ψi to switch s.

not exceed limit for the routing request. Last, the switch will555

send the request to the selected controller.556

B. The Selection Models of Controllers557

When there are only a few controllers in the network, it is558

feasible to probe all controllers. Considering that this probing559

could occupy extra bandwidth of the secure link, it is essential560

to design a per-flow light-weight probing method.561

1) Active Per-Flow Selection of Controllers: To deal with562

the skew-flow requests and reduce response tail latencies,563

the switches need to select controllers for each flow. Instead564

of the controller-to-switch assignment, the active per-flow565

selection of controllers makes that the routing requests from566

the same switch can be processed by different controllers.567

This selection scheme can fully exploit the capabilities of568

controllers and efficiently reduce response tail latencies.569

To reduce the bandwidth consumption of probing con-570

trollers, one method is to reduce the number of probed571

controllers. There is a tradeoff between response tail latencies572

and the number of probed controllers. Probing more controllers573

can achieve fewer response tail latencies. However, that also574

means more bandwidth consumption and computing overhead575

in controllers. The number of controllers increases as the576

network scale grows. In this case, checking all controllers has577

a huge cost. To achieve the light-weight probing, we randomly578

probe d controllers instead of checking all controllers, where579

d ≥ 1. Furthermore, Azar et al. [18] have shown that having580

just two random choices (i.e., d = 2) yields a large reduction 581

in the maximum load over having one choice. This method 582

has been widely studied and applied [19]. Inspired by this fact, 583

our active per-flow selection is to probe two controllers and 584

is thus scalable. Meanwhile, the active per-flow selection of 585

controllers can efficiently reduce the bandwidth consumption 586

of the secure link and the computing load of controllers. 587

Instead of probing the loads of the controllers, probing 588

response delays of controllers can better reduce response tail 589

latencies. The probing of response delays requires that these 590

controllers evaluate their own response delays for routing 591

requests. Since the selection of controllers only needs to get a 592

numerical value of response delay, the selection of controllers 593

is light-weight. Moreover, the heterogeneous and time-varying 594

processing capabilities of controllers increase the complexity 595

of evaluation for response delays of controllers. The response 596

delay estimate model will be introduced in Section IV-C. 597

2) Active Selection of Controllers for a Batch of Flows: 598

When switches meet bursty-flow requests or when the arrival 599

of routing requests is frequent, conducting a controller selec- 600

tion for each request still aggravates the bandwidth consump- 601

tion and the loads of controllers even if only two controllers 602

need to be probed in one controller selection. Conducting the 603

controller selection for a batch of arrival routing requests is 604

needed to increase the scalability of the controller selection 605

mechanism, when switches suffer bursty flows. 606

For active selection of controllers for a batch of flows, 607

the switch conducts one controller selection after it receives 608

the first flow request. When we set the batch size as δ, 609

it means that the following δ − 1 requests will be sent to 610

the same controller with the first request. That is, the result 611

of controller selection for the first request will be shared by δ 612

requests. In addition, the batch selection is irrelevant to the 613

rate of requests because δ denotes the number of requests. 614

Therefore, although there would be the high rate of requests 615

in the beginning when the switch changes its controller, those 616

requests would not be sent to the same controller. Given that 617

the request arrival process at each switch is a Poisson process 618

with rate λ, the arrival duration for a flow is exponentially 619

distributed with mean 1/λ. Therefore, the arrival duration of δ 620

flows is also exponentially distributed with mean δ/λ. 621

There is a tradeoff between the rounds of controller selec- 622

tion and the performance of controller selection. If δ is too 623

small, it is obvious that controller selection should be fre- 624

quently conducted. However, it will decrease the performance 625

of controller selection when δ is too large. It is worth noting 626

that it is unnecessary to adopt the batch selection when the 627

arrival of flows is scattered. 628

C. Queue Management Mechanism of Controller 629

The queue management of controller makes it so that the 630

selection of controllers can cope and quickly react to heteroge- 631

neous and time-varying processing time across controllers. Our 632

queue management mechanism of controller includes response 633

delay estimate and queue length bound. 634

1) Response Delay Estimate Model: As depicted in 635

Section III-D, the load-aware selection scheme of controllers 636

IEE
E P

ro
of

8 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS

can not accommodate the heterogeneity of controller. To effi-637

ciently reduce the long-tail latency of routing response,638

switches should select controllers with lower response delays639

for each routing request.640

Request response time consists of the queueing time and641

the processing time. Furthermore, the queueing time is related642

to the length of queue, which is equal to the number of643

queueing requests. Meanwhile, to estimate the queueing time,644

it is essential to estimate the processing time of each request.645

In our design, the controller records ν j , which is the processing646

time of the latest responded j th requests. Given the number647

of the latest finished requests s, we calculate ν̄, which denotes648

the average processing time of s requests in controller i . Thus,649

ν̄ = 1
s

∑s
j=1 ν j . We use ν̄ to estimate the processing time of650

requests.651

Consider that the controller can process multiple routing652

requests simultaneously. We use γi to denote the number of653

requests that controlleri can simultaneously process. qi and ri654

are the number of queueing and running requests in con-655

troller i , respectively. To improve the system utilization,656

the controller that has idle running slots should have a lower657

estimated response delay. Therefore, the estimated response658

delay ψi = ri
γi
ν̄ when ri < γi . When there are requests659

queueing in a controller, the controller records the running660

duration A[k] of the running request in the kth slot where661

1 ≤ k ≤ γi . The controller then estimates that the queueing662

request will run in which slot. To achieve this goal, we use663

B[k] = |ν̄− A[k]| and then sort B[k] as non-decreasing order.664

Then, the controller estimates that the request will run in665

[(qi mod γi) + 1]th slot. We can get the queueing time666

wti = B[(qi mod γi)+1]+(�qi/γi�)×ν̄. At last, ψi = wti+ν̄667

when ri = γi .668

In summary, controlleri uses the following estimation669

function for response delay:670

ψi =
{

B[(qimodγi)+ 1] + (�qi/γi� + 1)× ν̄ ri = γi
ri
γi
ν̄ ri < γi

(6)671

When a switch sends an estimating request to controlleri ,672

the controlleri adopts the formula (6) to estimate the response673

delay. In general, γi = 1 means that the controller only can674

process one request once. In this case, ψi = B[1]+(qi+1)×ν̄.675

We suppose that the controller is empty at the beginning. After676

that, ν̄ is equal to the average processing time of finished677

requests when the number of finished messages is lower than678

the given threshold s.679

2) Cutting Tail Latencies: Since switches conduct con-680

troller selection simultaneously, there may be “herd behav-681

iors,” wherein multiple switches are coaxed to direct requests682

towards the best controller. There are many requests queueing683

in a controller under herd behavior that could leads to long-tail684

latencies of routing responses. Moreover, it is possible that the685

probed controllers all have low processing capabilities or long686

queues. In this case, it is not suitable to select a controller687

from those probed controllers.688

To cut long-tail latencies and reduce the influence of herd689

behavior, the controller necessitates to bound its queue length.690

Determining the length of queues at controllers is crucial.691

Queues that are too short lead to lower controller utilization, 692

as resources may remain idle between allocations. Queues that 693

are too long may incur excessive queuing delays. 694

When fewer requests are sent to a controller, this may incur 695

under-utilization of its resources, whereas significant delays 696

may occur when requests need longer processing time. Hence, 697

after estimating request response delay, we further design 698

a delay-aware bounding mechanism to bound queue length, 699

which can accommodate the heterogeneous and time-varying 700

capabilities of controllers. Meanwhile, bounding queue length 701

can efficiently weaken the influence of herd behaviors. At one 702

point, a controller receives a burst of flows, and that exceeds 703

the limit of queue length. After that, the following flows will 704

not queue in the controller until the queue length is lower than 705

the limit. This delay-aware bounding mechanism relies on the 706

response delay estimation of request, which is reported by the 707

controller. 708

In particular, we specify the maximum response delay 709

RDmax that a request is allowed to wait in a queue. When 710

we are about to place a request at the queue of controlleri , 711

we first check the estimated response delay ψi reported by 712

controlleri . Only if ψi < RDmax is the request queued at 713

that controller. We sample d controllers while conducting the 714

controller selection. If the d selected controllers all do not sat- 715

isfy the maximum response delay constraint. The switch needs 716

to reselect a new controller. Using this method, the number of 717

requests in each controller gets dynamically adapted based on 718

the current capability of the controller. 719

RDmax is set to make requests prefer faster controllers. 720

Furthermore, RDmax can be dynamically regulated to fit the 721

variation of controllers’ capabilities. For controllers that have 722

low processing capabilities, RDmax can limit the number 723

of queueing requests in these controllers. After that, these 724

requests can be sent to faster controllers. However, if RDmax 725

is too small, most of controllers refuse to receive new requests 726

because their response delays exceed the limit of RDmax . 727

In this case, it is necessary to extend the value of RDmax . 728

V. PERFORMANCE EVALUATION 729

We start with the evaluation methodology and scenarios. 730

In this section, we evaluate the selection schemes of controller 731

and the assignment mechanism of controller under the gen- 732

eral settings of controllers, the queue length bound RDmax , 733

the heavy request-skews, the time-varying service rates and 734

the batch selection. 735

A. Experimental Setup 736

We build a discrete-event simulator wherein workload 737

generators create flow requests at a set of switches. These 738

switches then employ the controller selection scheme to select 739

a controller for each request. Unless otherwise specified, 740

the network consists of 300 switches and 40 controllers. 741

However, when a large amount of flow requests emerges, 742

we need to employ more controllers to deal with the burstly 743

flows. The workload generators create flow requests according 744

to a Poisson arrival process to mimic arrival of user requests 745

at web servers [20]. Unless otherwise specified, the Poisson 746

IEE
E P

ro
of

XIE et al.: CUTTING LONG-TAIL LATENCY OF ROUTING RESPONSE IN SOFTWARE DEFINED NETWORKS 9

arrival process is with λ = 0.5 during 1ms. At the beginning,747

the system is empty, and there are no requests. With the system748

running, the switches start to produce flow requests and select749

controllers for flow requests. We run the system 1000ms,750

and the number of arrival flow requests is about 150, 000.751

Each controller maintains a FIFO request queue. Moreover,752

in the settings of controllers, each controller can service a753

tunable number of requests in parallel (10 in our settings).754

The processing time each request experiences is drawn from755

an exponential distribution (as in [21]) with a mean processing756

time μ−1 = 2ms. Furthermore, we incorporate controller757

heterogeneity into the network as follows: each controller,758

independently and with a uniform probability, sets its service759

rate to a different μ, where μ = 0.5 or μ = 0.1 in our settings.760

To estimate the response delay of each request, we set s = 100,761

That is, ν̄ denotes the average processing time of the latest762

finished 100 requests. We repeat every experiment 20 times763

using different random seeds, and then get the average result.764

We compare our design against three strategies:765

1) Quantity-based allocation: Controllers achieve load766

balance through balancing the number of switches,767

which each controller manages. Currently, ONOS con-768

troller utilizes this strategy to balance the loads of769

distributed controllers.770

2) Load-aware selection: The switch probes two con-771

trollers for each request and sends the request to the772

controller with fewer number of requests because prob-773

ing all controllers is not scalable.774

3) Delay-aware selection: The switch probes two con-775

trollers for each request and gets request response776

delays, which rely on the feedbacks of probed con-777

trollers. Then, the switch sends the request to the con-778

troller with smaller response delay.779

B. The Impact of d780

Azar et al. [18] have shown that the situation of d = 2 yields781

a large reduction in the maximum load over d = 1, while782

each additional choice beyond two decreases the maximum783

load by just a constant factor. Further, to verify the theory784

and determine the value of d , we evaluate the impact of785

d on the performance of the delay-aware selection strategy786

under heterogeneous controllers where d denotes the number787

of probed controllers. The processing time of each request788

in each controller is drawn from an exponential distribution789

where μ was randomly set as 0.5 or 0.1. Other parameters are790

the same as Section V-A.791

Fig. 6 shows the delay-aware selection strategy significantly792

reduces the mean response time as the value of d increase793

from 1 to 2. However, probing more controllers just incur a794

little bit reduction on the mean response time after d exceeds795

2. In addition, multiple switches may simultaneously select796

the same controller if each of them randomly probes more797

controllers. This would in turn aggravates the load of the798

controller. Thus, we set d = 2 in the next experiments.799

C. General Settings of Controllers800

We evaluate the performances of different schemes with801

heterogeneous controllers. We employ 60 controllers where the802

Fig. 6. The impact of d on the performance of the delay-aware selection
strategy.

Fig. 7. The performances of different schemes where controllers are
heterogeneous.

bound of maximal response delay RDmax = 20ms. The other 803

settings of experiments are consistent with that of Section V-B. 804

Fig. 7(a) shows that our delay-aware scheme can signifi- 805

cantly reduce the response tail latencies. Basically, all requests 806

can be finished in 50ms while adopting our delay-aware 807

scheme. The load-aware scheme achieves better performance 808

than the quantity-based scheme in Fig. 7(a). Over 90% of 809

requests can be processed during 150ms based on the load- 810

aware scheme. The quantity-based scheme leads to long 811

response delays, and there are over 20% of requests whose 812

response delays are more than 200ms in Fig. 7(a). This is 813

because a large of requests queue in controllers that have lower 814

processing capabilities. Meanwhile, the load-aware scheme 815

also failed to respond to requests quickly. The processing 816

delays of flow requests in different controllers are different 817

when controllers are heterogeneous. As a consequence, select- 818

ing a controller by the number of requests is not efficient. 819

Fig. 7(a) reveals that our delay-aware scheme achieved the 820

lowest response duration due to not only estimating response 821

delay but also cutting tail latencies. Fig. 7(a) also reveals that 822

our delay-aware scheme can be adapted to the system where 823

controllers have heterogeneous capabilities. 824

Fig. 7(b) shows that our delay-aware scheme can respond 825

to more requests than the load-aware scheme and the quantity- 826

based scheme can in the same time period. Meanwhile, 827

the throughput difference among schemes grows as the system 828

runs. In summary, with heterogeneous controllers, our delay- 829

aware scheme can efficiently reduce response tail latencies and 830

improve the throughput of controllers. 831

D. Impact of Queue Length Bound RDmax 832

We evaluate the impact of RDmax on the performance of 833

the delay-aware scheme. We set RDmax = 20ms, RDmax = 834

100ms and RDmax = ∞ respectively. RDmax = ∞ means 835

IEE
E P

ro
of

10 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS

Fig. 8. The impact of R Dmax on the performance and throughput of the
delay-aware scheme.

that there is no limit on the queue length of controllers. Other836

parameters are the same with Section V-C.837

Fig. 8(a) reveals that our delay-aware scheme has bet-838

ter performance when RDmax has a smaller value. Under839

RDmax = 20ms, all requests can be finished in 20ms. How-840

ever, The maximal response delay is 40ms under RDmax =841

100ms. Therefore, the performance of delay-aware scheme842

under RDmax = 20ms is better than that of RDmax = 100ms.843

Comparing with RDmax = ∞, delay-aware scheme can sig-844

nificantly reduce response tail latencies when RDmax = 20ms.845

Furthermore, we compare the throughput of controllers under846

different RDmax settings. Fig. 8(b) shows that the system can847

respond to 300 more requests under RDmax = 20ms than848

RDmax = 100ms. It was obvious that controllers have higher849

throughput when RDmax = 20ms than when RDmax = 100ms850

and RDmax = ∞. The difference of responded requests851

between RDmax = 20ms and RDmax = 100ms remains852

stable. However, the difference of responded requests between853

RDmax = 20ms and RDmax = ∞ grows as the system runs.854

Fig. 8 reveals that the setting of RDmax can make flow855

requests prefer the controllers that have faster processing856

capabilities. Additionally, it is noteworthy that RDmax can not857

be set too small, otherwise, there are no available controllers858

while conducting the controller selection.859

E. Performance Under Heavy Request-Skews860

In this section, we study the effect of heavy demand skews861

on the observed latencies where controllers are homogeneous862

with average server rate μ = 0.5. We set request-skew= 20%863

and request-skew= 50%. That is, 20% and 50% of switches864

generated 80% of the total requests towards the controllers.865

Most of parameters are inherited from Section V-A. To enable866

20% of switches to generate 80% of the total requests,867

we randomly select 60 switches and set the arrival rate of flow868

requests λ = 2. Other switches set λ = 0.125. Under request-869

skew= 50%, half of the switches set λ = 0.8, and the other870

half of the switches set λ = 0.2. We set RDmax = 150ms871

because there are too many requests in a short time and these872

requests have to queue in controllers.873

Fig. 9(a) shows that over 5% requests have response delays874

of more than 200ms for the quantity-based scheme. The875

quantity-based scheme suffers decreased performance due to876

the request-skews. However, the load-aware and delay-aware877

schemes can significantly reduce response tail latencies. Based878

Fig. 9. Request response time with different schemes under the heavy request-
skews.

Fig. 10. The performances of different schemes under the time-varying
service rates.

on the load-aware and delay-aware schemes, all requests can 879

be finished in 10ms in Fig. 9(a). Fig. 9 reveals that the load- 880

aware and delay-aware schemes achieve very similar perfor- 881

mances since controllers are homogeneous in this section. 882

Meanwhile, the quantity-based scheme suffers decreased per- 883

formance due to the request-skews. Under request-skews, 884

a part of switches generate a large number of the requests, 885

which incur long queues in some controllers for the quantity- 886

based scheme. 887

Comparing Fig. 9(a) and Fig. 9(b), we can find that the 888

quantity-based scheme under request-skew= 50% achieves a 889

lower response latency than under request-skew= 20%. It is 890

because the load balance among controllers where request- 891

skew= 50% is better than that of request-skew= 20%. 892

Moreover, Fig. 9 also reveals that our delay-aware scheme 893

can accommodate the heavy request-skews. 894

F. Impact of Time-Varying Service Rates 895

In this section, we study the effect of the service rate 896

fluctuation on the tail latency of response. We change the 897

average service rates of controllers in the system every 50ms, 898

and all controllers randomly set μ = 0.5 or μ = 0.1. Other 899

parameters are inherited from Section V-C. 900

Fig. 10(a) reveals that our delay-aware scheme can respond 901

to all requests in 60ms, the load-aware scheme can respond 902

to all requests during 80ms, and the response tail latency of 903

the quantity-based scheme is more than 200ms. Therefore, 904

our delay-aware scheme can efficiently reduce response tail 905

latencies. For the quantity-based scheme, it could not exploit 906

the feedbacks of controllers to select the controller and further 907

IEE
E P

ro
of

XIE et al.: CUTTING LONG-TAIL LATENCY OF ROUTING RESPONSE IN SOFTWARE DEFINED NETWORKS 11

Fig. 11. The performances of different schemes under the batch selection.

suffers lower system utilization. The load-based scheme also908

suffers lower performance because it fails to consider the time-909

varying service rate. Fig. 10(a) reveals that our delay-based910

scheme can accommodate time-varying service rate.911

Fig. 10(b) shows that our delay-aware scheme can respond912

to more requests than the quantity-based scheme and the load-913

aware scheme. With the increase of system running time,914

the advantage of the delay-aware scheme is more obvious915

than the quantity-based scheme in Fig. 10(b). Meanwhile,916

the difference of responded requests between the delay-917

aware scheme and the load-aware scheme cyclically fluctu-918

ates because the service rates of controllers are periodically919

changed. In summary, our delay-aware scheme can be better920

adapted to the time-varying service rate and can efficiently921

reduce tail latencies of responses.922

G. Evaluation for Batch Selection923

In this section, we evaluate the performance of different924

schemes for batch arrival requests. We set the arrival rate925

of flow requests λ = 5. There are about 300, 000 requests926

during 200ms. To deal with the burst requests, we employ927

150 controllers, and each controller can process 40 requests928

in parallel. We set the batch size δ = 10 and RDmax = 15ms,929

and other parameters are set as Section V-C.930

Fig. 11(a) reveals that our delay-aware scheme can still931

reduce tail latencies of responses under the batch selection.932

Our delay-aware scheme can respond to all requests in 40ms,933

and the load-aware scheme can respond to all requests during934

60ms. However, the response tail latency of the quantity-935

based scheme is more than 130ms. The performance of the936

quantity-based scheme is mainly affected by controllers that937

have lower processing capabilities. The tail latency of response938

under the load-aware scheme is generated because it fails939

to accommodate the heterogeneous controllers. Meanwhile,940

Fig. 11(b) shows that our delay-aware scheme can respond to941

more flow requests than either of the other two schemes. This942

means that our delay-aware scheme can not only reduce the943

tail latency, but can also improve the throughput of controllers944

under the batch selection.945

Impact of Batch Size δ: Furthermore, we evaluate the impact946

of the batch size δ on the performance of the delay-aware947

scheme. Fig. 12(a) depicts the performances of the delay-948

aware scheme under different batch sizes. Fig. 12(a) shows949

Fig. 12. The impact of the batch size δ.

that the performance of the delay-aware scheme has a modest 950

decrease with the increase of the batch size δ. When the 951

batch size δ increases, it means that more requests will be 952

sent to the same controller, even though the controller has a 953

low processing capacity. As a consequence, the delay-aware 954

scheme suffers a little of decreased performance. we can 955

find that experiments show a similar performance under the 956

different settings of δ in Fig. 12(a). Although more requests 957

would be directed to the controller with a low processing 958

capacity at some time when the value of δ is larger, after that, 959

the following requests would have less chance to select the 960

controller. Therefore, the decrease of performance is modest. 961

Furthermore, Fig. 12(b) reveals that the number of controller 962

selection operations dramatically decreases when the batch 963

size δ goes up. The fewer controller selection operations in 964

switch end will incur less bandwidth consumption in the secure 965

links between switches and controllers and less computing 966

load in controllers. In conclusion, active selection of con- 967

trollers for a batch of flows can efficiently reduce the resourse 968

consumption of communication and computing with a little bit 969

of performance reduction. 970

VI. RELATED WORK 971

A. Network Softwarization 972

Network softwarization is a transformation trend for design- 973

ing, implementing, and managing the 5G and next generation 974

networks. It exploits the benefits of software to enable the 975

redesign of network and service architectures, optimize the 976

expenditure and operational costs, and bring new values in 977

the infrastructures. The key enablers consist of the network 978

function virtualization (NFV), software-defined networking 979

(SDN) and cloud computing, etc. Meanwhile, 5G systems will 980

also rely on these technologies to attain the systems flexibility 981

and elasticity [2]. 982

Along with recent and ongoing advances in cloud com- 983

puting, it has become promising to design flexible, scalable, 984

and elastic 5G systems benefiting from advanced virtualization 985

techniques of cloud computing [1]. Taleb and Ksentini [22] 986

introduces the Follow-Me Cloud concept and proposes its 987

framework. There has been research on the possibility of 988

extending cloud computing beyond data centers toward the 989

mobile end user, providing end-to-end mobile connectivity 990

as a cloud service [23]. Software defined networking (SDN) 991

IEE
E P

ro
of

12 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS

acts as a promising enabler for network softwarization and992

plays a crucial role in the design of 5G wireless networks [1].993

SDN has been also utilized in the virtualization of mobile994

network functions [24]. Kempf et al. [25] describe an evolution995

of the mobile Evolved Packet Core (EPC) utilizing SDN996

that allows the EPC control plane to be moved into a data997

center. Taleb et al. [1] introduce the concept of “Anything998

as a Service” (ANYaaS), which relies on the reference ETSI999

NFV architecture to orchestrate and manage important ser-1000

vices. NFV aims at offering network services using network1001

functions implemented in software and deployed in an on-1002

demand and elastic manner on the cloud [26]. Medhat et al. [5]1003

introduce a service function chaining taxonomy as the basis1004

for the subsequent state-of-the-art analysis.1005

B. SDN Scalability1006

To tackle the problem of scaling SDN, Xie et al. [27]1007

resort to design the distributed controllers, such as Onix [28]1008

and ONOS [14], which try to distribute the control plane1009

while maintaining a logically centralized management. These1010

approaches balance the load of controllers based on the1011

number of switches, which can not efficiently reduce the tail1012

latencies of responses. Aissioui et al. [29] propose a two-level1013

hierarchical controller platform to address these scalability and1014

performance issues in the context of 5G mobile networks.1015

One key limitation of the distributed controllers is that1016

the mapping between a switch and a controller is statically1017

configured. The static configuration results in the uneven1018

load distribution among the controllers. Bari et al. [30]1019

propose a management framework, which periodically eval-1020

uates the current controller-to-switch assignment. After that,1021

it needs to decide whether to perform a reassignment. If a1022

reassignment is performed, the management framework also1023

changes the controller-to-switch assignment in the network.1024

Dixit et al. [31] propose ElastiCon, an elastic distributed1025

controller architecture in which the controller pool is dynam-1026

ically grown or shrunk according to traffic conditions. In this1027

case, the load is dynamically shifted across controllers, which1028

similarly relieves the static mapping between a switch and a1029

controller. Zhou et al. [32] propose a dynamic and adaptive1030

algorithm (DALB), which is running as a module of SDN1031

controller. The controllers in distributed environment can1032

cooperate with each other to keep load balancing. Overloaded1033

controller can be detected, and high-load switches mapped to1034

this controller can be smoothly migrated to the under-load1035

controllers. However, these dynamic frameworks require that1036

the control plane monitors the state of the whole network and1037

conducts the reassignments, which aggravate the computing1038

load of the control plane.1039

In contrast to these works, our approach relies on simple and1040

inexpensive feedback of controllers and efficiently relieve the1041

load of the control plane. Mao and Shen [33] use the principles1042

of SDN to achieve the server load balancing by setting the1043

SDN flow table, which does not aim to solve the load balance1044

of the distributed controllers of SDN. Palma et al. [34] develop1045

the QueuePusher, which is a queue management extension to1046

OpenFlow controllers supporting the Open vSwitch Database1047

Management Protocol (OVSDB) standard. QueuePusher can 1048

generate the appropriate queue configuration messages for 1049

switches. In addition, there have been lots of researches 1050

on how to achieve the consistency among distributed con- 1051

trollers [15]. These techniques are complementary to our 1052

approach. 1053

VII. CONCLUSION 1054

NFV and SDN can dynamically redistribute the flow across 1055

appropriate VNFs or service function chains if the controller 1056

configures a desired routing path for each network flow 1057

resulting from NFV applications. In this paper, we present 1058

the long-tail observations of the routing response latencies 1059

while using the up-to-date controller-to-switch assignment 1060

mechanism. To tackle this essential problem, we first propose 1061

a light-weight and load-aware switch-to-controller selection 1062

scheme to cut the long-tail response latency under the sim- 1063

ple scenario of homogeneous controllers, and then design 1064

a general delay-aware switch-to-controller selection scheme 1065

to fundamentally cut the long-tail response latency for the 1066

more complicated heterogeneous controller scenario with per- 1067

formance fluctuations. Through comprehensive performance 1068

evaluation, we demonstrate that our adaptive controller selec- 1069

tion schemes can efficiently reduce response long-tail latencies 1070

and accommodate various system environments including the 1071

request-skews, the fluctuation of service rates and so on. 1072

REFERENCES 1073

[1] T. Taleb, A. Ksentini, and R. Jantti, “‘Anything as a service’ for 5G 1074

mobile systems,” IEEE Netw., vol. 30, no. 6, pp. 84–91, Nov. 2016. 1075

[2] T. Taleb, S. Dutta, A. Ksentini, M. Iqbal, and H. Flinck, “Mobile edge 1076

computing potential in making cities smarter,” IEEE Commun. Mag., 1077

vol. 55, no. 3, pp. 38–43, Mar. 2017. 1078

[3] Y. Zhou, D. Zhang, and N. Xiong, “Post-cloud computing paradigms: 1079

A survey and comparison,” Tsinghua Sci. Technol., vol. 22, no. 6, 1080

pp. 714–732, 2017. 1081

[4] M. Kablan, A. Alsudais, E. Keller, and F. Le, “Stateless network 1082

functions: Breaking the tight coupling of state and processing,” in Proc. 1083

14th USENIX NSDI, Boston, MA, USA, Mar. 2017, pp. 97–112. 1084

[5] A. M. Medhat, T. Taleb, A. Elmangoush, G. A. Carella, S. Covaci, and 1085

T. Magedanz, “Service function chaining in next generation networks: 1086

State of the art and research challenges,” IEEE Commun. Mag., vol. 55, 1087

no. 2, pp. 216–223, Feb. 2017. 1088

[6] P. Zave, R. A. Ferreira, X. K. Zou, M. Morimoto, and J. Rexford, 1089

“Dynamic service chaining with dysco,” in Proc. ACM SIGCOMM, 1090

Los Angeles, CA, USA, 2017, pp. 57–70. 1091

[7] D. L. C. Dutra, M. Bagaa, T. Taleb, and K. Samdanis, “Ensuring end-to- 1092

end QoS based on multi-paths routing using SDN technology,” in Proc. 1093

IEEE Global Commun. Conf., Dec. 2017, pp. 1–6. 1094

[8] N. Gude et al., “NOX: Towards an operating system for networks,” ACM 1095

SIGCOMM Comput. Commun. Rev., vol. 38, no. 3, pp. 105–110, 2008. 1096

[9] A. Ksentini, M. Bagaa, T. Taleb, and I. Balasingham, “On using 1097

bargaining game for optimal placement of SDN controllers,” in Proc. 1098

IEEE Int. Conf. Commun. (ICC), May 2016, pp. 1–6. 1099

[10] J. Xie, D. Guo, Z. Hu, T. Qu, and P. Lv, “Control plane of software 1100

defined networks: A survey,” Comput. Commun., vol. 67, pp. 1–10, 1101

Aug. 2015. 1102

[11] D. Kreutz, F. Ramos, P. E. Veríssimo, C. E. Rothenberg, S. Azodolmolky, 1103

and S. Uhlig, “Software-defined networking: A comprehensive survey,” 1104

Proc. IEEE, vol. 103, no. 1, pp. 14–76, Jan. 2015. 1105

[12] A. Ksentini, M. Bagaa, and T. Taleb, “On using SDN in 5G: 1106

The controller placement problem,” in Proc. IEEE Global Commun. 1107

Conf. (GLOBECOM), Dec. 2016, pp. 1–6. 1108

[13] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data 1109

center network architecture,” ACM SIGCOMM Comput. Commun. Rev., 1110

vol. 38, no. 4, pp. 63–74, 2008. 1111

IEE
E P

ro
of

XIE et al.: CUTTING LONG-TAIL LATENCY OF ROUTING RESPONSE IN SOFTWARE DEFINED NETWORKS 13

[14] P. Berde et al., “ONOS: Towards an open, distributed SDN OS,” in Proc.1112

ACM HotSDN, 2014, pp. 1–6.1113

[15] A. Panda, W. Zheng, X. Hu, A. Krishnamurthy, and S. Shenker, “SCL:1114

Simplifying distributed SDN control planes,” in Proc. 14th USENIX1115

NSDI, Mar. 2017, pp. 329–345.1116

[16] D. Hugheshallett, A. M. Gleason, and W. G. Mccallum, Calculus: Single1117

and Multivariable, Student Solutions Manual, 6th ed. Hoboken, NJ,1118

USA: Wiley, 2013.1119

[17] A. Bremler-Barr, Y. Harchol, and D. Hay, “OpenBox: A software-defined1120

framework for developing, deploying, and managing network functions,”1121

in Proc. ACM SIGCOMM, Salvador, Brazil, Aug. 2016, pp. 511–524.1122

[18] Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal, “Balanced alloca-1123

tions,” SIAM J. Comput., vol. 29, no. 1, pp. 180–200, 1999.1124

[19] M. Mitzenmacher, A. W. Richa, and R. Sitaraman, “The power of two1125

random choices: A survey of techniques and results,” in Handbook of1126

Randomized Computing, vol. 11. Norwell, MA, USA: Kluwer, 2000,1127

pp. 255–312.1128

[20] R. Nishtala et al., “Scaling memcache at Facebook,” in Proc. USENIX1129

NSDI, 2013, pp. 385–398.1130

[21] A. Vulimiri, P. B. Godfrey, R. Mittal, J. Sherry, S. Ratnasamy, and1131

S. Shenker, “Low latency via redundancy,” in Proc. ACM Conf. Emerg.1132

Netw. Experim. Technol., 2013, pp. 283–294.1133

[22] T. Taleb and A. Ksentini, “Follow me cloud: Interworking federated1134

clouds and distributed mobile networks,” IEEE Netw., vol. 27, no. 5,1135

pp. 12–19, Sep./Oct. 2013.1136

[23] T. Taleb, “Toward carrier cloud: Potential, challenges, and solutions,”1137

IEEE Wireless Commun., vol. 21, no. 3, pp. 80–91, Jun. 2014.1138

[24] T. Taleb, A. Ksentini, and A. Kobbane, “Lightweight mobile core1139

networks for machine type communications,” IEEE Access, vol. 2,1140

pp. 1128–1137, 2014.1141

[25] J. Kempf, B. Johansson, S. Pettersson, H. Lüning, and T. Nilsson,1142

“Moving the mobile evolved packet core to the cloud,” in Proc. IEEE1143

8th Int. Conf. Wireless Mobile Comput., Netw. Commun. (WiMob),1144

Oct. 2012, pp. 784–791.1145

[26] T. Taleb et al., “EASE: EPC as a service to ease mobile core net-1146

work deployment over cloud,” IEEE Netw., vol. 29, no. 2, pp. 78–88,1147

Mar./Apr. 2015.1148

[27] J. Xie, D. Guo, X. Zhu, B. Ren, and H. Chen, “Minimal fault-tolerant1149

coverage of controllers in IaaS datacenters,” IEEE Trans. Services1150

Comput., to be published, doi: 10.1109/TSC.2017.2753260.1151

[28] T. Koponen et al., “Onix: A distributed control platform for large-scale1152

production networks,” in Proc. USENIX OSDI, 2010, pp. 351–364.1153

[29] A. Aissioui, A. Ksentini, A. M. Gueroui, and T. Taleb, “Toward elastic1154

distributed SDN/NFV controller for 5G mobile cloud management1155

systems,” IEEE Access, vol. 3, pp. 2055–2064, 2015.1156

[30] M. F. Bari et al., “Dynamic controller provisioning in software defined1157

networks,” in Proc. Int. Conf. Netw. Service Manage., Oct. 2013,1158

pp. 18–25.1159

[31] A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, and R. Kompella,1160

“Towards an elastic distributed SDN controller,” in Proc. ACM HotSDN,1161

Hong Kong, Aug. 2013, pp. 7–12.1162

[32] Y. Zhou et al., “A load balancing strategy of sdn controller based on1163

distributed decision,” in Proc. IEEE 13th Int. Conf. Trust, Secur. Privacy1164

Comput. Commun., Sep. 2014, pp. 851–856.1165

[33] Q. Mao and W. Shen, “A load balancing method based on SDN,” in1166

Proc. 7th Int. Conf. Meas. Technol. Mechatronics Autom., Jun. 2015,1167

pp. 18–21.1168

[34] D. Palma et al., “The queuepusher: Enabling queue management in1169

openflow,” in Proc. 3rd Eur. Workshop Softw. Defined Netw., Sep. 2014,1170

pp. 125–126.1171

Junjie Xie received the B.S. degree in computer1172

science and technology from the Beijing Institute1173

of Technology, Beijing, China, in 2013, and the1174

M.S. degree in management science and engineering1175

from the National University of Defense Technology,1176

Changsha, China, in 2015, where he is currently1177

pursuing the Ph.D. degree. He is also a joint Ph.D.1178

student with the University of California, Santa1179

Cruz (UCSC), CA, USA, from 2017. His study in1180

the UCSC is supported by the China Scholarship1181

Council. His research interests include distributed1182

systems, data-center networks, and software-defined networks.1183

Deke Guo received the B.S. degree in industry engi- 1184

neering from the Beijing University of Aeronautics 1185

and Astronautics, Beijing, China, in 2001, and the 1186

Ph.D. degree in management science and engineer- 1187

ing from the National University of Defense Tech- 1188

nology, Changsha, China, in 2008. He is currently a 1189

Professor with the College of Information System 1190

and Management, National University of Defense 1191

Technology, and a Professor with the School of 1192

Computer Science and Technology, Tianjin Uni- 1193

versity. His research interests include distributed 1194

systems, software-defined networking, data center networking, wireless and 1195

mobile systems, and interconnection networks. He is a member of the ACM. 1196

Xiaozhou Li received the Ph.D. degree in com- 1197

puter science from Princeton University in 2016. 1198

He is currently a Software Engineer with Barefoot 1199

Networks, where he is building new networking 1200

systems with fast programmable network chips. His 1201

research improves the performance, scalability, and 1202

efficiency of datacenter services, with a particular 1203

focus on combining new hardware and infrastructure 1204

capabilities with careful architectural design and 1205

algorithm engineering. 1206

Yulong Shen received the B.S. and M.S. degrees in 1207

computer science and the Ph.D. degree in cryptog- 1208

raphy from Xidian University, Xian, China, in 2002, 1209

2005, and 2008, respectively. He is currently a 1210

Professor with the School of Computer Science and 1211

Technology, Xidian University, and also an Asso- 1212

ciate Director of the Shaanxi Key Laboratory of 1213

Network and System Security. He has also served on 1214

the technical program committees of several interna- 1215

tional conferences, including the NANA, the ICEBE, 1216

the INCoS, the CIS, and the SOWN. His research 1217

interests include wireless network security and cloud computing security. 1218

Xiaohong Jiang received the B.S., M.S., and Ph.D. 1219

degrees from Xidian University, China, in 1989, 1220

1992, and 1999 respectively. From 2005 to 2010, he 1221

was an Associate professor, Tohoku University. He 1222

is currently a Full Professor with Future University 1223

Hakodate, Japan. His research interests include com- 1224

puter communications networks, mainly wireless 1225

networks and optical networks, network security, 1226

and routers/switches design. He has authored or co- 1227

authored over 300 technical papers at premium inter- 1228

national journals and conferences, which include 1229

over 70 papers published in top IEEE journals and top IEEE conferences. He 1230

was a recipient of the Best Paper Award of IEEE HPCC 2014, IEEE WCNC 1231

2012, IEEE WCNC 2008, IEEE ICC 2005-Optical Networking Symposium, 1232

and IEEE/IEICE HPSR 2002. He is a Member of IEICE. 1233

